///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2002-2009 The Bochs Project // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA // // i440FX Support - PMC/DBX // // Define BX_PLUGGABLE in files that can be compiled into plugins. For // platforms that require a special tag on exported symbols, BX_PLUGGABLE // is used to know when we are exporting symbols and when we are importing. #define BX_PLUGGABLE #include "iodev.h" #if BX_SUPPORT_PCI #include "pci.h" #define LOG_THIS thePciBridge-> bx_pci_bridge_c *thePciBridge = NULL; int libpci_LTX_plugin_init(plugin_t *plugin, plugintype_t type, int argc, char *argv[]) { thePciBridge = new bx_pci_bridge_c(); bx_devices.pluginPciBridge = thePciBridge; BX_REGISTER_DEVICE_DEVMODEL(plugin, type, thePciBridge, BX_PLUGIN_PCI); return(0); // Success } void libpci_LTX_plugin_fini(void) { delete thePciBridge; } bx_pci_bridge_c::bx_pci_bridge_c() { put("PCI"); } bx_pci_bridge_c::~bx_pci_bridge_c() { debug_dump(); BX_DEBUG(("Exit")); } void bx_pci_bridge_c::init(void) { // called once when bochs initializes unsigned i; BX_PCI_THIS num_pci_handlers = 0; /* set unused elements to appropriate values */ for (i=0; i < BX_MAX_PCI_DEVICES; i++) { BX_PCI_THIS pci_handler[i].handler = NULL; } for (i=0; i < 0x100; i++) { BX_PCI_THIS pci_handler_id[i] = BX_MAX_PCI_DEVICES; // not assigned } for (i=0; i < BX_N_PCI_SLOTS; i++) { BX_PCI_THIS slot_used[i] = 0; // no device connected } BX_PCI_THIS slots_checked = 0; // confAddr accepts dword i/o only DEV_register_ioread_handler(this, read_handler, 0x0CF8, "i440FX", 4); DEV_register_iowrite_handler(this, write_handler, 0x0CF8, "i440FX", 4); for (i=0x0CFC; i<=0x0CFF; i++) { DEV_register_ioread_handler(this, read_handler, i, "i440FX", 7); } for (i=0x0CFC; i<=0x0CFF; i++) { DEV_register_iowrite_handler(this, write_handler, i, "i440FX", 7); } Bit8u devfunc = BX_PCI_DEVICE(0,0); DEV_register_pci_handlers(this, &devfunc, BX_PLUGIN_PCI, "440FX Host bridge"); for (i=0; i<256; i++) BX_PCI_THIS pci_conf[i] = 0x0; // readonly registers BX_PCI_THIS pci_conf[0x00] = 0x86; BX_PCI_THIS pci_conf[0x01] = 0x80; BX_PCI_THIS pci_conf[0x02] = 0x37; BX_PCI_THIS pci_conf[0x03] = 0x12; BX_PCI_THIS pci_conf[0x0b] = 0x06; } void bx_pci_bridge_c::reset(unsigned type) { unsigned i; char devname[80]; char *device; if (!BX_PCI_THIS slots_checked) { for (i=0; iget_param_string(devname)->getptr(); if ((strlen(device) > 0) && !BX_PCI_THIS slot_used[i]) { BX_PANIC(("Unknown plugin '%s' at PCI slot #%d", device, i+1)); } } BX_PCI_THIS slots_checked = 1; } BX_PCI_THIS confAddr = 0; BX_PCI_THIS confData = 0; BX_PCI_THIS pci_conf[0x04] = 0x06; BX_PCI_THIS pci_conf[0x05] = 0x00; BX_PCI_THIS pci_conf[0x06] = 0x80; BX_PCI_THIS pci_conf[0x07] = 0x02; BX_PCI_THIS pci_conf[0x0d] = 0x00; BX_PCI_THIS pci_conf[0x0f] = 0x00; BX_PCI_THIS pci_conf[0x50] = 0x00; BX_PCI_THIS pci_conf[0x51] = 0x01; BX_PCI_THIS pci_conf[0x52] = 0x00; BX_PCI_THIS pci_conf[0x53] = 0x80; BX_PCI_THIS pci_conf[0x54] = 