///////////////////////////////////////////////////////////////////////// // $Id: exception.cc,v 1.89 2007-02-03 17:56:35 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR #include "iodev/iodev.h" #if BX_SUPPORT_X86_64==0 // Make life easier merging cpu64 & cpu code. #define RIP EIP #define RSP ESP #endif /* Exception classes. These are used as indexes into the 'is_exception_OK' * array below, and are stored in the 'exception' array also */ #define BX_ET_BENIGN 0 #define BX_ET_CONTRIBUTORY 1 #define BX_ET_PAGE_FAULT 2 #define BX_ET_DOUBLE_FAULT 10 static const bx_bool is_exception_OK[3][3] = { { 1, 1, 1 }, /* 1st exception is BENIGN */ { 1, 0, 1 }, /* 1st exception is CONTRIBUTORY */ { 1, 0, 0 } /* 1st exception is PAGE_FAULT */ }; #define BX_EXCEPTION_CLASS_TRAP 0 #define BX_EXCEPTION_CLASS_FAULT 1 #define BX_EXCEPTION_CLASS_ABORT 2 #if BX_SUPPORT_X86_64 void BX_CPU_C::long_mode_int(Bit8u vector, bx_bool is_INT, bx_bool is_error_code, Bit16u error_code) { // long mode interrupt Bit64u idtindex; Bit32u dword1, dword2, dword3; bx_descriptor_t gate_descriptor, cs_descriptor; bx_selector_t cs_selector; // interrupt vector must be within IDT table limits, // else #GP(vector number*16 + 2 + EXT) idtindex = vector*16; if ( (idtindex + 15) > BX_CPU_THIS_PTR idtr.limit) { BX_ERROR(("interrupt(long mode): vector > idtr.limit")); BX_ERROR(("IDT.limit = %04x", (unsigned) BX_CPU_THIS_PTR idtr.limit)); BX_ERROR(("IDT.base = %06x", (unsigned) BX_CPU_THIS_PTR idtr.base)); BX_ERROR(("interrupt vector must be within IDT table limits")); exception(BX_GP_EXCEPTION, vector*16 + 2, 0); } // descriptor AR byte must indicate interrupt gate, trap gate, // or task gate, else #GP(vector*16 + 2 + EXT) idtindex += BX_CPU_THIS_PTR idtr.base; access_linear(idtindex, 4, 0, BX_READ, &dword1); access_linear(idtindex + 4, 4, 0, BX_READ, &dword2); access_linear(idtindex + 8, 4, 0, BX_READ, &dword3); parse_descriptor(dword1, dword2, &gate_descriptor); if ((gate_descriptor.valid==0) || gate_descriptor.segment) { BX_ERROR(("interrupt(long mode): gate descriptor is not valid sys seg")); exception(BX_GP_EXCEPTION, vector*16 + 2, 0); } if (gate_descriptor.type != BX_386_INTERRUPT_GATE && gate_descriptor.type != BX_386_TRAP_GATE) { BX_ERROR(("interrupt(long mode): unsupported gate type %u", (unsigned) gate_descriptor.type)); exception(BX_GP_EXCEPTION, vector*16 + 2, 0); } // if software interrupt, then gate descripor DPL must be >= CPL, // else #GP(vector * 16 + 2 + EXT) if (is_INT && (gate_descriptor.dpl < CPL)) { BX_ERROR(("interrupt(long mode): is_INT && (dpl < CPL)")); exception(BX_GP_EXCEPTION, vector*16 + 2, 0); } // Gate must be present, else #NP(vector * 16 + 2 + EXT) if (! IS_PRESENT(gate_descriptor)) { BX_ERROR(("interrupt(long mode): p == 0")); exception(BX_NP_EXCEPTION, vector*16 + 2, 0); } Bit16u gate_dest_selector = gate_descriptor.u.gate386.dest_selector; Bit64u gate_dest_offset = ((Bit64u)dword3 << 32) + gate_descriptor.u.gate386.dest_offset; unsigned ist = gate_descriptor.u.gate386.dword_count & 0x7; // examine CS selector and descriptor given in gate descriptor // selector must be non-null else #GP(EXT) if ((gate_dest_selector & 0xfffc) == 0) { BX_ERROR(("int_trap_gate(long mode): selector null")); exception(BX_GP_EXCEPTION, 0, 0); } parse_selector(gate_dest_selector, &cs_selector); // selector must be within its descriptor table limits // else #GP(selector+EXT) fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION); parse_descriptor(dword1, dword2, &cs_descriptor); // descriptor AR byte must indicate code seg // and code segment descriptor DPL<=CPL, else #GP(selector+EXT) if (cs_descriptor.valid==0 || cs_descriptor.segment==0 || IS_DATA_SEGMENT(cs_descriptor.type) || cs_descriptor.dpl>CPL) { BX_ERROR(("interrupt(long mode): not code segment")); exception(BX_GP_EXCEPTION, cs_selector.value & 0xfffc, 0); } // check that it's a 64 bit segment if (! IS_LONG64_SEGMENT(cs_descriptor) || cs_descriptor.u.segment.d_b) { BX_ERROR(("interrupt(long mode): must be 64 bit segment")); exception(BX_GP_EXCEPTION, vector, 0); } // segment must be present, else #NP(selector + EXT) if (! IS_PRESENT(cs_descriptor)) { BX_ERROR(("interrupt(long mode): segment not present")); exception(BX_NP_EXCEPTION, cs_selector.value & 0xfffc, 0); } // if code segment is non-conforming and DPL < CPL then // INTERRUPT TO INNER PRIVILEGE: if ((IS_CODE_SEGMENT_NON_CONFORMING(cs_descriptor.type) && cs_descriptor.dpl 0) { BX_DEBUG(("interrupt(long mode): trap to IST, vector = %d\n",ist)); get_RSP_from_TSS(ist+3, &RSP); } // align stack RSP &= BX_CONST64(0xfffffffffffffff0); // push flags onto stack // push current CS selector onto stack // push return offset onto stack push_64(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value); push_64(old_RSP); push_64(read_eflags()); push_64(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); push_64(RIP); if (is_error_code) push_64(error_code); // set the RPL field of CS to CPL branch_far64(&cs_selector, &cs_descriptor, gate_dest_offset, CPL); // if interrupt gate then set IF to 0 if (!(gate_descriptor.type & 1)) // even is int-gate BX_CPU_THIS_PTR clear_IF(); BX_CPU_THIS_PTR clear_TF(); BX_CPU_THIS_PTR clear_VM(); BX_CPU_THIS_PTR clear_RF(); BX_CPU_THIS_PTR clear_NT(); return; } // else #GP(CS selector + ext) BX_ERROR(("interrupt(long mode): bad descriptor")); BX_ERROR(("type=%u, descriptor.dpl=%u, CPL=%u", (unsigned) cs_descriptor.type, (unsigned) cs_descriptor.dpl, (unsigned) CPL)); BX_ERROR(("cs.segment = %u", (unsigned) cs_descriptor.segment)); exception(BX_GP_EXCEPTION, cs_selector.value & 0xfffc, 0); } #endif void BX_CPU_C::protected_mode_int(Bit8u vector, bx_bool is_INT, bx_bool is_error_code, Bit16u error_code) { // protected mode interrupt Bit32u dword1, dword2; bx_descriptor_t gate_descriptor, cs_descriptor; bx_selector_t cs_selector; Bit16u raw_tss_selector; bx_selector_t tss_selector; bx_descriptor_t tss_descriptor; Bit16u gate_dest_selector; Bit32u gate_dest_offset; // interrupt vector must be within IDT table limits, // else #GP(vector number*8 + 2 + EXT) if ( (vector*8 + 7) > BX_CPU_THIS_PTR idtr.limit) { BX_DEBUG(("IDT.limit = %04x", (unsigned) BX_CPU_THIS_PTR idtr.limit)); BX_DEBUG(("IDT.base = %06x", (unsigned) BX_CPU_THIS_PTR idtr.base)); BX_DEBUG(("interrupt vector must be within IDT table limits")); BX_DEBUG(("interrupt(): vector > idtr.limit")); exception(BX_GP_EXCEPTION, vector*8 + 2, 0); } // descriptor AR byte must indicate interrupt gate, trap gate, // or task gate, else #GP(vector*8 + 2 + EXT) access_linear(BX_CPU_THIS_PTR idtr.base + vector*8, 4, 0, BX_READ, &dword1); access_linear(BX_CPU_THIS_PTR idtr.base + vector*8 + 4, 4, 0, BX_READ, &dword2); parse_descriptor(dword1, dword2, &gate_descriptor); if ((gate_descriptor.valid==0) || gate_descriptor.segment) { BX_DEBUG(("interrupt(): gate descriptor is not valid sys