///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001-2012 The Bochs Project // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR #define InstrumentICACHE 0 #if InstrumentICACHE static unsigned iCacheLookups=0; static unsigned iCacheMisses=0; #define InstrICache_StatsMask 0xffffff #define InstrICache_Stats() {\ if ((iCacheLookups & InstrICache_StatsMask) == 0) { \ BX_INFO(("ICACHE lookups: %u, misses: %u, hit rate = %6.2f%% ", \ iCacheLookups, \ iCacheMisses, \ (iCacheLookups-iCacheMisses) * 100.0f / iCacheLookups)); \ iCacheLookups = iCacheMisses = 0; \ } \ } #define InstrICache_Increment(v) (v)++ #else #define InstrICache_Stats() #define InstrICache_Increment(v) #endif void BX_CPU_C::cpu_loop(void) { #if BX_DEBUGGER BX_CPU_THIS_PTR break_point = 0; BX_CPU_THIS_PTR magic_break = 0; BX_CPU_THIS_PTR stop_reason = STOP_NO_REASON; #endif if (setjmp(BX_CPU_THIS_PTR jmp_buf_env)) { // can get here only from exception function or VMEXIT BX_CPU_THIS_PTR icount++; BX_SYNC_TIME_IF_SINGLE_PROCESSOR(0); #if BX_DEBUGGER || BX_GDBSTUB if (dbg_instruction_epilog()) return; #endif #if BX_GDBSTUB if (bx_dbg.gdbstub_enabled) return; #endif } // If the exception() routine has encountered a nasty fault scenario, // the debugger may request that control is returned to it so that // the situation may be examined. #if BX_DEBUGGER if (bx_guard.interrupt_requested) return; #endif // We get here either by a normal function call, or by a longjmp // back from an exception() call. In either case, commit the // new EIP/ESP, and set up other environmental fields. This code // mirrors similar code below, after the interrupt() call. BX_CPU_THIS_PTR prev_rip = RIP; // commit new EIP BX_CPU_THIS_PTR speculative_rsp = 0; while (1) { // check on events which occurred for previous instructions (traps) // and ones which are asynchronous to the CPU (hardware interrupts) if (BX_CPU_THIS_PTR async_event) { if (handleAsyncEvent()) { // If request to return to caller ASAP. return; } } bxICacheEntry_c *entry = getICacheEntry(); bxInstruction_c *i = entry->i; #if BX_SUPPORT_HANDLERS_CHAINING_SPEEDUPS for(;;) { // want to allow changing of the instruction inside instrumentation callback BX_INSTR_BEFORE_EXECUTION(BX_CPU_ID, i); RIP += i->ilen(); // when handlers chaining is enabled this single call will execute entire trace BX_CPU_CALL_METHOD(i->execute1, (i)); // might iterate repeat instruction BX_SYNC_TIME_IF_SINGLE_PROCESSOR(0); if (BX_CPU_THIS_PTR async_event) break; i = getICacheEntry()->i; } #else // BX_SUPPORT_HANDLERS_CHAINING_SPEEDUPS == 0 bxInstruction_c *last = i + (entry->tlen); for(;;) { #if BX_DEBUGGER if (BX_CPU_THIS_PTR trace) debug_disasm_instruction(BX_CPU_THIS_PTR prev_rip); #endif // want to allow changing of the instruction inside instrumentation callback BX_INSTR_BEFORE_EXECUTION(BX_CPU_ID, i); RIP += i->ilen(); BX_CPU_CALL_METHOD(i->execute1, (i)); // might iterate repeat instruction BX_CPU_THIS_PTR prev_rip = RIP; // commit new RIP