///////////////////////////////////////////////////////////////////////// // $Id: logical32.cc,v 1.23 2004-08-13 20:00:03 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #define LOG_THIS BX_CPU_THIS_PTR void BX_CPU_C::XOR_EdGd(bxInstruction_c *i) { Bit32u op2_32, op1_32, result_32; op2_32 = BX_READ_32BIT_REG(i->nnn()); if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); result_32 = op1_32 ^ op2_32; BX_WRITE_32BIT_REGZ(i->rm(), result_32); } else { read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32); result_32 = op1_32 ^ op2_32; Write_RMW_virtual_dword(result_32); } SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32); } void BX_CPU_C::XOR_GdEd(bxInstruction_c *i) { Bit32u op1_32, op2_32, result_32; unsigned nnn = i->nnn(); op1_32 = BX_READ_32BIT_REG(nnn); if (i->modC0()) { op2_32 = BX_READ_32BIT_REG(i->rm()); } else { read_virtual_dword(i->seg(), RMAddr(i), &op2_32); } result_32 = op1_32 ^ op2_32; BX_WRITE_32BIT_REGZ(nnn, result_32); SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32); } void BX_CPU_C::XOR_EAXId(bxInstruction_c *i) { Bit32u op1_32, op2_32, sum_32; op1_32 = EAX; op2_32 = i->Id(); sum_32 = op1_32 ^ op2_32; #if BX_SUPPORT_X86_64 RAX = sum_32; #else EAX = sum_32; #endif SET_FLAGS_OSZAPC_RESULT_32(sum_32, BX_INSTR_LOGIC32); } void BX_CPU_C::XOR_EdId(bxInstruction_c *i) { Bit32u op2_32, op1_32, result_32; op2_32 = i->Id(); if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); result_32 = op1_32 ^ op2_32; BX_WRITE_32BIT_REGZ(i->rm(), result_32); } else { read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32); result_32 = op1_32 ^ op2_32; Write_RMW_virtual_dword(result_32); } SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32); } void BX_CPU_C::OR_EdId(bxInstruction_c *i) { Bit32u op2_32, op1_32, result_32; op2_32 = i->Id(); if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); result_32 = op1_32 | op2_32; BX_WRITE_32BIT_REGZ(i->rm(), result_32); } else { read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32); result_32 = op1_32 | op2_32; Write_RMW_virtual_dword(result_32); } SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32); } void BX_CPU_C::NOT_Ed(bxInstruction_c *i) { Bit32u op1_32, result_32; if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); result_32 = ~op1_32; BX_WRITE_32BIT_REGZ(i->rm(), result_32); } else { read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32); result_32 = ~op1_32; Write_RMW_virtual_dword(result_32); } } void BX_CPU_C::OR_EdGd(bxInstruction_c *i) { Bit32u op2_32, op1_32, result_32; op2_32 = BX_READ_32BIT_REG(i->nnn()); if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); result_32 = op1_32 | op2_32; BX_WRITE_32BIT_REGZ(i->rm(), result_32); } else { read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32); result_32 = op1_32 | op2_32; Write_RMW_virtual_dword(result_32); } SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32); } void BX_CPU_C::OR_GdEd(bxInstruction_c *i) { Bit32u op1_32, op2_32, result_32; op1_32 = BX_READ_32BIT_REG(i->nnn()); if (i->modC0()) { op2_32 = BX_READ_32BIT_REG(i->rm()); } else { read_virtual_dword(i->seg(), RMAddr(i), &op2_32); } #if defined(BX_HostAsm_Or32) Bit32u flags32; asmOr32(result_32, op1_32, op2_32, flags32); setEFlagsOSZAPC(flags32); #else result_32 = op1_32 | op2_32; SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32); #endif BX_WRITE_32BIT_REGZ(i->nnn(), result_32); } void BX_CPU_C::OR_EAXId(bxInstruction_c *i) { Bit32u op1_32, op2_32, sum_32; op1_32 = EAX; op2_32 = i->Id(); sum_32 = op1_32 | op2_32; #if BX_SUPPORT_X86_64 RAX = sum_32; #else EAX = sum_32; #endif