///////////////////////////////////////////////////////////////////////// // $Id: access.cc,v 1.12 2001-10-03 13:10:37 bdenney Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #define LOG_THIS BX_CPU_THIS_PTR #if BX_USE_CPU_SMF #define this (BX_CPU(0)) #endif void BX_CPU_C::write_virtual_checks(bx_segment_reg_t *seg, Bit32u offset, unsigned length) { Bit32u upper_limit; if ( protected_mode() ) { if ( seg->cache.valid==0 ) { BX_ERROR(("seg = %s", BX_CPU_THIS_PTR strseg(seg))); BX_ERROR(("seg->selector.value = %04x", (unsigned) seg->selector.value)); BX_ERROR(("write_virtual_checks: valid bit = 0")); BX_ERROR(("CS: %04x", (unsigned) BX_CPU_THIS_PTR sregs[1].selector.value)); BX_ERROR(("IP: %04x", (unsigned) BX_CPU_THIS_PTR prev_eip)); exception(BX_GP_EXCEPTION, 0, 0); return; } if (seg->cache.p == 0) { /* not present */ BX_INFO(("write_virtual_checks(): segment not present")); exception(int_number(seg), 0, 0); return; } switch ( seg->cache.type ) { case 0: case 1: // read only case 4: case 5: // read only, expand down case 8: case 9: // execute only case 10: case 11: // execute/read case 12: case 13: // execute only, conforming case 14: case 15: // execute/read-only, conforming BX_INFO(("write_virtual_checks(): no write access to seg")); exception(int_number(seg), 0, 0); return; case 2: case 3: /* read/write */ if (offset > (seg->cache.u.segment.limit_scaled - length + 1) || (length-1 > seg->cache.u.segment.limit_scaled)) { BX_INFO(("write_virtual_checks(): write beyond limit, r/w")); exception(int_number(seg), 0, 0); return; } break; case 6: case 7: /* read write, expand down */ if (seg->cache.u.segment.d_b) upper_limit = 0xffffffff; else upper_limit = 0x0000ffff; if ( (offset <= seg->cache.u.segment.limit_scaled) || (offset > upper_limit) || ((upper_limit - offset) < (length - 1)) ) { BX_INFO(("write_virtual_checks(): write beyond limit, r/w ED")); exception(int_number(seg), 0, 0); return; } break; } return; } else { /* real mode */ if (offset > (seg->cache.u.segment.limit_scaled - length + 1) || (length-1 > seg->cache.u.segment.limit_scaled)) { //BX_INFO(("write_virtual_checks() SEG EXCEPTION: %x:%x + %x", // (unsigned) seg->selector.value, (unsigned) offset, (unsigned) length)); if (seg == & BX_CPU_THIS_PTR sregs[2]) exception(BX_SS_EXCEPTION, 0, 0); else exception(BX_GP_EXCEPTION, 0, 0); } } } void BX_CPU_C::read_virtual_checks(bx_segment_reg_t *seg, Bit32u offset, unsigned length) { Bit32u upper_limit; if ( protected_mode() ) { if ( seg->cache.valid==0 ) { BX_ERROR(("seg = %s", BX_CPU_THIS_PTR strseg(seg))); BX_ERROR(("seg->selector.value = %04x", (unsigned) seg->selector.value)); //BX_ERROR(("read_virtual_checks: valid bit = 0")); //BX_ERROR(("CS: %04x", (unsigned) // BX_CPU_THIS_PTR sregs[1].selector.value)); //BX_ERROR(("IP: %04x", (unsigned) BX_CPU_THIS_PTR prev_eip)); //debug(BX_CPU_THIS_PTR eip); exception(BX_GP_EXCEPTION, 0, 0); return; } if (seg->cache.p == 0) { /* not present */ BX_INFO(("read_virtual_checks(): segment not