BX_INSTR_AFTER_EXECUTION(BX_CPU_ID, i); BX_CPU_THIS_PTR icount++; BX_SYNC_TIME_IF_SINGLE_PROCESSOR(0); // note instructions generating exceptions never reach this point #if BX_DEBUGGER || BX_GDBSTUB if (dbg_instruction_epilog()) return; #endif if (BX_CPU_THIS_PTR async_event) break; if (++i == last) { entry = getICacheEntry(); i = entry->i; last = i + (entry->tlen); } } #endif // clear stop trace magic indication that probably was set by repeat or branch32/64 BX_CPU_THIS_PTR async_event &= ~BX_ASYNC_EVENT_STOP_TRACE; } // while (1) } #if BX_SUPPORT_SMP void BX_CPU_C::cpu_run_trace(void) { if (setjmp(BX_CPU_THIS_PTR jmp_buf_env)) { // can get here only from exception function or VMEXIT BX_CPU_THIS_PTR icount++; return; } // check on events which occurred for previous instructions (traps) // and ones which are asynchronous to the CPU (hardware interrupts) if (BX_CPU_THIS_PTR async_event) { if (handleAsyncEvent()) { // If request to return to caller ASAP. return; } } bxICacheEntry_c *entry = getICacheEntry(); bxInstruction_c *i = entry->i; #if BX_SUPPORT_HANDLERS_CHAINING_SPEEDUPS // want to allow changing of the instruction inside instrumentation callback BX_INSTR_BEFORE_EXECUTION(BX_CPU_ID, i); RIP += i->ilen(); // when handlers chaining is enabled this single call will execute entire trace BX_CPU_CALL_METHOD(i->execute1, (i)); // might iterate repeat instruction if (BX_CPU_THIS_PTR async_event) { // clear stop trace magic indication that probably was set by repeat or branch32/64 BX_CPU_THIS_PTR async_event &= ~BX_ASYNC_EVENT_STOP_TRACE; } #else bxInstruction_c *last = i + (entry->tlen); for(;;) { // want to allow changing of the instruction inside instrumentation callback BX_INSTR_BEFORE_EXECUTION(BX_CPU_ID, i); RIP += i->ilen(); BX_CPU_CALL_METHOD(i->execute1, (i)); // might iterate repeat instruction BX_CPU_THIS_PTR prev_rip = RIP; // commit new RIP BX_INSTR_AFTER_EXECUTION(BX_CPU_ID, i); BX_CPU_THIS_PTR icount++; if (BX_CPU_THIS_PTR async_event) { // clear stop trace magic indication that probably was set by repeat or branch32/64 BX_CPU_THIS_PTR async_event &= ~BX_ASYNC_EVENT_STOP_TRACE; break; } if (++i == last) break; } #endif // BX_SUPPORT_HANDLERS_CHAINING_SPEEDUPS } #endif bxICacheEntry_c* BX_CPU_C::getICacheEntry(void) { bx_address eipBiased = RIP + BX_CPU_THIS_PTR eipPageBias; if (eipBiased >= BX_CPU_THIS_PTR eipPageWindowSize) { prefetch(); eipBiased = RIP + BX_CPU_THIS_PTR eipPageBias; } InstrICache_Increment(iCacheLookups); InstrICache_Stats(); bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrFetchPage + eipBiased; bxICacheEntry_c *entry = BX_CPU_THIS_PTR iCache.find_entry(pAddr, BX_CPU_THIS_PTR fetchModeMask); if (entry == NULL) { // iCache miss. No validated instruction with matching fetch parameters // is in the iCache. InstrICache_Increment(iCacheMisses); entry = serveICacheMiss(entry, (Bit32u) eipBiased, pAddr); } return entry; } #if BX_SUPPORT_HANDLERS_CHAINING_SPEEDUPS // The function is called after taken