seg (vector=0x%02x)", vector)); exception(BX_GP_EXCEPTION, vector*8 + 2, 0); } switch (gate_descriptor.type) { case BX_TASK_GATE: case BX_286_INTERRUPT_GATE: case BX_286_TRAP_GATE: case BX_386_INTERRUPT_GATE: case BX_386_TRAP_GATE: break; default: BX_ERROR(("interrupt(): gate.type(%u) != {5,6,7,14,15}", (unsigned) gate_descriptor.type)); exception(BX_GP_EXCEPTION, vector*8 + 2, 0); } // if software interrupt, then gate descripor DPL must be >= CPL, // else #GP(vector * 8 + 2 + EXT) if (is_INT && (gate_descriptor.dpl < CPL)) { BX_DEBUG(("interrupt(): is_INT && (dpl < CPL)")); exception(BX_GP_EXCEPTION, vector*8 + 2, 0); } // Gate must be present, else #NP(vector * 8 + 2 + EXT) if (! IS_PRESENT(gate_descriptor)) { BX_ERROR(("interrupt(): gate not present")); exception(BX_NP_EXCEPTION, vector*8 + 2, 0); } switch (gate_descriptor.type) { case BX_TASK_GATE: // examine selector to TSS, given in task gate descriptor raw_tss_selector = gate_descriptor.u.taskgate.tss_selector; parse_selector(raw_tss_selector, &tss_selector); // must specify global in the local/global bit, // else #GP(TSS selector) if (tss_selector.ti) { BX_PANIC(("interrupt: tss_selector.ti=1")); exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc, 0); } // index must be within GDT limits, else #TS(TSS selector) fetch_raw_descriptor(&tss_selector, &dword1, &dword2, BX_GP_EXCEPTION); parse_descriptor(dword1, dword2, &tss_descriptor); // AR byte must specify available TSS, // else #GP(TSS selector) if (tss_descriptor.valid==0 || tss_descriptor.segment) { BX_ERROR(("exception: TSS selector points to bad TSS")); exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc, 0); } if (tss_descriptor.type!=9 && tss_descriptor.type!=1) { BX_ERROR(("exception: TSS selector points to bad TSS")); exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc, 0); } // TSS must be present, else #NP(TSS selector) if (! IS_PRESENT(tss_descriptor)) { BX_ERROR(("exception: TSS descriptor.p == 0")); exception(BX_NP_EXCEPTION, raw_tss_selector & 0xfffc, 0); } // switch tasks with nesting to TSS task_switch(&tss_selector, &tss_descriptor, BX_TASK_FROM_CALL_OR_INT, dword1, dword2); // if interrupt was caused by fault with error code // stack limits must allow push of 2 more bytes, else #SS(0) // push error code onto stack if (is_error_code) { if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b) push_32(error_code); else push_16(error_code); } // instruction pointer must be in CS limit, else #GP(0) if (EIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) { BX_ERROR(("exception(): EIP > CS.limit")); exception(BX_GP_EXCEPTION, 0, 0); } return; case BX_286_INTERRUPT_GATE: case BX_286_TRAP_GATE: case BX_386_INTERRUPT_GATE: case BX_386_TRAP_GATE: if (gate_descriptor.type >= 14) { // 386 gate gate_dest_selector = gate_descriptor.u.gate386.dest_selector; gate_dest_offset = gate_descriptor.u.gate386.dest_offset; } else { // 286 gate gate_dest_selector = gate_descriptor.u.gate286.dest_selector; gate_dest_offset = gate_descriptor.u.gate286.dest_offset; } // examine CS selector and descriptor given in gate descriptor // selector must be non-null else #GP(EXT) if ((gate_dest_selector & 0xfffc) == 0) { BX_ERROR(("int_trap_gate(): selector null")); exception(BX_GP_EXCEPTION, 0, 0); } parse_selector(gate_dest_selector, &cs_selector); // selector must be within its descriptor table limits // else #GP(selector+EXT) fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION); parse_descriptor(dword1, dword2, &cs_descriptor); // descriptor AR byte must indicate code seg // and code segment descriptor DPL<=CPL, else #GP(selector+EXT) if (cs_descriptor.valid==0 || cs_descriptor.segment==0 || IS_DATA_SEGMENT(cs_descriptor.type) || cs_descriptor.dpl>CPL) { BX_ERROR(("interrupt(): not code segment")); exception(BX_GP_EXCEPTION, cs_selector.value & 0xfffc, 0); } // segment must be present, else #NP(selector + EXT) if (! IS_PRESENT(cs_descriptor)) { BX_ERROR(("interrupt(): segment not present")); exception(BX_NP_EXCEPTION, cs_selector.value & 0xfffc, 0); } // if code segment is non-conforming and DPL < CPL then // INTERRUPT TO INNER PRIVILEGE: if(IS_CODE_SEGMENT_NON_CONFORMING(cs_descriptor.type) && (cs_descriptor.dpl < CPL)) { Bit16u old_SS, old_CS, SS_for_cpl_x; Bit32u ESP_for_cpl_x, old_EIP, old_ESP; bx_descriptor_t ss_descriptor; bx_selector_t ss_selector; int bytes; int is_v8086_mode = v8086_mode(); BX_DEBUG(("interrupt(): INTERRUPT TO INNER PRIVILEGE")); if (is_v8086_mode && cs_descriptor.dpl != 0) { // if code segment DPL != 0 then #GP(new code segment selector) BX_ERROR(("interrupt(): code segment DPL != 0 in v8086 mode")); exception(BX_GP_EXCEPTION, cs_selector.value & 0xfffc, 0); } // check selector and descriptor for new stack in current TSS get_SS_ESP_from_TSS(cs_descriptor.dpl, &SS_for_cpl_x, &ESP_for_cpl_x); // Selector must be non-null else #TS(EXT) if ((SS_for_cpl_x & 0xfffc) == 0) { BX_ERROR(("interrupt(): SS selector null")); exception(BX_TS_EXCEPTION, 0, 0); /* TS(ext) */ } // selector index must be within its descriptor table limits // else #TS(SS selector + EXT) parse_selector(SS_for_cpl_x, &ss_selector); // fetch 2 dwords of descriptor; call handles out of limits checks fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_TS_EXCEPTION); parse_descriptor(dword1, dword2, &ss_descriptor); // selector rpl must = dpl of code segment, // else #TS(SS selector + ext) if (ss_selector.rpl != cs_descriptor.dpl) { BX_ERROR(("interrupt(): SS.rpl != CS.dpl")); exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0); } // stack seg DPL must = DPL of code segment, // else #TS(SS selector + ext) if (ss_descriptor.dpl != cs_descriptor.dpl) { BX_ERROR(("interrupt(): SS.dpl != CS.dpl")); exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0); } // descriptor must indicate writable data segment, // else #TS(SS selector + EXT) if (ss_descriptor.valid==0 || ss_descriptor.segment==0 || IS_CODE_SEGMENT(ss_descriptor.type) || !IS_DATA_SEGMENT_WRITEABLE(ss_descriptor.type)) { BX_ERROR(("interrupt(): SS is not writable data segment")); exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0); } // seg must be present, else #SS(SS selector + ext) if (! IS_PRESENT(ss_descriptor)) { BX_ERROR(("interrupt(): SS not present")); exception(BX_SS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0); } if (gate_descriptor.type>=14) { // 386 int/trap gate // new stack must have room for 20|24 bytes, else #SS(0) if (is_error_code) bytes = 24; else bytes = 20; if (is_v8086_mode) bytes += 16; } else { // new stack must have room for 10|12 bytes, else #SS(0) if (is_error_code) bytes = 12; else bytes = 10; if (is_v8086_mode) { bytes += 8; BX_PANIC(("interrupt: int/trap gate VM")); } } // new stack must have enough room, else #SS(seg selector) if (!can_push(&ss_descriptor, ESP_for_cpl_x, bytes)) { BX_DEBUG(("interrupt(): new stack