///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001-2015 The Bochs Project // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA // // bochs.h is the master header file for all C++ code. It includes all // the system header files needed by bochs, and also includes all the bochs // C++ header files. Because bochs.h and the files that it includes has // structure and class definitions, it cannot be called from C code. // #ifndef BX_BOCHS_H # define BX_BOCHS_H 1 #include "config.h" /* generated by configure script from config.h.in */ #ifndef __QNXNTO__ extern "C" { #endif #ifdef WIN32 // In a win32 compile (including cygwin), windows.h is required for several // files in gui and iodev. It is important to include it here in a header // file so that WIN32-specific data types can be used in fields of classes. #define WIN32_LEAN_AND_MEAN #include #endif #include #include #include #if defined(__sun__) #undef EAX #undef ECX #undef EDX #undef EBX #undef ESP #undef EBP #undef ESI #undef EDI #undef EIP #undef CS #undef DS #undef ES #undef SS #undef FS #undef GS #endif #include #include #ifndef WIN32 # include #else # include #endif #include #if BX_WITH_MACOS # include # include # include # include #elif BX_WITH_CARBON # include # include # include /* for MAXPATHLEN */ # include # include #else # ifndef WIN32 # include # endif # include # include #endif #include #include #include #include #ifdef macintosh # define SuperDrive "[fd:]" #endif #ifndef __QNXNTO__ } #endif #include "osdep.h" /* platform dependent includes and defines */ #include "bx_debug/debug.h" #include "gui/siminterface.h" // BX_SHARE_PATH should be defined by the makefile. If not, give it // a value of NULL to avoid compile problems. #ifndef BX_SHARE_PATH #define BX_SHARE_PATH NULL #endif // prototypes int bx_begin_simulation(int argc, char *argv[]); void bx_stop_simulation(); char *bx_find_bochsrc(void); int bx_parse_cmdline(int arg, int argc, char *argv[]); int bx_read_configuration(const char *rcfile); int bx_write_configuration(const char *rcfile, int overwrite); void bx_reset_options(void); void bx_set_log_actions_by_device(bx_bool panic_flag); // special config parameter and options functions for plugins void bx_init_std_nic_options(const char *name, bx_list_c *menu); void bx_init_usb_options(const char *usb_name, const char *pname, int maxports); int bx_parse_param_from_list(const char *context, const char *input, bx_list_c *list); int bx_parse_nic_params(const char *context, const char *param, bx_list_c *base); int bx_parse_usb_port_params(const char *context, bx_bool devopt, const char *param, int maxports, bx_list_c *base); int bx_write_param_list(FILE *fp, bx_list_c *base, const char *optname, bx_bool multiline); int bx_write_usb_options(FILE *fp, int maxports, bx_list_c *base); Bit32u crc32(const Bit8u *buf, int len); // used to print param tree from debugger void print_tree(bx_param_c *node, int level = 0, bx_bool xml = BX_FALSE); #if BX_ENABLE_STATISTICS // print