branch instructions and tries to link the branch to the next trace BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::linkTrace(bxInstruction_c *i) { #if BX_SUPPORT_SMP if (BX_SMP_PROCESSORS > 1) return; #endif if (BX_CPU_THIS_PTR async_event) return; Bit32u delta = (Bit32u) (BX_CPU_THIS_PTR icount - BX_CPU_THIS_PTR icount_last_sync); if(delta >= bx_pc_system.getNumCpuTicksLeftNextEvent()) return; bxInstruction_c *next = i->getNextTrace(BX_CPU_THIS_PTR iCache.traceLinkTimeStamp); if (next) { bx_address eipBiased = RIP + BX_CPU_THIS_PTR eipPageBias; if (eipBiased >= BX_CPU_THIS_PTR eipPageWindowSize) { prefetch(); } BX_EXECUTE_INSTRUCTION(next); return; } bx_address eipBiased = RIP + BX_CPU_THIS_PTR eipPageBias; if (eipBiased >= BX_CPU_THIS_PTR eipPageWindowSize) { prefetch(); eipBiased = RIP + BX_CPU_THIS_PTR eipPageBias; } InstrICache_Increment(iCacheLookups); InstrICache_Stats(); bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrFetchPage + eipBiased; bxICacheEntry_c *entry = BX_CPU_THIS_PTR iCache.find_entry(pAddr, BX_CPU_THIS_PTR fetchModeMask); if (entry != NULL) // link traces - handle only hit cases { i->setNextTrace(entry->i, BX_CPU_THIS_PTR iCache.traceLinkTimeStamp); i = entry->i; BX_EXECUTE_INSTRUCTION(i); } } #endif #define BX_REPEAT_TIME_UPDATE_INTERVAL (BX_MAX_TRACE_LENGTH-1) void BX_CPP_AttrRegparmN(2) BX_CPU_C::repeat(bxInstruction_c *i, BxRepIterationPtr_tR execute) { // non repeated instruction if (! i->repUsedL()) { BX_CPU_CALL_REP_ITERATION(execute, (i)); return; } #if BX_X86_DEBUGGER BX_CPU_THIS_PTR in_repeat = 0; #endif #if BX_SUPPORT_X86_64 if (i->as64L()) { while(1) { if (RCX != 0) { BX_CPU_CALL_REP_ITERATION(execute, (i)); BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i); RCX --; } if (RCX == 0) return; #if BX_DEBUGGER == 0 if (BX_CPU_THIS_PTR async_event) #endif break; // exit always if debugger enabled BX_CPU_THIS_PTR icount++; BX_SYNC_TIME_IF_SINGLE_PROCESSOR(BX_REPEAT_TIME_UPDATE_INTERVAL); } } else #endif if (i->as32L()) { while(1) { if (ECX != 0) { BX_CPU_CALL_REP_ITERATION(execute, (i)); BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i); RCX = ECX - 1; } if (ECX == 0) return; #if BX_DEBUGGER == 0 if (BX_CPU_THIS_PTR async_event) #endif break; // exit always if debugger enabled BX_CPU_THIS_PTR icount++; BX_SYNC_TIME_IF_SINGLE_PROCESSOR(BX_REPEAT_TIME_UPDATE_INTERVAL); } } else // 16bit addrsize { while(1) { if (CX != 0) { BX_CPU_CALL_REP_ITERATION(execute, (i)); BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i); CX --; } if (CX == 0) return; #if BX_DEBUGGER == 0 if (BX_CPU_THIS_PTR async_event) #endif break; // exit always if debugger enabled BX_CPU_THIS_PTR icount++; BX_SYNC_TIME_IF_SINGLE_PROCESSOR(BX_REPEAT_TIME_UPDATE_INTERVAL); } } #if BX_X86_DEBUGGER BX_CPU_THIS_PTR in_repeat = 1; #endif RIP = BX_CPU_THIS_PTR prev_rip; // repeat loop not done, restore RIP // assert magic async_event to stop trace execution BX_CPU_THIS_PTR async_event |= BX_ASYNC_EVENT_STOP_TRACE; } void