///////////////////////////////////////////////////////////////////////// // $Id: instr.h,v 1.29 2010-09-25 09:55:40 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (c) 2008-2009 Stanislav Shwartsman // Written by Stanislav Shwartsman [sshwarts at sourceforge net] // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA // ///////////////////////////////////////////////////////////////////////// #ifndef BX_INSTR_H #define BX_INSTR_H class bxInstruction_c; // #if BX_USE_CPU_SMF typedef void (BX_CPP_AttrRegparmN(1) *BxExecutePtr_tR)(bxInstruction_c *); typedef bx_address (BX_CPP_AttrRegparmN(1) *BxResolvePtr_tR)(bxInstruction_c *); #else typedef void (BX_CPU_C::*BxExecutePtr_tR)(bxInstruction_c *) BX_CPP_AttrRegparmN(1); typedef bx_address (BX_CPU_C::*BxResolvePtr_tR)(bxInstruction_c *) BX_CPP_AttrRegparmN(1); #endif // // class bxInstruction_c { public: // Function pointers; a function to resolve the modRM address // given the current state of the CPU and the instruction data, // and a function to execute the instruction after resolving // the memory address (if any). BxExecutePtr_tR execute; BxExecutePtr_tR execute2; BxResolvePtr_tR ResolveModrm; struct { // 15..0 opcode Bit16u ia_opcode; // 7...4 (unused) // 3...0 ilen (0..15) Bit8u ilen; // 7...7 extend8bit // 6...6 as64 // 5...5 as32 // 4...4 os64 // 3...3 os32 // 2...2 mod==c0 (modrm) // 1...0 repUsed (0=none, 2=0xF2, 3=0xF3) Bit8u metaInfo1; } metaInfo; #define BX_INSTR_METADATA_SEG 0 #define BX_INSTR_METADATA_B1 1 #define BX_INSTR_METADATA_NNN 2 #define BX_INSTR_METADATA_RM 3 #define BX_INSTR_METADATA_BASE 4 #define BX_INSTR_METADATA_INDEX 5 #define BX_INSTR_METADATA_SCALE 6 #define BX_INSTR_METADATA_MODRM 7 // using 5-bit field for registers (16 regs in 64-bit, RIP, NIL) Bit8u metaData[8]; union { // Form (longest case): [opcode+modrm+sib/displacement32/immediate32] struct { union { Bit32u Id; Bit16u Iw; Bit8u Ib; }; union { Bit16u displ16u; // for 16-bit modrm forms Bit32u displ32u; // for 32-bit modrm forms Bit16u Iw2; Bit8u Ib2; }; } modRMForm; #if BX_SUPPORT_X86_64 struct { Bit64u Iq; // for MOV Rx,imm64 } IqForm; #endif }; BX_CPP_INLINE unsigned seg(void) const { return metaData[BX_INSTR_METADATA_SEG]; } BX_CPP_INLINE void setSeg(unsigned val) { metaData[BX_INSTR_METADATA_SEG] = val; } BX_CPP_INLINE unsigned b1(void) const { return metaData[BX_INSTR_METADATA_B1]; } BX_CPP_INLINE void setB1(unsigned b1) { metaData[BX_INSTR_METADATA_B1] = b1 & 0xff; } BX_CPP_INLINE void setOpcodeReg(unsigned opreg) { // The opcodeReg form (low 3 bits of the opcode byte // (extended by REX.B on x86-64) metaData[BX_INSTR_METADATA_RM] = opreg; } BX_CPP_INLINE unsigned opcodeReg() const { return metaData[BX_INSTR_METADATA_RM]; } BX_CPP_INLINE void setModRM(unsigned modrm) { metaData[BX_INSTR_METADATA_MODRM] = modrm; } BX_CPP_INLINE unsigned modrm() const { return metaData[BX_INSTR_METADATA_MODRM]; } BX_CPP_INLINE void setNnn(unsigned nnn) { metaData[BX_INSTR_METADATA_NNN] = nnn; } BX_CPP_INLINE unsigned nnn() const { return metaData[BX_INSTR_METADATA_NNN]; } BX_CPP_INLINE void setRm(unsigned rm) { metaData[BX_INSTR_METADATA_RM] = rm; } BX_CPP_INLINE unsigned rm() const { return metaData[BX_INSTR_METADATA_RM]; } BX_CPP_INLINE void setSibScale(unsigned scale) { metaData[BX_INSTR_METADATA_SCALE] = scale; } BX_CPP_INLINE unsigned sibScale() const { return metaData[BX_INSTR_METADATA_SCALE]; } BX_CPP_INLINE void setSibIndex(unsigned