statistics void print_statistics_tree(bx_param_c *node, int level = 0); #define INC_STAT(stat) (++(stat)) #else #define INC_STAT(stat) #endif // // some macros to interface the CPU and memory to external environment // so that these functions can be redirected to the debugger when // needed. // #define BXRS_PARAM_SPECIAL(parent, name, maxvalue, save_handler, restore_handler) \ { \ bx_param_num_c *param = new bx_param_num_c(parent, #name, "", "", 0, maxvalue, 0); \ param->set_base(BASE_HEX); \ param->set_sr_handlers(this, save_handler, restore_handler); \ } #define BXRS_PARAM_SPECIAL64(parent, name, save_handler, restore_handler) \ BXRS_PARAM_SPECIAL(parent, name, BX_MAX_BIT64U, save_handler, restore_handler) #define BXRS_PARAM_SPECIAL32(parent, name, save_handler, restore_handler) \ BXRS_PARAM_SPECIAL(parent, name, BX_MAX_BIT32U, save_handler, restore_handler) #define BXRS_PARAM_SPECIAL16(parent, name, save_handler, restore_handler) \ BXRS_PARAM_SPECIAL(parent, name, BX_MAX_BIT16U, save_handler, restore_handler) #define BXRS_PARAM_SPECIAL8(parent, name, save_handler, restore_handler) \ BXRS_PARAM_SPECIAL(parent, name, BX_MAX_BIT8U, save_handler, restore_handler) #define BXRS_HEX_PARAM_SIMPLE32(parent, name) \ new bx_shadow_num_c(parent, #name, (Bit32u*)&(name), BASE_HEX) #define BXRS_HEX_PARAM_SIMPLE64(parent, name) \ new bx_shadow_num_c(parent, #name, (Bit64u*)&(name), BASE_HEX) #define BXRS_HEX_PARAM_SIMPLE(parent, name) \ new bx_shadow_num_c(parent, #name, &(name), BASE_HEX) #define BXRS_HEX_PARAM_FIELD(parent, name, field) \ new bx_shadow_num_c(parent, #name, &(field), BASE_HEX) #define BXRS_DEC_PARAM_SIMPLE(parent, name) \ new bx_shadow_num_c(parent, #name, &(name), BASE_DEC) #define BXRS_DEC_PARAM_FIELD(parent, name, field) \ new bx_shadow_num_c(parent, #name, &(field), BASE_DEC) #define BXRS_PARAM_BOOL(parent, name, field) \ new bx_shadow_bool_c(parent, #name, (bx_bool*)(&(field))) // =-=-=-=-=-=-=- Normal optimized use -=-=-=-=-=-=-=-=-=-=-=-=-=-= // some pc_systems functions just redirect to the IO devices so optimize // by eliminating call here // // #define BX_INP(addr, len) bx_pc_system.inp(addr, len) // #define BX_OUTP(addr, val, len) bx_pc_system.outp(addr, val, len) #define BX_INP(addr, len) bx_devices.inp(addr, len) #define BX_OUTP(addr, val, len) bx_devices.outp(addr, val, len) #define BX_TICK1() bx_pc_system.tick1() #define BX_TICKN(n) bx_pc_system.tickn(n) #define BX_INTR bx_pc_system.INTR #define BX_RAISE_INTR() bx_pc_system.raise_INTR() #define BX_CLEAR_INTR() bx_pc_system.clear_INTR() #define BX_HRQ bx_pc_system.HRQ #if BX_SUPPORT_SMP #define BX_CPU(x) (bx_cpu_array[x]) #else #define BX_CPU(x) (&bx_cpu) #endif #define BX_MEM(x) (&bx_mem) #define BX_SET_ENABLE_A20(enabled) bx_pc_system.set_enable_a20(enabled) #define BX_GET_ENABLE_A20() bx_pc_system.get_enable_a20() #if BX_SUPPORT_A20 # define A20ADDR(x) ((bx_phy_address)(x) & bx_pc_system.a20_mask) #else # define A20ADDR(x) ((bx_phy_address)(x)) #endif // you can't