SET_FLAGS_OSZAPC_RESULT_32(sum_32, BX_INSTR_LOGIC32); } void BX_CPU_C::AND_EdGd(bxInstruction_c *i) { Bit32u op2_32, op1_32, result_32; op2_32 = BX_READ_32BIT_REG(i->nnn()); if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); #if defined(BX_HostAsm_And32) Bit32u flags32; asmAnd32(result_32, op1_32, op2_32, flags32); setEFlagsOSZAPC(flags32); #else result_32 = op1_32 & op2_32; #endif BX_WRITE_32BIT_REGZ(i->rm(), result_32); } else { read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32); #if defined(BX_HostAsm_And32) Bit32u flags32; asmAnd32(result_32, op1_32, op2_32, flags32); setEFlagsOSZAPC(flags32); #else result_32 = op1_32 & op2_32; #endif Write_RMW_virtual_dword(result_32); } #if !defined(BX_HostAsm_And32) SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32); #endif } void BX_CPU_C::AND_GdEd(bxInstruction_c *i) { Bit32u op1_32, op2_32, result_32; op1_32 = BX_READ_32BIT_REG(i->nnn()); if (i->modC0()) { op2_32 = BX_READ_32BIT_REG(i->rm()); } else { read_virtual_dword(i->seg(), RMAddr(i), &op2_32); } #if defined(BX_HostAsm_And32) Bit32u flags32; asmAnd32(result_32, op1_32, op2_32, flags32); setEFlagsOSZAPC(flags32); #else result_32 = op1_32 & op2_32; SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32); #endif BX_WRITE_32BIT_REGZ(i->nnn(), result_32); } void BX_CPU_C::AND_EAXId(bxInstruction_c *i) { Bit32u op1_32, op2_32, result_32; op1_32 = EAX; op2_32 = i->Id(); #if defined(BX_HostAsm_And32) Bit32u flags32; asmAnd32(result_32, op1_32, op2_32, flags32); setEFlagsOSZAPC(flags32); #else result_32 = op1_32 & op2_32; SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32); #endif #if BX_SUPPORT_X86_64 RAX = result_32; #else EAX = result_32; #endif } void BX_CPU_C::AND_EdId(bxInstruction_c *i) { Bit32u op2_32, op1_32, result_32; op2_32 = i->Id(); if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); #if defined(BX_HostAsm_And32) Bit32u flags32; asmAnd32(result_32, op1_32, op2_32, flags32); setEFlagsOSZAPC(flags32); #else result_32 = op1_32 & op2_32; #endif BX_WRITE_32BIT_REGZ(i->rm(), result_32); } else { read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32); #if defined(BX_HostAsm_And32) Bit32u flags32; asmAnd32(result_32, op1_32, op2_32, flags32); setEFlagsOSZAPC(flags32); #else result_32 = op1_32 & op2_32; #endif Write_RMW_virtual_dword(result_32); } #if !defined(BX_HostAsm_And32) SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32); #endif } void BX_CPU_C::TEST_EdGd(bxInstruction_c *i) { Bit32u op2_32, op1_32; op2_32 = BX_READ_32BIT_REG(i->nnn()); if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); } else { read_virtual_dword(i->seg(), RMAddr(i), &op1_32); } #if defined(BX_HostAsm_Test32) Bit32u flags32; asmTest32(op1_32, op2_32, flags32); setEFlagsOSZAPC(flags32); #else Bit32u result_32 = op1_32 & op2_32; SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32); #endif } void BX_CPU_C::TEST_EAXId(bxInstruction_c *i) { Bit32u op2_32, op1_32; op1_32 = EAX; op2_32 = i->Id(); #if defined(BX_HostAsm_Test32) Bit32u flags32; asmTest32(op1_32, op2_32, flags32); setEFlagsOSZAPC(flags32); #else Bit32u result_32 = op1_32 & op2_32; SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32); #endif } void BX_CPU_C::TEST_EdId(bxInstruction_c *i) { Bit32u op2_32, op1_32; op2_32 = i->Id(); if (i->modC0()) { op1_32 = BX_READ_32BIT_REG(i->rm()); } else { read_virtual_dword(i->seg(), RMAddr(i), &op1_32); } #if defined(BX_HostAsm_Test32) Bit32u flags32; asmTest32(op1_32, op2_32, flags32); setEFlagsOSZAPC(flags32); #else Bit32u result_32 = op1_32 & op2_32; SET_FLAGS_OSZAPC_RESULT_32(result_32, BX_INSTR_LOGIC32); #endif }