BX_CPP_AttrRegparmN(2) BX_CPU_C::repeat_ZF(bxInstruction_c *i, BxRepIterationPtr_tR execute) { unsigned rep = i->repUsedValue(); // non repeated instruction if (! rep) { BX_CPU_CALL_REP_ITERATION(execute, (i)); return; } #if BX_X86_DEBUGGER BX_CPU_THIS_PTR in_repeat = 0; #endif if (rep == 3) { /* repeat prefix 0xF3 */ #if BX_SUPPORT_X86_64 if (i->as64L()) { while(1) { if (RCX != 0) { BX_CPU_CALL_REP_ITERATION(execute, (i)); BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i); RCX --; } if (! get_ZF() || RCX == 0) return; #if BX_DEBUGGER == 0 if (BX_CPU_THIS_PTR async_event) #endif break; // exit always if debugger enabled BX_CPU_THIS_PTR icount++; BX_SYNC_TIME_IF_SINGLE_PROCESSOR(BX_REPEAT_TIME_UPDATE_INTERVAL); } } else #endif if (i->as32L()) { while(1) { if (ECX != 0) { BX_CPU_CALL_REP_ITERATION(execute, (i)); BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i); RCX = ECX - 1; } if (! get_ZF() || ECX == 0) return; #if BX_DEBUGGER == 0 if (BX_CPU_THIS_PTR async_event) #endif break; // exit always if debugger enabled BX_CPU_THIS_PTR icount++; BX_SYNC_TIME_IF_SINGLE_PROCESSOR(BX_REPEAT_TIME_UPDATE_INTERVAL); } } else // 16bit addrsize { while(1) { if (CX != 0) { BX_CPU_CALL_REP_ITERATION(execute, (i)); BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i); CX --; } if (! get_ZF() || CX == 0) return; #if BX_DEBUGGER == 0 if (BX_CPU_THIS_PTR async_event) #endif break; // exit always if debugger enabled BX_CPU_THIS_PTR icount++; BX_SYNC_TIME_IF_SINGLE_PROCESSOR(BX_REPEAT_TIME_UPDATE_INTERVAL); } } } else { /* repeat prefix 0xF2 */ #if BX_SUPPORT_X86_64 if (i->as64L()) { while(1) { if (RCX != 0) { BX_CPU_CALL_REP_ITERATION(execute, (i)); BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i); RCX --; } if (get_ZF() || RCX == 0) return; #if BX_DEBUGGER == 0 if (BX_CPU_THIS_PTR async_event) #endif break; // exit always if debugger enabled BX_CPU_THIS_PTR icount++; BX_SYNC_TIME_IF_SINGLE_PROCESSOR(BX_REPEAT_TIME_UPDATE_INTERVAL); } } else #endif if (i->as32L()) { while(1) { if (ECX != 0) { BX_CPU_CALL_REP_ITERATION(execute, (i)); BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i); RCX = ECX - 1; } if (get_ZF() || ECX == 0) return; #if BX_DEBUGGER == 0 if (BX_CPU_THIS_PTR async_event) #endif break; // exit always if debugger enabled BX_CPU_THIS_PTR icount++; BX_SYNC_TIME_IF_SINGLE_PROCESSOR(BX_REPEAT_TIME_UPDATE_INTERVAL); } } else // 16bit addrsize { while(1) { if (CX != 0) { BX_CPU_CALL_REP_ITERATION(execute, (i)); BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i); CX --; } if (get_ZF() || CX == 0) return; #if BX_DEBUGGER == 0 if (BX_CPU_THIS_PTR async_event) #endif break; // exit always if debugger enabled BX_CPU_THIS_PTR icount++; BX_SYNC_TIME_IF_SINGLE_PROCESSOR(BX_REPEAT_TIME_UPDATE_INTERVAL); } } } #if BX_X86_DEBUGGER BX_CPU_THIS_PTR in_repeat = 1; #endif RIP = BX_CPU_THIS_PTR prev_rip; // repeat loop not done, restore RIP // assert magic async_event to stop trace execution BX_CPU_THIS_PTR