0x00; BX_PCI_THIS pci_conf[0x55] = 0x00; BX_PCI_THIS pci_conf[0x56] = 0x00; BX_PCI_THIS pci_conf[0x57] = 0x01; BX_PCI_THIS pci_conf[0x58] = 0x10; for (i=0x59; i<0x60; i++) BX_PCI_THIS pci_conf[i] = 0x00; BX_PCI_THIS pci_conf[0x72] = 0x02; } void bx_pci_bridge_c::register_state(void) { bx_list_c *list = new bx_list_c(SIM->get_bochs_root(), "pci_bridge", "PCI Bridge State", 3); BXRS_HEX_PARAM_FIELD(list, confAddr, BX_PCI_THIS confAddr); BXRS_HEX_PARAM_FIELD(list, confData, BX_PCI_THIS confData); register_pci_state(list); } void bx_pci_bridge_c::after_restore_state(void) { BX_PCI_THIS smram_control(BX_PCI_THIS pci_conf[0x72]); } // static IO port read callback handler // redirects to non-static class handler to avoid virtual functions Bit32u bx_pci_bridge_c::read_handler(void *this_ptr, Bit32u address, unsigned io_len) { #if !BX_USE_PCI_SMF bx_pci_bridge_c *class_ptr = (bx_pci_bridge_c *) this_ptr; return class_ptr->read(address, io_len); } Bit32u bx_pci_bridge_c::read(Bit32u address, unsigned io_len) { #else UNUSED(this_ptr); #endif // !BX_USE_PCI_SMF switch (address) { case 0x0CF8: return BX_PCI_THIS confAddr; case 0x0CFC: case 0x0CFD: case 0x0CFE: case 0x0CFF: { Bit32u handle, retval; Bit8u devfunc, regnum; if ((BX_PCI_THIS confAddr & 0x80FF0000) == 0x80000000) { devfunc = (BX_PCI_THIS confAddr >> 8) & 0xff; regnum = (BX_PCI_THIS confAddr & 0xfc) + (address & 0x03); handle = BX_PCI_THIS pci_handler_id[devfunc]; if ((io_len <= 4) && (handle < BX_MAX_PCI_DEVICES)) retval = BX_PCI_THIS pci_handler[handle].handler->pci_read_handler(regnum, io_len); else retval = 0xFFFFFFFF; } else retval = 0xFFFFFFFF; BX_PCI_THIS confData = retval; return retval; } } BX_PANIC(("unsupported IO read to port 0x%x", (unsigned) address)); return(0xffffffff); } // static IO port write callback handler // redirects to non-static class handler to avoid virtual functions void bx_pci_bridge_c::write_handler(void *this_ptr, Bit32u address, Bit32u value, unsigned io_len) { #if !BX_USE_PCI_SMF bx_pci_bridge_c *class_ptr = (bx_pci_bridge_c *) this_ptr; class_ptr->write(address, value, io_len); } void bx_pci_bridge_c::write(Bit32u address, Bit32u value, unsigned io_len) { #else UNUSED(this_ptr); #endif // !BX_USE_PCI_SMF switch (address) { case 0xCF8: BX_PCI_THIS confAddr = value; if ((value & 0x80FFFF00) == 0x80000000) { BX_DEBUG(("440FX PMC register 0x%02x selected", value & 0xfc)); } else if ((value & 0x80000000) == 0x80000000) { BX_DEBUG(("440FX request for bus 0x%02x device 0x%02x function 0x%02x", (value >> 16) & 0xFF, (value >> 11) & 0x1F, (value >> 8) & 0x07)); } break; case 0xCFC: case 0xCFD: case 0xCFE: case 0xCFF: if ((BX_PCI_THIS confAddr & 0x80FF0000) == 0x80000000) { Bit8u devfunc = (BX_PCI_THIS confAddr >> 8) & 0xff; Bit8u regnum = (BX_PCI_THIS confAddr & 0xfc) + (address & 0x03); Bit32u handle = BX_PCI_THIS pci_handler_id[devfunc]; if ((io_len <= 4) && (handle < BX_MAX_PCI_DEVICES)) { if (((regnum>=4) && (regnum<=7)) || (regnum==12) || (regnum==13) || (regnum>14)) { BX_PCI_THIS pci_handler[handle].handler->pci_write_handler(regnum, value, io_len); BX_PCI_THIS confData = value << (8 * (address & 0x03)); } else BX_DEBUG(("read only register, write ignored")); } } break; default: BX_PANIC(("IO write to port 0x%x", (unsigned) address)); } } // pci configuration space read callback handler Bit32u bx_pci_bridge_c::pci_read_handler(Bit8u address, unsigned io_len) { Bit32u value = 0; for (unsigned i=0; i= 0x10) && (address < 0x34)) return; for (unsigned i=0; i> (i*8)) & 0xFF; switch (address+i) { case 0x04: BX_PCI_THIS pci_conf[address+i] = (value8 & 0x40) | 0x06; break; case 0x06: case 0x0c: break; case 0x59: case 0x5A: case 0x5B: case 0x5C: case 0x5D: case 0x5E: case 0x5F: BX_INFO(("440FX PMC write to PAM register %x (TLB Flush)", address+i)); BX_PCI_THIS pci_conf[address+i] = value8; bx_pc_system.MemoryMappingChanged(); break; case 0x72: smram_control(value); // SMRAM conrol register break; default: BX_PCI_THIS pci_conf[address+i] = value8; BX_DEBUG(("440FX PMC write register 0x%02x value 0x%02x", address+i, value8)); } } } void bx_pci_bridge_c::smram_control(Bit8u value8) { // // From i440FX chipset manual: // // [7:7] Reserved. // [6:6] SMM Space Open (DOPEN), when DOPEN=1 and DLCK=0, SMM space DRAM // became visible even CPU not indicte SMM mode access. This is // indended to help BIOS to initialize SMM space. // [5:5] SMM Space Closed (DCLS), when DCLS=1, SMM space is not accessible // for data references, even if CPU indicates SMM mode access. Code // references may still access SMM space DRAM. // [4:4] SMM Space Locked (DLCK), when DLCK=1, DOPEN is set to 0 and // both DLCK and DOPEN became R/O. DLCK can only be cleared by // a power-on reset. // [3:3] SMRAM Enable (SMRAME) // [2:0] SMM space base segment, program the location of SMM space // reserved. // // SMRAM space access cycles: // | SMRAME | DLCK | DCLS | DOPEN | CPU_SMM | | Code | Data | // ------------------------------------------ --------------- // | 0 | X | X | X | X | -> | PCI | PCI | // | 1 | 0 | X | 0 | 0 | -> | PCI | PCI | // | 1 | 0 | 0 | 0 | 1 | -> | DRAM | DRAM | // | 1 | 0 | 0 | 1 | X | -> | DRAM | DRAM | // | 1 | 1 | 0 | X | 1 | -> | DRAM | DRAM | // | 1 | 0 | 1 | 0 | 1 | -> | DRAM | PCI | // | 1 | 0 | 1 | 1 | X | -> | ---- | ---- | // | 1 | 1 | X | X | 0 | -> | PCI | PCI | // | 1 | 1 | 1 | X | 1 | -> | DRAM | PCI | // ------------------------------------------ --------------- value8 = (value8 & 0x78) | 0x2; // ignore reserved bits if (BX_PCI_THIS pci_conf[0x72] & 0x10) { value8 &= 0xbf; // set DOPEN=0, DLCK=1 value8 |= 0x10; } if ((value8 & 0x08) == 0) { bx_devices.mem->disable_smram(); } else { bx_bool DOPEN = (value8 & 0x40) > 0, DCLS = (value8 & 0x20) > 0; if(DOPEN && DCLS) BX_PANIC(("SMRAM control: DOPEN not mutually exclusive with DCLS !")); bx_devices.mem->enable_smram(DOPEN, DCLS); } BX_INFO(("setting SMRAM control register to 0x%02x", value8)); BX_PCI_THIS