use static member functions on the CPU, if there are going // to be 2 cpus. Check this early on. #if BX_SUPPORT_SMP # if BX_USE_CPU_SMF # error For SMP simulation, BX_USE_CPU_SMF must be 0. # endif #endif // // Ways for the the external environment to report back information // to the debugger. // #if BX_DEBUGGER # define BX_DBG_ASYNC_INTR bx_guard.async.irq # define BX_DBG_ASYNC_DMA bx_guard.async.dma # define BX_DBG_DMA_REPORT(addr, len, what, val) \ if (bx_guard.report.dma) bx_dbg_dma_report(addr, len, what, val) # define BX_DBG_IAC_REPORT(vector, irq) \ if (bx_guard.report.irq) bx_dbg_iac_report(vector, irq) # define BX_DBG_A20_REPORT(val) \ if (bx_guard.report.a20) bx_dbg_a20_report(val) # define BX_DBG_IO_REPORT(port, size, op, val) \ if (bx_guard.report.io) bx_dbg_io_report(port, size, op, val) # define BX_DBG_LIN_MEMORY_ACCESS(cpu, lin, phy, len, memtype, rw, data) \ bx_dbg_lin_memory_access(cpu, lin, phy, len, memtype, rw, data) # define BX_DBG_PHY_MEMORY_ACCESS(cpu, phy, len, memtype, rw, why, data) \ bx_dbg_phy_memory_access(cpu, phy, len, memtype, rw, why, data) #else // #if BX_DEBUGGER // debugger not compiled in, use empty stubs # define BX_DBG_ASYNC_INTR 1 # define BX_DBG_ASYNC_DMA 1 # define BX_DBG_DMA_REPORT(addr, len, what, val) /* empty */ # define BX_DBG_IAC_REPORT(vector, irq) /* empty */ # define BX_DBG_A20_REPORT(val) /* empty */ # define BX_DBG_IO_REPORT(port, size, op, val) /* empty */ # define BX_DBG_LIN_MEMORY_ACCESS(cpu, lin, phy, len, memtype, rw, data) /* empty */ # define BX_DBG_PHY_MEMORY_ACCESS(cpu, phy, len, memtype, rw, attr, data) /* empty */ #endif // #if BX_DEBUGGER #define MAGIC_LOGNUM 0x12345678 typedef class BOCHSAPI logfunctions { char *name; char *prefix; int onoff[N_LOGLEV]; class iofunctions *logio; // default log actions for all devices, declared and initialized // in logio.cc. BOCHSAPI_CYGONLY static int default_onoff[N_LOGLEV]; public: logfunctions(void); logfunctions(class iofunctions *); virtual ~logfunctions(void); void info(const char *fmt, ...) BX_CPP_AttrPrintf(2, 3); void error(const char *fmt, ...) BX_CPP_AttrPrintf(2, 3); void panic(const char *fmt, ...) BX_CPP_AttrPrintf(2, 3); void ldebug(const char *fmt, ...) BX_CPP_AttrPrintf(2, 3); void fatal (const char *prefix, const char *fmt, va_list ap, int exit_status); void ask (int level, const char *prefix, const char *fmt, va_list ap); void put(const char *p); void put(const char *n, const char *p); void setio(class iofunctions *); void setonoff(int loglev, int value) { assert (loglev >= 0 && loglev < N_LOGLEV); onoff[loglev] = value; } const char *get_name() const { return name; } const char *getprefix() const { return prefix; } int getonoff(int level) const { assert (level>=0 && level= 0 && loglev < N_LOGLEV); assert (action >= 0 && action < N_ACT); default_onoff[loglev] = action; } static int get_default_action(int loglev) { assert (loglev >= 0 && loglev < N_LOGLEV); return default_onoff[loglev]; } } logfunc_t; #define BX_LOGPREFIX_LEN 