doesn't have room for %u bytes", (unsigned) bytes)); exception(BX_SS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0); } // IP must be within CS segment boundaries, else #GP(0) if (gate_dest_offset > cs_descriptor.u.segment.limit_scaled) { BX_DEBUG(("interrupt(): gate EIP > CS.limit")); exception(BX_GP_EXCEPTION, 0, 0); } old_ESP = ESP; old_SS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value; old_EIP = EIP; old_CS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value; // load new SS:SP values from TSS load_ss(&ss_selector, &ss_descriptor, cs_descriptor.dpl); if (ss_descriptor.u.segment.d_b) ESP = ESP_for_cpl_x; else SP = ESP_for_cpl_x; // leave upper 16bits // load new CS:IP values from gate // set CPL to new code segment DPL // set RPL of CS to CPL load_cs(&cs_selector, &cs_descriptor, cs_descriptor.dpl); EIP = gate_dest_offset; Bit32u eflags = read_eflags(); // if INTERRUPT GATE set IF to 0 if (!(gate_descriptor.type & 1)) // even is int-gate BX_CPU_THIS_PTR clear_IF(); BX_CPU_THIS_PTR clear_TF(); BX_CPU_THIS_PTR clear_VM(); BX_CPU_THIS_PTR clear_RF(); BX_CPU_THIS_PTR clear_NT(); if (is_v8086_mode) { if (gate_descriptor.type>=14) { // 386 int/trap gate push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value); push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value); push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value); push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value); } else { push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value); push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value); push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value); push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value); } BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.valid = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.valid = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value = 0; } if (gate_descriptor.type>=14) { // 386 int/trap gate // push long pointer to old stack onto new stack push_32(old_SS); push_32(old_ESP); // push EFLAGS push_32(eflags); // push long pointer to return address onto new stack push_32(old_CS); push_32(old_EIP); if (is_error_code) push_32(error_code); } else { // 286 int/trap gate // push long pointer to old stack onto new stack push_16(old_SS); push_16(old_ESP); // ignores upper 16bits // push FLAGS push_16(eflags); // ignores upper 16bits // push return address onto new stack push_16(old_CS); push_16(old_EIP); // ignores upper 16bits if (is_error_code) push_16(error_code); } return; } if (v8086_mode()) { // if code segment DPL != 0 then #GP(new code segment selector) BX_ERROR(("interrupt(): code seg DPL != 0 in v8086 mode")); exception(BX_GP_EXCEPTION, cs_selector.value & 0xfffc, 0); } // if code segment is conforming OR code segment DPL = CPL then // INTERRUPT TO SAME PRIVILEGE LEVEL: if (IS_CODE_SEGMENT_CONFORMING(cs_descriptor.type) || cs_descriptor.dpl==CPL) { int bytes; Bit32u temp_ESP; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) temp_ESP = ESP; else temp_ESP = SP; BX_DEBUG(("int_trap_gate286(): INTERRUPT TO SAME PRIVILEGE")); // Current stack limits must allow pushing 6|8 bytes, else #SS(0) if (gate_descriptor.type >= 14) { // 386 gate if (is_error_code) bytes = 16; else bytes = 12; } else { // 286 gate if (is_error_code) bytes = 8; else bytes = 6; } if (! can_push(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache, temp_ESP, bytes)) { BX_DEBUG(("interrupt(): stack