pci_conf[0x72] = value8; } Bit8u bx_pci_bridge_c::rd_memType(Bit32u addr) { switch ((addr & 0xFC000) >> 12) { case 0xC0: return (BX_PCI_THIS pci_conf[0x5A] & 0x1); case 0xC4: return ((BX_PCI_THIS pci_conf[0x5A] >> 4) & 0x1); case 0xC8: return (BX_PCI_THIS pci_conf[0x5B] & 0x1); case 0xCC: return ((BX_PCI_THIS pci_conf[0x5B] >> 4) & 0x1); case 0xD0: return (BX_PCI_THIS pci_conf[0x5C] & 0x1); case 0xD4: return ((BX_PCI_THIS pci_conf[0x5C] >> 4) & 0x1); case 0xD8: return (BX_PCI_THIS pci_conf[0x5D] & 0x1); case 0xDC: return ((BX_PCI_THIS pci_conf[0x5D] >> 4) & 0x1); case 0xE0: return (BX_PCI_THIS pci_conf[0x5E] & 0x1); case 0xE4: return ((BX_PCI_THIS pci_conf[0x5E] >> 4) & 0x1); case 0xE8: return (BX_PCI_THIS pci_conf[0x5F] & 0x1); case 0xEC: return ((BX_PCI_THIS pci_conf[0x5F] >> 4) & 0x1); case 0xF0: case 0xF4: case 0xF8: case 0xFC: return ((BX_PCI_THIS pci_conf[0x59] >> 4) & 0x1); default: BX_PANIC(("rd_memType () Error: Memory Type not known !")); break; } return(0); // keep compiler happy } Bit8u bx_pci_bridge_c::wr_memType(Bit32u addr) { switch ((addr & 0xFC000) >> 12) { case 0xC0: return ((BX_PCI_THIS pci_conf[0x5A] >> 1) & 0x1); case 0xC4: return ((BX_PCI_THIS pci_conf[0x5A] >> 5) & 0x1); case 0xC8: return ((BX_PCI_THIS pci_conf[0x5B] >> 1) & 0x1); case 0xCC: return ((BX_PCI_THIS pci_conf[0x5B] >> 5) & 0x1); case 0xD0: return ((BX_PCI_THIS pci_conf[0x5C] >> 1) & 0x1); case 0xD4: return ((BX_PCI_THIS pci_conf[0x5C] >> 5) & 0x1); case 0xD8: return ((BX_PCI_THIS pci_conf[0x5D] >> 1) & 0x1); case 0xDC: return ((BX_PCI_THIS pci_conf[0x5D] >> 5) & 0x1); case 0xE0: return ((BX_PCI_THIS pci_conf[0x5E] >> 1) & 0x1); case 0xE4: return ((BX_PCI_THIS pci_conf[0x5E] >> 5) & 0x1); case 0xE8: return ((BX_PCI_THIS pci_conf[0x5F] >> 1) & 0x1); case 0xEC: return ((BX_PCI_THIS pci_conf[0x5F] >> 5) & 0x1); case 0xF0: case 0xF4: case 0xF8: case 0xFC: return ((BX_PCI_THIS pci_conf[0x59] >> 5) & 0x1); default: BX_PANIC(("wr_memType () Error: Memory Type not known !")); break; } return(0); // keep compiler happy } void bx_pci_bridge_c::debug_dump() { int i; BX_DEBUG(("i440fxConfAddr:0x%08x", BX_PCI_THIS confAddr)); BX_DEBUG(("i440fxConfData:0x%08x", BX_PCI_THIS confData)); #ifdef DUMP_FULL_I440FX for (i=0; i<256; i++) { BX_DEBUG(("i440fxArray%02x:0x%02x", i, BX_PCI_THIS pci_conf[i])); } #else /* DUMP_FULL_I440FX */ for (i=0x59; i<0x60; i++) { BX_DEBUG(("i440fxArray%02x:0x%02x", i, BX_PCI_THIS pci_conf[i])); } #endif /* DUMP_FULL_I440FX */ } bx_bool bx_pci_bridge_c::register_pci_handlers(bx_pci_device_stub_c *dev, Bit8u *devfunc, const char *name, const char *descr) { unsigned i, handle; char devname[80]; char *device; if (strcmp(name, "pci") && strcmp(name, "pci2isa") && strcmp(name, "pci_ide") && (*devfunc == 0x00)) { for (i = 0; i < BX_N_PCI_SLOTS; i++) { sprintf(devname, "pci.slot.