20 class BOCHSAPI iofunctions { int magic; char logprefix[BX_LOGPREFIX_LEN + 1]; FILE *logfd; class logfunctions *log; void init(void); void flush(void); // Log Class types public: iofunctions(void); iofunctions(FILE *); iofunctions(int); iofunctions(const char *); ~iofunctions(void); void out(int level, const char *pre, const char *fmt, va_list ap); void init_log(const char *fn); void init_log(int fd); void init_log(FILE *fs); void exit_log(); void set_log_prefix(const char *prefix); int get_n_logfns() const { return n_logfn; } logfunc_t *get_logfn(int index) { return logfn_list[index]; } void add_logfn(logfunc_t *fn); void remove_logfn(logfunc_t *fn); void set_log_action(int loglevel, int action); const char *getlevel(int i) const; const char *getaction(int i) const; protected: int n_logfn; #define MAX_LOGFNS 512 logfunc_t *logfn_list[MAX_LOGFNS]; const char *logfn; }; typedef class iofunctions iofunc_t; #define SAFE_GET_IOFUNC() \ ((io==NULL)? (io=new iofunc_t("/dev/stderr")) : io) #define SAFE_GET_GENLOG() \ ((genlog==NULL)? (genlog=new logfunc_t(SAFE_GET_IOFUNC())) : genlog) #if BX_NO_LOGGING #define BX_INFO(x) #define BX_DEBUG(x) #define BX_ERROR(x) #define BX_PANIC(x) (LOG_THIS panic) x #define BX_ASSERT(x) #else #define BX_INFO(x) (LOG_THIS info) x #define BX_DEBUG(x) (LOG_THIS ldebug) x #define BX_ERROR(x) (LOG_THIS error) x #define BX_PANIC(x) (LOG_THIS panic) x #if BX_ASSERT_ENABLE #define BX_ASSERT(x) do {if (!(x)) BX_PANIC(("failed assertion \"%s\" at %s:%d\n", #x, __FILE__, __LINE__));} while (0) #else #define BX_ASSERT(x) #endif #endif BOCHSAPI extern iofunc_t *io; BOCHSAPI extern logfunc_t *genlog; #ifndef UNUSED # define UNUSED(x) ((void)x) #endif //Generic MAX and MIN Functions #define BX_MAX(a,b) ((a) > (b) ? (a) : (b)) #define BX_MIN(a,b) ((a) < (b) ? (a) : (b)) #if BX_SUPPORT_X86_64 #define FMT_ADDRX FMT_ADDRX64 #else #define FMT_ADDRX FMT_ADDRX32 #endif #if BX_PHY_ADDRESS_LONG #define FMT_PHY_ADDRX FMT_PHY_ADDRX64 #else #define FMT_PHY_ADDRX FMT_ADDRX32 #endif #define FMT_LIN_ADDRX FMT_ADDRX #if BX_GDBSTUB // defines for GDB stub void bx_gdbstub_init(void); void bx_gdbstub_break(void); int bx_gdbstub_check(unsigned int eip); #define GDBSTUB_STOP_NO_REASON (0xac0) #if BX_SUPPORT_SMP #error GDB stub was written for single processor support. If multiprocessor support is added, then we can remove this check. // The big problem is knowing which CPU gdb is referring to. In other words, // what should we put for "n" in BX_CPU(n)->dbg_xlate_linear2phy() and // BX_CPU(n)->dword.eip, etc. #endif #endif typedef struct { bx_bool interrupts; bx_bool exceptions; bx_bool print_timestamps; #if BX_DEBUGGER bx_bool magic_break_enabled; #endif #if BX_GDBSTUB bx_bool gdbstub_enabled; #endif #if BX_SUPPORT_APIC bx_bool apic; #endif #if BX_DEBUG_LINUX bx_bool linux_syscall; #endif } bx_debug_t; #if BX_SHOW_IPS BOCHSAPI_MSVCONLY void bx_show_ips_handler(void); #endif void CDECL bx_signal_handler(int signum); int bx_atexit(void); BOCHSAPI