index) { metaData[BX_INSTR_METADATA_INDEX] = index; } BX_CPP_INLINE unsigned sibIndex() const { return metaData[BX_INSTR_METADATA_INDEX]; } BX_CPP_INLINE void setSibBase(unsigned base) { metaData[BX_INSTR_METADATA_BASE] = base; } BX_CPP_INLINE unsigned sibBase() const { return metaData[BX_INSTR_METADATA_BASE]; } BX_CPP_INLINE Bit32s displ32s() const { return (Bit32s) modRMForm.displ32u; } BX_CPP_INLINE Bit16s displ16s() const { return (Bit16s) modRMForm.displ16u; } BX_CPP_INLINE Bit32u Id() const { return modRMForm.Id; } BX_CPP_INLINE Bit16u Iw() const { return modRMForm.Iw; } BX_CPP_INLINE Bit8u Ib() const { return modRMForm.Ib; } BX_CPP_INLINE Bit16u Iw2() const { return modRMForm.Iw2; } BX_CPP_INLINE Bit8u Ib2() const { return modRMForm.Ib2; } #if BX_SUPPORT_X86_64 BX_CPP_INLINE Bit64u Iq() const { return IqForm.Iq; } #endif // Info in the metaInfo field. // Note: the 'L' at the end of certain flags, means the value returned // is for Logical comparisons, eg if (i->os32L() && i->as32L()). If you // want a bx_bool value, use os32B() etc. This makes for smaller // code, when a strict 0 or 1 is not necessary. BX_CPP_INLINE void init(unsigned os32, unsigned as32, unsigned os64, unsigned as64) { metaInfo.metaInfo1 = (os32<<3) | (os64<<4) | (as32<<5) | (as64<<6); } BX_CPP_INLINE unsigned os32L(void) const { return metaInfo.metaInfo1 & (1<<3); } BX_CPP_INLINE void setOs32B(unsigned bit) { metaInfo.metaInfo1 = (metaInfo.metaInfo1 & ~(1<<3)) | (bit<<3); } BX_CPP_INLINE void assertOs32(void) { metaInfo.metaInfo1 |= (1<<3); } BX_CPP_INLINE unsigned as32L(void) const { return metaInfo.metaInfo1 & (1<<5); } BX_CPP_INLINE void setAs32B(unsigned bit) { metaInfo.metaInfo1 = (metaInfo.metaInfo1 & ~(1<<5)) | (bit<<5); } #if BX_SUPPORT_X86_64 BX_CPP_INLINE unsigned os64L(void) const { return metaInfo.metaInfo1 & (1<<4); } BX_CPP_INLINE void assertOs64(void) { metaInfo.metaInfo1 |= (1<<4); } #else BX_CPP_INLINE unsigned os64L(void) const { return 0; } #endif #if BX_SUPPORT_X86_64 BX_CPP_INLINE unsigned as64L(void) const { return metaInfo.metaInfo1 & (1<<6); } BX_CPP_INLINE void setAs64B(unsigned bit) { metaInfo.metaInfo1 = (metaInfo.metaInfo1 & ~(1<<6)) | (bit<<6); } #else BX_CPP_INLINE unsigned as64L(void) const { return 0; } #endif #if BX_SUPPORT_X86_64 BX_CPP_INLINE unsigned extend8bitL(void) const { return metaInfo.metaInfo1 & (1<<7); } BX_CPP_INLINE void assertExtend8bit(void) { metaInfo.metaInfo1 |= (1<<7); } #endif BX_CPP_INLINE unsigned ilen(void) const { return metaInfo.ilen; } BX_CPP_INLINE void setILen(unsigned ilen) { metaInfo.ilen = ilen; } BX_CPP_INLINE unsigned getIaOpcode(void) const { return metaInfo.ia_opcode; } BX_CPP_INLINE void setIaOpcode(Bit16u op) { metaInfo.ia_opcode = op; } BX_CPP_INLINE unsigned repUsedL(void) const { return metaInfo.metaInfo1 & 3; } BX_CPP_INLINE unsigned repUsedValue(void) const { return metaInfo.metaInfo1 & 3; } BX_CPP_INLINE void setRepUsed(unsigned value) { metaInfo.metaInfo1 = (metaInfo.metaInfo1 & ~3) | (value); } BX_CPP_INLINE unsigned modC0() const { // This is a cheaper way to test for modRM instructions where // the mod field is 0xc0. FetchDecode flags this condition since // it is quite common to be tested for. return metaInfo.metaInfo1 & (1<<2); } BX_CPP_INLINE unsigned assertModC0() { return metaInfo.metaInfo1 |= (1<<2); } }; // const char *get_bx_opcode_name(Bit16u ia_opcode); enum { #define bx_define_opcode(a, b, c, d) a, #include "ia_opcodes.h" BX_IA_LAST }; #undef bx_define_opcode #endif