doesn't have room")); exception(BX_SS_EXCEPTION, 0, 0); } // EIP must be in CS limit else #GP(0) if (gate_dest_offset > cs_descriptor.u.segment.limit_scaled) { BX_ERROR(("interrupt(): IP > cs descriptor limit")); exception(BX_GP_EXCEPTION, 0, 0); } // push flags onto stack // push current CS selector onto stack // push return offset onto stack if (gate_descriptor.type >= 14) { // 386 gate push_32(read_eflags()); push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); push_32(EIP); if (is_error_code) push_32(error_code); } else { // 286 gate push_16(read_flags()); push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); push_16(IP); if (is_error_code) push_16(error_code); } // load CS:IP from gate // load CS descriptor // set the RPL field of CS to CPL load_cs(&cs_selector, &cs_descriptor, CPL); EIP = gate_dest_offset; // if interrupt gate then set IF to 0 if (!(gate_descriptor.type & 1)) // even is int-gate BX_CPU_THIS_PTR clear_IF(); BX_CPU_THIS_PTR clear_TF(); BX_CPU_THIS_PTR clear_NT(); BX_CPU_THIS_PTR clear_VM(); BX_CPU_THIS_PTR clear_RF(); return; } // else #GP(CS selector + ext) BX_DEBUG(("interrupt: bad descriptor")); BX_DEBUG(("type=%u, descriptor.dpl=%u, CPL=%u", (unsigned) cs_descriptor.type, (unsigned) cs_descriptor.dpl, (unsigned) CPL)); BX_DEBUG(("cs.segment = %u", (unsigned) cs_descriptor.segment)); exception(BX_GP_EXCEPTION, cs_selector.value & 0xfffc, 0); break; default: BX_PANIC(("bad descriptor type in interrupt()!")); break; } } void BX_CPU_C::real_mode_int(Bit8u vector, bx_bool is_INT, bx_bool is_error_code, Bit16u error_code) { // real mode interrupt Bit16u cs_selector, ip; if ((vector*4+3) > BX_CPU_THIS_PTR idtr.limit) { BX_ERROR(("interrupt(real mode) vector > idtr.limit")); exception(BX_GP_EXCEPTION, 0, 0); } push_16(read_flags()); cs_selector = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value; push_16(cs_selector); ip = EIP; push_16(ip); access_linear(BX_CPU_THIS_PTR idtr.base + 4 * vector, 2, 0, BX_READ, &ip); EIP = (Bit32u) ip; access_linear(BX_CPU_THIS_PTR idtr.base + 4 * vector + 2, 2, 0, BX_READ, &cs_selector); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], cs_selector); /* INT affects the following flags: I,T */ BX_CPU_THIS_PTR clear_IF(); BX_CPU_THIS_PTR clear_TF(); #if BX_CPU_LEVEL >= 4 BX_CPU_THIS_PTR clear_AC(); #endif BX_CPU_THIS_PTR clear_RF(); } void BX_CPU_C::interrupt(Bit8u vector, bx_bool is_INT, bx_bool is_error_code, Bit16u error_code) { #if BX_DEBUGGER BX_CPU_THIS_PTR show_flag |= Flag_intsig; #if BX_DEBUG_LINUX if (bx_dbg.linux_syscall) { if (vector == 0x80) bx_dbg_linux_syscall(BX_CPU_ID); } #endif bx_dbg_interrupt(BX_CPU_ID, vector, error_code); #endif BX_DEBUG(("interrupt(): vector = %u, INT = %u, EXT = %u", (unsigned) vector, (unsigned) is_INT, (unsigned) BX_CPU_THIS_PTR EXT)); BX_INSTR_INTERRUPT(BX_CPU_ID, vector); invalidate_prefetch_q(); // Discard any traps and inhibits for new context; traps will // resume upon return. BX_CPU_THIS_PTR debug_trap = 0; BX_CPU_THIS_PTR inhibit_mask = 0; BX_CPU_THIS_PTR save_cs = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS]; BX_CPU_THIS_PTR save_ss = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS]; BX_CPU_THIS_PTR save_eip = RIP; BX_CPU_THIS_PTR save_esp = RSP; #if BX_SUPPORT_X86_64 if (long_mode()) { long_mode_int(vector, is_INT, is_error_code, error_code); return; } #endif