///////////////////////////////////////////////////////////////////////// // $Id: pit_wrap.cc,v 1.15 2002-02-08 02:57:27 yakovlev Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2002 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #include "bochs.h" #if BX_USE_NEW_PIT #include "pit_wrap.h" #define LOG_THIS bx_pit. bx_pit_c bx_pit; #if BX_USE_PIT_SMF #define this (&bx_pit) #endif #ifdef OUT # undef OUT #endif #define TIME_DIVIDER (1) #define TIME_MULTIPLIER (1) #define TIME_HEADSTART (1) //USEC_ALPHA is multiplier for the past. //USEC_ALPHA_B is 1-USEC_ALPHA, or multiplier for the present. #define USEC_ALPHA (.8) #define USEC_ALPHA_B (.2) //How many timer ticks per usecond. //1.193181MHz Clock //1193/1000 Ticks Per usecond. #define TICKS_PER_SECOND (1193181) #define USEC_PER_SECOND (1000000) #define TIME_MULT 1.193 #if BX_USE_REALTIME_PIT # define TICKS_TO_USEC(a) ( ((a)*BX_PIT_THIS s.usec_per_second)/BX_PIT_THIS s.ticks_per_second ) # define USEC_TO_TICKS(a) ( ((a)*BX_PIT_THIS s.ticks_per_second)/BX_PIT_THIS s.usec_per_second ) #else # define TICKS_TO_USEC(a) ( ((a)*USEC_PER_SECOND)/TICKS_PER_SECOND ) # define USEC_TO_TICKS(a) ( ((a)*TICKS_PER_SECOND)/USEC_PER_SECOND ) #endif #define MAX(a,b) ( ((a)>(b))?(a):(b) ) bx_pit_c::bx_pit_c( void ) { put("PIT"); settype(PITLOG); s.speaker_data_on=0; /* 8254 PIT (Programmable Interval Timer) */ BX_PIT_THIS s.timer_handle[1] = BX_NULL_TIMER_HANDLE; BX_PIT_THIS s.timer_handle[2] = BX_NULL_TIMER_HANDLE; BX_PIT_THIS s.timer_handle[0] = BX_NULL_TIMER_HANDLE; } bx_pit_c::~bx_pit_c( void ) { } int bx_pit_c::init( bx_devices_c *d ) { BX_PIT_THIS devices = d; BX_PIT_THIS devices->register_irq(0, "8254 PIT"); BX_PIT_THIS devices->register_io_read_handler(this, read_handler, 0x0040, "8254 PIT"); BX_PIT_THIS devices->register_io_read_handler(this, read_handler, 0x0041, "8254 PIT"); BX_PIT_THIS devices->register_io_read_handler(this, read_handler, 0x0042, "8254 PIT"); BX_PIT_THIS devices->register_io_read_handler(this, read_handler, 0x0043, "8254 PIT"); BX_PIT_THIS devices->register_io_read_handler(this, read_handler, 0x0061, "8254 PIT"); BX_PIT_THIS devices->register_io_write_handler(this, write_handler, 0x0040, "8254 PIT"); BX_PIT_THIS devices->register_io_write_handler(this, write_handler, 0x0041, "8254 PIT"); BX_PIT_THIS devices->register_io_write_handler(this, write_handler, 0x0042, "8254 PIT"); BX_PIT_THIS devices->register_io_write_handler(this, write_handler, 0x0043, "8254 PIT"); BX_PIT_THIS devices->register_io_write_handler(this, write_handler, 0x0061, "8254 PIT"); BX_DEBUG(("pit: starting init")); BX_PIT_THIS s.speaker_data_on = 0; BX_PIT_THIS s.refresh_clock_div2 = 0; BX_PIT_THIS s.timer.init(); BX_PIT_THIS s.timer_handle[0] = bx_pc_system.register_timer(this, timer_handler, (unsigned) 100 , 1, 1); BX_DEBUG(("pit: RESETting timer.")); bx_pc_system.deactivate_timer(BX_PIT_THIS s.timer_handle[0]); BX_DEBUG(("deactivated timer.")); if(BX_PIT_THIS s.timer.get_next_event_time()) { bx_pc_system.activate_timer(BX_PIT_THIS