present")); exception(int_number(seg), 0, 0); return; } switch ( seg->cache.type ) { case 0: case 1: /* read only */ case 10: case 11: /* execute/read */ case 14: case 15: /* execute/read-only, conforming */ if (offset > (seg->cache.u.segment.limit_scaled - length + 1) || (length-1 > seg->cache.u.segment.limit_scaled)) { BX_INFO(("read_virtual_checks(): write beyond limit")); exception(int_number(seg), 0, 0); return; } break; case 2: case 3: /* read/write */ if (offset > (seg->cache.u.segment.limit_scaled - length + 1) || (length-1 > seg->cache.u.segment.limit_scaled)) { BX_INFO(("read_virtual_checks(): write beyond limit")); exception(int_number(seg), 0, 0); return; } break; case 4: case 5: /* read only, expand down */ if (seg->cache.u.segment.d_b) upper_limit = 0xffffffff; else upper_limit = 0x0000ffff; if ( (offset <= seg->cache.u.segment.limit_scaled) || (offset > upper_limit) || ((upper_limit - offset) < (length - 1)) ) { BX_INFO(("read_virtual_checks(): write beyond limit")); exception(int_number(seg), 0, 0); return; } break; case 6: case 7: /* read write, expand down */ if (seg->cache.u.segment.d_b) upper_limit = 0xffffffff; else upper_limit = 0x0000ffff; if ( (offset <= seg->cache.u.segment.limit_scaled) || (offset > upper_limit) || ((upper_limit - offset) < (length - 1)) ) { BX_INFO(("read_virtual_checks(): write beyond limit")); exception(int_number(seg), 0, 0); return; } break; case 8: case 9: /* execute only */ case 12: case 13: /* execute only, conforming */ /* can't read or write an execute-only segment */ BX_INFO(("read_virtual_checks(): execute only")); exception(int_number(seg), 0, 0); return; break; } return; } else { /* real mode */ if (offset > (seg->cache.u.segment.limit_scaled - length + 1) || (length-1 > seg->cache.u.segment.limit_scaled)) { //BX_ERROR(("read_virtual_checks() SEG EXCEPTION: %x:%x + %x", // (unsigned) seg->selector.value, (unsigned) offset, (unsigned) length)); if (seg == & BX_CPU_THIS_PTR sregs[2]) exception(BX_SS_EXCEPTION, 0, 0); else exception(BX_GP_EXCEPTION, 0, 0); } return; } } char * BX_CPU_C::strseg(bx_segment_reg_t *seg) { if (seg == &BX_CPU_THIS_PTR sregs[0]) return("ES"); else if (seg == & BX_CPU_THIS_PTR sregs[1]) return("CS"); else if (seg == & BX_CPU_THIS_PTR sregs[2]) return("SS"); else if (seg == &BX_CPU_THIS_PTR sregs[3]) return("DS"); else if (seg == &BX_CPU_THIS_PTR sregs[4]) return("FS"); else if (seg == &BX_CPU_THIS_PTR sregs[5]) return("GS"); else { BX_ERROR(("undefined segment passed to strseg()!")); return("??"); } } void BX_CPU_C::write_virtual_byte(unsigned s, Bit32u offset, Bit8u *data) { Bit32u laddr; bx_segment_reg_t *seg; seg = &BX_CPU_THIS_PTR sregs[s]; write_virtual_checks(seg, offset, 1); laddr = seg->cache.u.segment.base + offset; BX_INSTR_MEM_DATA(laddr, 1, BX_WRITE); // all checks OK access_linear(laddr, 1, CPL==3, BX_WRITE, (void *) data); } void BX_CPU_C::write_virtual_word(unsigned s, Bit32u offset, Bit16u *data) { Bit32u laddr; bx_segment_reg_t *seg; seg = &BX_CPU_THIS_PTR sregs[s]; write_virtual_checks(seg, offset, 2); laddr = seg->cache.u.segment.base + offset; BX_INSTR_MEM_DATA(laddr, 2, BX_WRITE); // all checks OK access_linear(laddr, 2, CPL==3, BX_WRITE, (void *) data); } void BX_CPU_C::write_virtual_dword(unsigned s, Bit32u offset, Bit32u *data) { Bit32u laddr; bx_segment_reg_t *seg; seg = &BX_CPU_THIS_PTR sregs[s]; write_virtual_checks(seg, offset, 4); laddr = seg->cache.u.segment.base + offset; BX_INSTR_MEM_DATA(laddr, 4, BX_WRITE); // all checks OK access_linear(laddr, 4, CPL==3, BX_WRITE, (void *) data); } void BX_CPU_C::read_virtual_byte(unsigned s, Bit32u offset, Bit8u *data) { Bit32u laddr; bx_segment_reg_t *seg; seg = &BX_CPU_THIS_PTR sregs[s]; read_virtual_checks(seg, offset, 1); laddr = seg->cache.u.segment.base + offset; BX_INSTR_MEM_DATA(laddr, 1, BX_READ); // all checks OK access_linear(laddr, 1, CPL==3, BX_READ, (void *) data); } void BX_CPU_C::read_virtual_word(unsigned s, Bit32u offset, Bit16u *data) { Bit32u laddr; bx_segment_reg_t *seg; seg = &BX_CPU_THIS_PTR sregs[s]; read_virtual_checks(seg, offset, 2); laddr = seg->cache.u.segment.base + offset; BX_INSTR_MEM_DATA(laddr, 2, BX_READ); // all checks OK access_linear(laddr, 2, CPL==3, BX_READ, (void *) data); } void BX_CPU_C::read_virtual_dword(unsigned s, Bit32u offset, Bit32u *data) { Bit32u laddr; bx_segment_reg_t *seg; seg = &BX_CPU_THIS_PTR sregs[s]; read_virtual_checks(seg, offset, 4); laddr = seg->cache.u.segment.base + offset; BX_INSTR_MEM_DATA(laddr, 4, BX_READ); // all checks OK access_linear(laddr, 4, CPL==3, BX_READ, (void *) data); } ////////////////////////////////////////////////////////////// // special Read-Modify-Write operations // // address translation info is kept across read/write calls // ////////////////////////////////////////////////////////////// void BX_CPU_C::read_RMW_virtual_byte(unsigned s, Bit32u offset, Bit8u *data) { Bit32u laddr; bx_segment_reg_t *seg; seg = &BX_CPU_THIS_PTR sregs[s]; write_virtual_checks(seg, offset, 1); laddr = seg->cache.u.segment.base + offset; BX_INSTR_MEM_DATA(laddr, 1, BX_READ); // all checks OK #if BX_CPU_LEVEL >= 3 if (BX_CPU_THIS_PTR cr0.pg) access_linear(laddr, 1, CPL==3, BX_RW, (void *) data); else #endif { BX_CPU_THIS_PTR address_xlation.paddress1 = laddr; BX_INSTR_LIN_READ(laddr, laddr, 1); BX_INSTR_LIN_WRITE(laddr, laddr, 1); BX_CPU_THIS_PTR mem->read_physical(this, laddr, 1, (void *) data); } } void BX_CPU_C::read_RMW_virtual_word(unsigned s, Bit32u offset, Bit16u *data) { Bit32u laddr; bx_segment_reg_t *seg; seg = &BX_CPU_THIS_PTR sregs[s]; write_virtual_checks(seg, offset, 2); laddr = seg->cache.u.segment.base + offset; BX_INSTR_MEM_DATA(laddr, 2, BX_READ); // all checks OK #if BX_CPU_LEVEL >= 3 if (BX_CPU_THIS_PTR cr0.pg) access_linear(laddr, 2, CPL==3, BX_RW, (void *) data); else #endif { BX_CPU_THIS_PTR address_xlation.paddress1 = laddr; BX_INSTR_LIN_READ(laddr, laddr, 2); BX_INSTR_LIN_WRITE(laddr, laddr, 2); BX_CPU_THIS_PTR mem->read_physical(this, laddr, 