if(real_mode()) { real_mode_int(vector, is_INT, is_error_code, error_code); } else { protected_mode_int(vector, is_INT, is_error_code, error_code); } } // vector: 0..255: vector in IDT // error_code: if exception generates and error, push this error code void BX_CPU_C::exception(unsigned vector, Bit16u error_code, bx_bool is_INT) { unsigned exception_type = 0, exception_class = BX_EXCEPTION_CLASS_FAULT; bx_bool push_error = 0; invalidate_prefetch_q(); UNUSED(is_INT); BX_INSTR_EXCEPTION(BX_CPU_ID, vector); #if BX_DEBUGGER bx_dbg_exception(BX_CPU_ID, vector, error_code); #endif BX_DEBUG(("exception(0x%02X)", (unsigned) vector)); // if not initial error, restore previous register values from // previous attempt to handle exception if (BX_CPU_THIS_PTR errorno) { BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS] = BX_CPU_THIS_PTR save_cs; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS] = BX_CPU_THIS_PTR save_ss; RIP = BX_CPU_THIS_PTR save_eip; RSP = BX_CPU_THIS_PTR save_esp; } BX_CPU_THIS_PTR errorno++; if (BX_CPU_THIS_PTR errorno >= 3 || // if 1st was a double fault (software INT?), then shutdown (BX_CPU_THIS_PTR errorno == 2 && BX_CPU_THIS_PTR curr_exception[0]==BX_ET_DOUBLE_FAULT)) { debug(BX_CPU_THIS_PTR prev_eip); // print debug information to the log #if BX_DEBUGGER // trap into debugger (similar as done when PANIC occured) bx_debug_break(); #endif if (SIM->get_param_bool(BXPN_RESET_ON_TRIPLE_FAULT)->get()) { BX_ERROR(("exception(): 3rd (%d) exception with no resolution, shutdown status is %02xh, resetting", vector, DEV_cmos_get_reg(0x0f))); bx_pc_system.Reset(BX_RESET_SOFTWARE); } else { BX_PANIC(("exception(): 3rd (%d) exception with no resolution", vector)); BX_ERROR(("WARNING: Any simulation after this point is completely bogus !")); shutdown(); } longjmp(BX_CPU_THIS_PTR jmp_buf_env, 1); // go back to main decode loop } // note: fault-class exceptions _except_ #DB set RF in // eflags image. switch (vector) { case BX_DE_EXCEPTION: // DIV by 0 push_error = 0; exception_class = BX_EXCEPTION_CLASS_FAULT; exception_type = BX_ET_CONTRIBUTORY; break; case BX_DB_EXCEPTION: // debug exceptions push_error = 0; // Instruction fetch breakpoint - FAULT // Data read or write breakpoint - TRAP // I/O read or write breakpoint - TRAP // General detect condition - FAULT // Single-step - TRAP // Task-switch - TRAP exception_class = BX_EXCEPTION_CLASS_TRAP; // FIXME ! exception_type = BX_ET_BENIGN; break; case 2: // NMI push_error = 0; exception_type = BX_ET_BENIGN; break; case BX_BP_EXCEPTION: // breakpoint push_error = 0; exception_class = BX_EXCEPTION_CLASS_TRAP; exception_type = BX_ET_BENIGN; break; case BX_OF_EXCEPTION: // overflow push_error = 0; exception_class = BX_EXCEPTION_CLASS_TRAP; exception_type = BX_ET_BENIGN; break; case BX_BR_EXCEPTION: // bounds check push_error = 0; exception_class = BX_EXCEPTION_CLASS_FAULT; exception_type = BX_ET_BENIGN; break; case BX_UD_EXCEPTION: // invalid opcode push_error = 0; exception_class = BX_EXCEPTION_CLASS_FAULT; exception_type = BX_ET_BENIGN; break; case BX_NM_EXCEPTION: // device not available push_error = 0; exception_class = BX_EXCEPTION_CLASS_FAULT; exception_type = BX_ET_BENIGN; break; case BX_DF_EXCEPTION: // double fault push_error = 1; error_code = 0; exception_class = BX_EXCEPTION_CLASS_ABORT; exception_type = BX_ET_DOUBLE_FAULT; break; case 9: // coprocessor segment overrun (286,386 only) push_error = 0; exception_class = BX_EXCEPTION_CLASS_ABORT; exception_type = BX_ET_CONTRIBUTORY; BX_PANIC(("exception(9): unfinished")); break; case BX_TS_EXCEPTION: // invalid TSS push_error = 1; exception_class = BX_EXCEPTION_CLASS_FAULT; exception_type = BX_ET_CONTRIBUTORY; break; case BX_NP_EXCEPTION: // segment not present push_error = 1; exception_class = BX_EXCEPTION_CLASS_FAULT; exception_type = BX_ET_CONTRIBUTORY; break; case BX_SS_EXCEPTION: // stack fault push_error = 1; exception_class = BX_EXCEPTION_CLASS_FAULT; exception_type = BX_ET_CONTRIBUTORY; break; case BX_GP_EXCEPTION: // general protection push_error = 1; exception_class = BX_EXCEPTION_CLASS_FAULT; exception_type = BX_ET_CONTRIBUTORY; break; case BX_PF_EXCEPTION: // page fault push_error = 1; exception_class = BX_EXCEPTION_CLASS_FAULT; exception_type = BX_ET_PAGE_FAULT; break; case 15: // reserved BX_PANIC(("exception(15): reserved")); push_error = 0; exception_type = 0; break; case BX_MF_EXCEPTION: // floating-point error push_error = 0; exception_class = BX_EXCEPTION_CLASS_FAULT; exception_type = BX_ET_BENIGN; break; #if BX_CPU_LEVEL >= 4 case BX_AC_EXCEPTION: // alignment check BX_PANIC(("exception(): alignment-check, vector 17 not implemented")); push_error = 1; error_code = 0; exception_class = BX_EXCEPTION_CLASS_FAULT; exception_type = BX_ET_BENIGN; break; #endif #if BX_CPU_LEVEL >= 5 case BX_MC_EXCEPTION: // machine check BX_PANIC(("exception(): machine-check, vector 18 not implemented")); push_error = 0; exception_class = BX_EXCEPTION_CLASS_ABORT; exception_type = BX_ET_BENIGN; break; #if BX_SUPPORT_SSE case BX_XM_EXCEPTION: // SIMD Floating-Point exception push_error = 0; exception_class = BX_EXCEPTION_CLASS_FAULT; exception_type = BX_ET_BENIGN; break; #endif #endif default: BX_PANIC(("exception(%u): bad vector", (unsigned) vector)); exception_type = BX_ET_BENIGN; push_error = 0; // keep compiler happy for now break; } if (exception_class == BX_EXCEPTION_CLASS_FAULT) { // restore RIP/RSP to value before error occurred RIP = BX_CPU_THIS_PTR prev_eip; RSP = BX_CPU_THIS_PTR prev_esp; if (BX_CPU_THIS_PTR except_chk) // FIXME: Help with OS/2 { BX_CPU_THIS_PTR except_chk = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS] = BX_CPU_THIS_PTR except_cs; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS] = BX_CPU_THIS_PTR except_ss; } if (vector != BX_DB_EXCEPTION) BX_CPU_THIS_PTR assert_RF(); } if (exception_type != BX_ET_PAGE_FAULT) { // Page faults have different format error_code = (error_code & 0xfffe) | BX_CPU_THIS_PTR EXT; } else { // FIXME: special format error returned for page faults ? } BX_CPU_THIS_PTR EXT = 1; /* if we've already had 1st exception, see if 2nd causes a * Double Fault instead. Otherwise, just record 1st exception */ if (BX_CPU_THIS_PTR errorno >= 2) { if (is_exception_OK[BX_CPU_THIS_PTR curr_exception[0]][exception_type]) BX_CPU_THIS_PTR curr_exception[1] = exception_type; else { BX_CPU_THIS_PTR curr_exception[1] = BX_ET_DOUBLE_FAULT; vector = BX_DF_EXCEPTION; } } else { BX_CPU_THIS_PTR curr_exception[0] = exception_type; } if (real_mode()) { // not INT, no error code pushed BX_CPU_THIS_PTR interrupt(vector, 0, 0, 0); BX_CPU_THIS_PTR errorno = 0; // error resolved longjmp(BX_CPU_THIS_PTR jmp_buf_env, 1); // go back to main decode loop } else { BX_CPU_THIS_PTR interrupt(vector, 0, push_error, error_code); BX_CPU_THIS_PTR errorno = 0; // error resolved longjmp(BX_CPU_THIS_PTR jmp_buf_env, 1); // go back to main decode loop } }