extern bx_debug_t bx_dbg; #if BX_SUPPORT_APIC // determinted by XAPIC option BOCHSAPI extern Bit32u apic_id_mask; #endif // memory access type (read/write/execute/rw) #define BX_READ 0 #define BX_WRITE 1 #define BX_EXECUTE 2 #define BX_RW 3 // types of reset #define BX_RESET_SOFTWARE 10 #define BX_RESET_HARDWARE 11 #include "memory/memory.h" #include "pc_system.h" #include "gui/gui.h" /* --- EXTERNS --- */ #if BX_GUI_SIGHANDLER extern bx_bool bx_gui_sighandler; #endif // This value controls how often each I/O device's timer handler // gets called. The timer is set up in iodev/devices.cc. #define BX_IODEV_HANDLER_PERIOD 1000 // microseconds #define BX_PATHNAME_LEN 512 #define BX_KBD_XT_TYPE 0 #define BX_KBD_AT_TYPE 1 #define BX_KBD_MF_TYPE 2 #define BX_N_OPTROM_IMAGES 4 #define BX_N_OPTRAM_IMAGES 4 #define BX_N_SERIAL_PORTS 4 #define BX_N_PARALLEL_PORTS 2 #define BX_N_USB_UHCI_PORTS 2 #define BX_N_USB_OHCI_PORTS 2 #define BX_N_USB_XHCI_PORTS 4 #define BX_N_USB_HUB_PORTS 8 #define BX_N_PCI_SLOTS 5 #define BX_N_USER_PLUGINS 8 void bx_center_print(FILE *file, const char *line, unsigned maxwidth); #include "instrument.h" BX_CPP_INLINE Bit16u bx_bswap16(Bit16u val16) { return (val16<<8) | (val16>>8); } #if !defined(__MORPHOS__) #if BX_HAVE___BUILTIN_BSWAP32 #define bx_bswap32 __builtin_bswap32 #else BX_CPP_INLINE Bit32u bx_bswap32(Bit32u val32) { val32 = ((val32<<8) & 0xFF00FF00) | ((val32>>8) & 0x00FF00FF); return (val32<<16) | (val32>>16); } #endif #if BX_HAVE___BUILTIN_BSWAP64 #define bx_bswap64 __builtin_bswap64 #else BX_CPP_INLINE Bit64u bx_bswap64(Bit64u val64) { Bit32u lo = bx_bswap32((Bit32u)(val64 >> 32)); Bit32u hi = bx_bswap32((Bit32u)(val64 & 0xFFFFFFFF)); return ((Bit64u)hi << 32) | (Bit64u)lo; } #endif #endif // !MorphOS // These are some convenience macros which abstract out accesses between // a variable in native byte ordering to/from guest (x86) memory, which is // always in little endian format. You must deal with alignment (if your // system cares) and endian rearranging. Don't assume anything. You could // put some platform specific asm() statements here, to make use of native // instructions to help perform these operations more efficiently than C++. #ifdef BX_LITTLE_ENDIAN #define WriteHostWordToLittleEndian(hostPtr, nativeVar16) \ *((Bit16u*)(hostPtr)) = (nativeVar16) #define WriteHostDWordToLittleEndian(hostPtr, nativeVar32) \ *((Bit32u*)(hostPtr)) = (nativeVar32) #define WriteHostQWordToLittleEndian(hostPtr, nativeVar64) \ *((Bit64u*)(hostPtr)) = (nativeVar64) #define ReadHostWordFromLittleEndian(hostPtr, nativeVar16) \ (nativeVar16) = *((Bit16u*)(hostPtr)) #define ReadHostDWordFromLittleEndian(hostPtr, nativeVar32) \ (nativeVar32) = *((Bit32u*)(hostPtr)) #define ReadHostQWordFromLittleEndian(hostPtr, nativeVar64) \ (nativeVar64) = *((Bit64u*)(hostPtr)) #else #ifdef __MORPHOS__ #define bx_bswap16 bx_ppc_bswap16 #define bx_bswap32 bx_ppc_bswap32 #define bx_bswap64 bx_ppc_bswap64 #define WriteHostWordToLittleEndian(hostPtr, nativeVar16) { \ bx_ppc_store_le16((Bit16u *)(hostPtr), (Bit16u)(nativeVar16)); \ } #define WriteHostDWordToLittleEndian(hostPtr, nativeVar32) { \ bx_ppc_store_le32((Bit32u *)(hostPtr), (Bit32u)(nativeVar32)); \ } #define WriteHostQWordToLittleEndian(hostPtr, nativeVar64) { \ bx_ppc_store_le64((Bit64u *)(hostPtr), (Bit64u)(nativeVar64)); \ } #define ReadHostWordFromLittleEndian(hostPtr, nativeVar16) { \ (nativeVar16) = bx_ppc_load_le16((Bit16u *)(hostPtr)); \ } #define ReadHostDWordFromLittleEndian(hostPtr, nativeVar32) { \ (nativeVar32) = bx_ppc_load_le32((Bit32u *)(hostPtr)); \ } #define ReadHostQWordFromLittleEndian(hostPtr, nativeVar64) { \ (nativeVar64) = bx_ppc_load_le64((Bit64u *)(hostPtr)); \ } #else #define WriteHostWordToLittleEndian(hostPtr, nativeVar16) { \ *(Bit16u *)(hostPtr) = bx_bswap16((Bit16u)(nativeVar16)); \ } #define WriteHostDWordToLittleEndian(hostPtr, nativeVar32) { \ *(Bit32u *)(hostPtr) = bx_bswap32((Bit32u)(nativeVar32)); \ } #define WriteHostQWordToLittleEndian(hostPtr, nativeVar64) { \ *(Bit64u *)(hostPtr) = bx_bswap64((Bit64u)(nativeVar64)); \ } #define ReadHostWordFromLittleEndian(hostPtr, nativeVar16) { \ (nativeVar16) = bx_bswap16(*(Bit16u *)(hostPtr)); \ } #define ReadHostDWordFromLittleEndian(hostPtr, nativeVar32) { \ (nativeVar32) = bx_bswap32(*(Bit32u *)(hostPtr)); \ } #define ReadHostQWordFromLittleEndian(hostPtr, nativeVar64) { \ (nativeVar64) = bx_bswap64(*(Bit64u *)(hostPtr)); \ } #endif #endif #define CopyHostWordLittleEndian(hostAddrDst, hostAddrSrc) \ (* (Bit16u *)(hostAddrDst)) = (* (Bit16u *)(hostAddrSrc)); #define CopyHostDWordLittleEndian(hostAddrDst, hostAddrSrc) \ (* (Bit32u *)(hostAddrDst)) = (* (Bit32u *)(hostAddrSrc)); #define CopyHostQWordLittleEndian(hostAddrDst, hostAddrSrc) \ (* (Bit64u *)(hostAddrDst)) = (* (Bit64u *)(hostAddrSrc)); // multithreading support #ifdef WIN32 #define BX_THREAD_ID(id) DWORD (id) #define BX_THREAD_FUNC(name,arg) DWORD WINAPI name(LPVOID arg) #define BX_THREAD_EXIT return 0 #define BX_THREAD_CREATE(name,arg,id) CreateThread(NULL, 0, name, arg, 0, &(id)) #define BX_LOCK(mutex) EnterCriticalSection(&(mutex)) #define BX_UNLOCK(mutex) LeaveCriticalSection(&(mutex)) #define BX_MUTEX(mutex) CRITICAL_SECTION (mutex) #define BX_INIT_MUTEX(mutex) InitializeCriticalSection(&(mutex)) #define BX_FINI_MUTEX(mutex) DeleteCriticalSection(&(mutex)) #define BX_MSLEEP(val) msleep(val) #else #define BX_THREAD_ID(id) pthread_t (id) #define BX_THREAD_FUNC(name,arg) void name(void* arg) #define BX_THREAD_EXIT pthread_exit(NULL) #define BX_THREAD_CREATE(name,arg,id) \ pthread_create(&(id), NULL, (void *(*)(void *))&(name), arg) #define BX_LOCK(mutex) pthread_mutex_lock(&(mutex)); #define BX_UNLOCK(mutex) pthread_mutex_unlock(&(mutex)); #define BX_MUTEX(mutex) pthread_mutex_t (mutex) #define BX_INIT_MUTEX(mutex) pthread_mutex_init(&(mutex),NULL) #define BX_FINI_MUTEX(mutex) pthread_mutex_destroy(&(mutex)) #define BX_MSLEEP(val) usleep(val*1000) #endif #endif /* BX_BOCHS_H */