///////////////////////////////////////////////////////////////////////// // $Id: stack16.cc,v 1.32 2008-01-25 19:34:30 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR // Make code more tidy with a few macros. #if BX_SUPPORT_X86_64==0 #define RSP ESP #endif void BX_CPU_C::PUSH_RX(bxInstruction_c *i) { push_16(BX_READ_16BIT_REG(i->opcodeReg())); } void BX_CPU_C::PUSH16_CS(bxInstruction_c *i) { push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); } void BX_CPU_C::PUSH16_DS(bxInstruction_c *i) { push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value); } void BX_CPU_C::PUSH16_ES(bxInstruction_c *i) { push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value); } void BX_CPU_C::PUSH16_FS(bxInstruction_c *i) { push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value); } void BX_CPU_C::PUSH16_GS(bxInstruction_c *i) { push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value); } void BX_CPU_C::PUSH16_SS(bxInstruction_c *i) { push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value); } void BX_CPU_C::POP16_DS(bxInstruction_c *i) { BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; Bit16u ds = pop_16(); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS], ds); BX_CPU_THIS_PTR speculative_rsp = 0; } void BX_CPU_C::POP16_ES(bxInstruction_c *i) { BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; Bit16u es = pop_16(); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES], es); BX_CPU_THIS_PTR speculative_rsp = 0; } void BX_CPU_C::POP16_FS(bxInstruction_c *i) { BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; Bit16u fs = pop_16(); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS], fs); BX_CPU_THIS_PTR speculative_rsp = 0; } void BX_CPU_C::POP16_GS(bxInstruction_c *i) { BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; Bit16u gs = pop_16(); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS], gs); BX_CPU_THIS_PTR speculative_rsp = 0; } void BX_CPU_C::POP16_SS(bxInstruction_c *i) { BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; Bit16u ss = pop_16(); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], ss); BX_CPU_THIS_PTR speculative_rsp = 0; // POP SS inhibits interrupts, debug exceptions and single-step // trap exceptions until the execution boundary following the // next instruction is reached. // Same code as MOV_SwEw() BX_CPU_THIS_PTR inhibit_mask |= BX_INHIBIT_INTERRUPTS | BX_INHIBIT_DEBUG; BX_CPU_THIS_PTR async_event = 1; } void BX_CPU_C::POP_RX(bxInstruction_c *i) { BX_WRITE_16BIT_REG(i->opcodeReg(), pop_16()); } void BX_CPU_C::POP_EwM(bxInstruction_c *i) { BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; Bit16u val16 = pop_16(); // Note: there is one little weirdism here. It is possible to use // SP in the modrm addressing. If used, the value of SP after the // pop is used to calculate the address. //if (i->rm()==4 && i->sibBase()==4) { BX_CPU_CALL_METHODR (i->ResolveModrm, (i)); //} write_virtual_word(i->seg(), RMAddr(i), val16); BX_CPU_THIS_PTR speculative_rsp = 0; } void BX_CPU_C::PUSH_Iw(bxInstruction_c *i) { push_16(i->Iw()); } void BX_CPU_C::PUSH_EwM(bxInstruction_c *i) { BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit16u op1_16 = read_virtual_word(i->seg(), RMAddr(i)); push_16(op1_16); } #if BX_CPU_LEVEL >= 3 void BX_CPU_C::PUSHAD16(bxInstruction_c *i) { Bit32u temp_ESP = ESP; Bit16u temp_SP = SP; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { write_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 2), AX); write_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 4), CX); write_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 6), DX); write_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 8), BX); write_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 10), temp_SP); write_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 12), BP); write_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 14), SI); write_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 16), DI); ESP -= 16; } else { write_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP - 2), AX); write_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP - 4), CX); write_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP - 6), DX); write_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP - 8), BX); write_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP - 10), temp_SP); write_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP - 12), BP); write_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP - 14), SI); write_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP - 16), DI); SP -= 16; } } void BX_CPU_C::POPAD16(bxInstruction_c *i) { Bit16u di, si, bp, bx, dx, cx, ax; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { Bit32u temp_ESP = ESP; di = read_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 0)); si = read_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 2)); bp = read_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 4)); bx = read_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 8)); dx = read_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 10)); cx = read_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 12)); ax = read_virtual_word(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 14)); ESP += 16; } else { Bit16u temp_SP = SP; di = read_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP + 0)); si = read_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP + 2)); bp = read_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP + 4)); bx = read_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP + 8)); dx = read_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP + 10)); cx = read_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP + 12)); ax = read_virtual_word(BX_SEG_REG_SS, (Bit16u) (temp_SP + 14)); SP += 16; } DI = di; SI = si; BP = bp; BX = bx; DX = dx; CX = cx; AX = ax; } #endif