async_event |= BX_ASYNC_EVENT_STOP_TRACE; } // boundaries of consideration: // // * physical memory boundary: 1024k (1Megabyte) (increments of...) // * A20 boundary: 1024k (1Megabyte) // * page boundary: 4k // * ROM boundary: 2k (dont care since we are only reading) // * segment boundary: any void BX_CPU_C::prefetch(void) { bx_address laddr; unsigned pageOffset; #if BX_SUPPORT_X86_64 if (long64_mode()) { if (! IsCanonical(RIP)) { BX_ERROR(("prefetch: #GP(0): RIP crossed canonical boundary")); exception(BX_GP_EXCEPTION, 0); } // linear address is equal to RIP in 64-bit long mode pageOffset = PAGE_OFFSET(EIP); laddr = RIP; // Calculate RIP at the beginning of the page. BX_CPU_THIS_PTR eipPageBias = pageOffset - RIP; BX_CPU_THIS_PTR eipPageWindowSize = 4096; } else #endif { #if BX_CPU_LEVEL >= 5 if (USER_PL && BX_CPU_THIS_PTR get_VIP() && BX_CPU_THIS_PTR get_VIF()) { if (BX_CPU_THIS_PTR cr4.get_PVI() | (v8086_mode() && BX_CPU_THIS_PTR cr4.get_VME())) { BX_ERROR(("prefetch: inconsistent VME state")); exception(BX_GP_EXCEPTION, 0); } } #endif BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RIP); /* avoid 32-bit EIP wrap */ laddr = get_laddr32(BX_SEG_REG_CS, EIP); pageOffset = PAGE_OFFSET(laddr); // Calculate RIP at the beginning of the page. BX_CPU_THIS_PTR eipPageBias = (bx_address) pageOffset - EIP; Bit32u limit = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled; if (EIP > limit) { BX_ERROR(("prefetch: EIP [%08x] > CS.limit [%08x]", EIP, limit)); exception(BX_GP_EXCEPTION, 0); } BX_CPU_THIS_PTR eipPageWindowSize = 4096; if (limit + BX_CPU_THIS_PTR eipPageBias < 4096) { BX_CPU_THIS_PTR eipPageWindowSize = (Bit32u)(limit + BX_CPU_THIS_PTR eipPageBias + 1); } } #if BX_X86_DEBUGGER if (hwbreakpoint_check(laddr, BX_HWDebugInstruction, BX_HWDebugInstruction)) { signal_event(BX_EVENT_CODE_BREAKPOINT_ASSIST); if (! interrupts_inhibited(BX_INHIBIT_DEBUG)) { // The next instruction could already hit a code breakpoint but // async_event won't take effect immediatelly. // Check if the next executing instruction hits code breakpoint // check only if not fetching page cross instruction // this check is 32-bit wrap safe as well if (EIP == (Bit32u) BX_CPU_THIS_PTR prev_rip) { Bit32u dr6_bits = code_breakpoint_match(laddr); if (dr6_bits & BX_DEBUG_TRAP_HIT) { BX_ERROR(("#DB: x86 code breakpoint catched")); BX_CPU_THIS_PTR debug_trap |= dr6_bits; exception(BX_DB_EXCEPTION, 0); } } } } else { clear_event(BX_EVENT_CODE_BREAKPOINT_ASSIST); } #endif BX_CPU_THIS_PTR clear_RF(); bx_address lpf = LPFOf(laddr); unsigned TLB_index = BX_TLB_INDEX_OF(lpf, 0); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[TLB_index]; Bit8u *fetchPtr = 0; if ((tlbEntry->lpf == lpf) && (tlbEntry->accessBits & (0x10 << USER_PL)) != 0) { BX_CPU_THIS_PTR pAddrFetchPage = tlbEntry->ppf; fetchPtr = (Bit8u*) tlbEntry->hostPageAddr; } else { bx_phy_address pAddr = translate_linear(tlbEntry, laddr, USER_PL, BX_EXECUTE); BX_CPU_THIS_PTR pAddrFetchPage = PPFOf(pAddr); } if (fetchPtr) { BX_CPU_THIS_PTR eipFetchPtr = fetchPtr; } else { BX_CPU_THIS_PTR eipFetchPtr = (const Bit8u*) getHostMemAddr(BX_CPU_THIS_PTR pAddrFetchPage, BX_EXECUTE); // Sanity checks if (! BX_CPU_THIS_PTR eipFetchPtr) { bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrFetchPage + pageOffset; if (pAddr >= BX_MEM(0)->get_memory_len()) { BX_PANIC(("prefetch: running in bogus memory, pAddr=0x" FMT_PHY_ADDRX, pAddr)); } else { BX_PANIC(("prefetch: getHostMemAddr vetoed direct read, pAddr=0x" FMT_PHY_ADDRX, pAddr)); } } } } #if BX_DEBUGGER || BX_GDBSTUB bx_bool BX_CPU_C::dbg_instruction_epilog(void) { #if BX_DEBUGGER bx_address debug_eip = RIP; Bit16u cs = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value; BX_CPU_THIS_PTR guard_found.cs = cs; BX_CPU_THIS_PTR guard_found.eip = debug_eip; BX_CPU_THIS_PTR guard_found.laddr = get_laddr(BX_SEG_REG_CS, debug_eip); BX_CPU_THIS_PTR guard_found.code_32_64 = BX_CPU_THIS_PTR fetchModeMask; // // Take care of break point conditions generated during instruction execution // // Check if we hit read/write or time breakpoint if (BX_CPU_THIS_PTR break_point) { Bit64u tt = bx_pc_system.time_ticks(); switch (BX_CPU_THIS_PTR break_point) { case BREAK_POINT_TIME: BX_INFO(("[" FMT_LL "d] Caught time breakpoint", tt)); BX_CPU_THIS_PTR stop_reason = STOP_TIME_BREAK_POINT; return(1); // on a breakpoint case BREAK_POINT_READ: BX_INFO(("[" FMT_LL "d] Caught read watch point", tt)); BX_CPU_THIS_PTR stop_reason = STOP_READ_WATCH_POINT; return(1); // on a breakpoint case BREAK_POINT_WRITE: BX_INFO(("[" FMT_LL "d] Caught write watch point", tt)); BX_CPU_THIS_PTR stop_reason = STOP_WRITE_WATCH_POINT; return(1); // on a breakpoint default: BX_PANIC(("Weird break point condition")); } } if (BX_CPU_THIS_PTR magic_break) { BX_INFO(("[" FMT_LL "d] Stopped on MAGIC BREAKPOINT", bx_pc_system.time_ticks())); BX_CPU_THIS_PTR stop_reason = STOP_MAGIC_BREAK_POINT; return(1); // on a breakpoint } // see if debugger requesting icount guard if (bx_guard.guard_for & BX_DBG_GUARD_ICOUNT) { if (get_icount() >= BX_CPU_THIS_PTR guard_found.icount_max) { return(1); } } // convenient point to see if user requested debug break or typed Ctrl-C if (bx_guard.interrupt_requested) { return(1); } // support for 'show' command in debugger extern unsigned dbg_show_mask; if(dbg_show_mask) { int rv = bx_dbg_show_symbolic(); if (rv) return(rv); } // Just committed an instruction, before fetching a new one // see if debugger is looking for iaddr breakpoint of any type if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_ALL) { #if (BX_DBG_MAX_VIR_BPOINTS > 0) if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_VIR) { for (unsigned n=0; n 0) if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_LIN) { for (unsigned n=0; n 0) if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_PHY) { bx_phy_address phy; bx_bool valid = dbg_xlate_linear2phy(BX_CPU_THIS_PTR guard_found.laddr, &phy); if (valid) { for (unsigned n=0; n