%d", i+1); device = SIM->get_param_string(devname)->getptr(); if ((strlen(device) > 0) && (!strcmp(name, device))) { *devfunc = (i + 2) << 3; BX_PCI_THIS slot_used[i] = 1; BX_INFO(("PCI slot #%d used by plugin '%s'", i+1, name)); break; } } if (*devfunc == 0x00) { BX_ERROR(("Plugin '%s' not connected to a PCI slot", name)); } } /* check if device/function is available */ if (BX_PCI_THIS pci_handler_id[*devfunc] == BX_MAX_PCI_DEVICES) { if (BX_PCI_THIS num_pci_handlers >= BX_MAX_PCI_DEVICES) { BX_INFO(("too many PCI devices installed.")); BX_PANIC((" try increasing BX_MAX_PCI_DEVICES")); return false; } handle = BX_PCI_THIS num_pci_handlers++; BX_PCI_THIS pci_handler[handle].handler = dev; BX_PCI_THIS pci_handler_id[*devfunc] = handle; BX_INFO(("%s present at device %d, function %d", descr, *devfunc >> 3, *devfunc & 0x07)); return true; // device/function mapped successfully } else { return false; // device/function not available, return false. } } bx_bool bx_pci_bridge_c::is_pci_device(const char *name) { unsigned i; char devname[80]; char *device; for (i = 0; i < BX_N_PCI_SLOTS; i++) { sprintf(devname, "pci.slot.%d", i+1); device = SIM->get_param_string(devname)->getptr(); if ((strlen(device) > 0) && (!strcmp(name, device))) { return 1; } } return 0; } bx_bool bx_pci_bridge_c::pci_set_base_mem(void *this_ptr, memory_handler_t f1, memory_handler_t f2, Bit32u *addr, Bit8u *pci_conf, unsigned size) { Bit32u newbase; Bit32u oldbase = *addr; Bit32u mask = ~(size - 1); Bit8u pci_flags = pci_conf[0x00] & 0x0f; if ((pci_flags & 0x06) > 0) { BX_PANIC(("PCI base memory flag 0x%02x not supported", pci_flags)); return 0; } pci_conf[0x00] &= (mask & 0xf0); pci_conf[0x01] &= (mask >> 8) & 0xff; pci_conf[0x02] &= (mask >> 16) & 0xff; pci_conf[0x03] &= (mask >> 24) & 0xff; ReadHostDWordFromLittleEndian(pci_conf, newbase); pci_conf[0x00] |= pci_flags; if ((newbase != mask) && (newbase != oldbase)) { // skip PCI probe if (oldbase > 0) { DEV_unregister_memory_handlers(f1, f2, oldbase, oldbase + size - 1); } if (newbase > 0) { DEV_register_memory_handlers(this_ptr, f1, f2, newbase, newbase + size - 1); } *addr = newbase; return 1; } return 0; } bx_bool bx_pci_bridge_c::pci_set_base_io(void *this_ptr, bx_read_handler_t f1, bx_write_handler_t f2, Bit32u *addr, Bit8u *pci_conf, unsigned size, const Bit8u *iomask, const char *name) { unsigned i; Bit32u newbase; Bit32u oldbase = *addr; Bit16u mask = ~(size - 1); Bit8u pci_flags = pci_conf[0x00] & 0x03; pci_conf[0x00] &= (mask & 0xfc); pci_conf[0x01] &= (mask >> 8); ReadHostDWordFromLittleEndian(pci_conf, newbase); pci_conf[0x00] |= pci_flags; if (((newbase & 0xfffc) != mask) && (newbase != oldbase)) { // skip PCI probe if (oldbase > 0) { for (i=0; i 0) { DEV_unregister_ioread_handler(this_ptr, f1, oldbase + i, iomask[i]); DEV_unregister_iowrite_handler(this_ptr, f2, oldbase + i, iomask[i]); } } } if (newbase > 0) { for (i=0; i 0) { DEV_register_ioread_handler(this_ptr, f1, newbase + i, name, iomask[i]); DEV_register_iowrite_handler(this_ptr, f2, newbase + i, name, iomask[i]); } } } *addr = newbase; return 1; } return 0; } #endif /* BX_SUPPORT_PCI */