2, data); } } void BX_CPU_C::read_RMW_virtual_dword(unsigned s, Bit32u offset, Bit32u *data) { Bit32u laddr; bx_segment_reg_t *seg; seg = &BX_CPU_THIS_PTR sregs[s]; write_virtual_checks(seg, offset, 4); laddr = seg->cache.u.segment.base + offset; BX_INSTR_MEM_DATA(laddr, 4, BX_READ); // all checks OK #if BX_CPU_LEVEL >= 3 if (BX_CPU_THIS_PTR cr0.pg) access_linear(laddr, 4, CPL==3, BX_RW, (void *) data); else #endif { BX_CPU_THIS_PTR address_xlation.paddress1 = laddr; BX_INSTR_LIN_READ(laddr, laddr, 4); BX_INSTR_LIN_WRITE(laddr, laddr, 4); BX_CPU_THIS_PTR mem->read_physical(this, laddr, 4, data); } } void BX_CPU_C::write_RMW_virtual_byte(Bit8u val8) { BX_INSTR_MEM_DATA(BX_CPU_THIS_PTR address_xlation.paddress1, 1, BX_WRITE); #if BX_CPU_LEVEL >= 3 if (BX_CPU_THIS_PTR cr0.pg) { // BX_CPU_THIS_PTR address_xlation.pages must be 1 BX_CPU_THIS_PTR mem->write_physical(this, BX_CPU_THIS_PTR address_xlation.paddress1, 1, &val8); } else #endif { BX_CPU_THIS_PTR mem->write_physical(this, BX_CPU_THIS_PTR address_xlation.paddress1, 1, &val8); } } void BX_CPU_C::write_RMW_virtual_word(Bit16u val16) { BX_INSTR_MEM_DATA(BX_CPU_THIS_PTR address_xlation.paddress1, 2, BX_WRITE); #if BX_CPU_LEVEL >= 3 if (BX_CPU_THIS_PTR cr0.pg) { if (BX_CPU_THIS_PTR address_xlation.pages == 1) { BX_CPU_THIS_PTR mem->write_physical(this, BX_CPU_THIS_PTR address_xlation.paddress1, 2, &val16); } else { #ifdef BX_LITTLE_ENDIAN BX_CPU_THIS_PTR mem->write_physical(this, BX_CPU_THIS_PTR address_xlation.paddress1, 1, &val16); BX_CPU_THIS_PTR mem->write_physical(this, BX_CPU_THIS_PTR address_xlation.paddress2, 1, ((Bit8u *) &val16) + 1); #else BX_CPU_THIS_PTR mem->write_physical(this, BX_CPU_THIS_PTR address_xlation.paddress1, 1, ((Bit8u *) &val16) + 1); BX_CPU_THIS_PTR mem->write_physical(this, BX_CPU_THIS_PTR address_xlation.paddress2, 1, &val16); #endif } } else #endif { BX_CPU_THIS_PTR mem->write_physical(this, BX_CPU_THIS_PTR address_xlation.paddress1, 2, &val16); } } void BX_CPU_C::write_RMW_virtual_dword(Bit32u val32) { BX_INSTR_MEM_DATA(BX_CPU_THIS_PTR address_xlation.paddress1, 4, BX_WRITE); #if BX_CPU_LEVEL >= 3 if (BX_CPU_THIS_PTR cr0.pg) { if (BX_CPU_THIS_PTR address_xlation.pages == 1) { BX_CPU_THIS_PTR mem->write_physical(this, BX_CPU_THIS_PTR address_xlation.paddress1, 4, &val32); } else { #ifdef BX_LITTLE_ENDIAN BX_CPU_THIS_PTR mem->write_physical(this, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, &val32); BX_CPU_THIS_PTR mem->write_physical(this, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, ((Bit8u *) &val32) + BX_CPU_THIS_PTR address_xlation.len1); #else BX_CPU_THIS_PTR mem->write_physical(this, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, ((Bit8u *) &val32) + (4 - BX_CPU_THIS_PTR address_xlation.len1)); BX_CPU_THIS_PTR mem->write_physical(this, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, &val32); #endif } } else #endif { BX_CPU_THIS_PTR mem->write_physical(this, BX_CPU_THIS_PTR address_xlation.paddress1, 4, &val32); } }