s.timer_handle[0], MAX(1,TICKS_TO_USEC(BX_PIT_THIS s.timer.get_next_event_time())), 0); BX_DEBUG(("activated timer.")); } BX_PIT_THIS s.last_next_event_time = BX_PIT_THIS s.timer.get_next_event_time(); BX_PIT_THIS s.last_usec=bx_pc_system.time_usec(); BX_PIT_THIS s.total_ticks=0; #if BX_USE_REALTIME_PIT BX_PIT_THIS s.usec_per_second=USEC_PER_SECOND; BX_PIT_THIS s.ticks_per_second=TICKS_PER_SECOND; BX_PIT_THIS s.total_sec=0; BX_PIT_THIS s.last_time=(time(NULL)*TIME_MULTIPLIER/TIME_DIVIDER)+TIME_HEADSTART; #else BX_PIT_THIS s.total_usec=0; #endif BX_DEBUG(("pit: finished init")); BX_DEBUG(("s.last_usec=%d",BX_PIT_THIS s.last_usec)); BX_DEBUG(("s.timer_id=%d",BX_PIT_THIS s.timer_handle[0])); BX_DEBUG(("s.timer.get_next_event_time=%d",BX_PIT_THIS s.timer.get_next_event_time())); BX_DEBUG(("s.last_next_event_time=%d",BX_PIT_THIS s.last_next_event_time)); return(1); } void bx_pit_c::timer_handler(void *this_ptr) { bx_pit_c * class_ptr = (bx_pit_c *) this_ptr; class_ptr->handle_timer(); } void bx_pit_c::handle_timer() { Bit64u time_passed = bx_pc_system.time_usec()-BX_PIT_THIS s.last_usec; Bit32u time_passed32 = time_passed; BX_DEBUG(("pit: entering timer handler")); if(time_passed32) { periodic(time_passed32); } BX_PIT_THIS s.last_usec=BX_PIT_THIS s.last_usec + time_passed; if(time_passed || (BX_PIT_THIS s.last_next_event_time != BX_PIT_THIS s.timer.get_next_event_time()) ) { BX_DEBUG(("pit: RESETting timer.")); bx_pc_system.deactivate_timer(BX_PIT_THIS s.timer_handle[0]); BX_DEBUG(("deactivated timer.")); if(BX_PIT_THIS s.timer.get_next_event_time()) { bx_pc_system.activate_timer(BX_PIT_THIS s.timer_handle[0], MAX(1,TICKS_TO_USEC(BX_PIT_THIS s.timer.get_next_event_time())), 0); BX_DEBUG(("activated timer.")); } BX_PIT_THIS s.last_next_event_time = BX_PIT_THIS s.timer.get_next_event_time(); } BX_DEBUG(("s.last_usec=%d",BX_PIT_THIS s.last_usec)); BX_DEBUG(("s.timer_id=%d",BX_PIT_THIS s.timer_handle[0])); BX_DEBUG(("s.timer.get_next_event_time=%x",BX_PIT_THIS s.timer.get_next_event_time())); BX_DEBUG(("s.last_next_event_time=%d",BX_PIT_THIS s.last_next_event_time)); } // static IO port read callback handler // redirects to non-static class handler to avoid virtual functions Bit32u bx_pit_c::read_handler(void *this_ptr, Bit32u address, unsigned io_len) { #if !BX_USE_PIT_SMF bx_pit_c *class_ptr = (bx_pit_c *) this_ptr; return( class_ptr->read(address, io_len) ); } Bit32u bx_pit_c::read( Bit32u address, unsigned int io_len ) { #else UNUSED(this_ptr); #endif // !BX_USE_PIT_SMF BX_DEBUG(("pit: entering read handler")); handle_timer(); if (io_len > 1) BX_PANIC(("pit: io read from port %04x, len=%u", (unsigned) address, (unsigned) io_len)); if (bx_dbg.pit) BX_INFO(("pit: io read from port %04x", (unsigned) address)); switch (address) { case 0x40: /* timer 0 - system ticks */ return(BX_PIT_THIS s.timer.read(0)); break; case 0x41: /* timer 1 read */ return(BX_PIT_THIS s.timer.read(1)); break; case 0x42: /* timer 2 read */ return(BX_PIT_THIS s.timer.read(2)); break; case 0x43: /* timer 1 read */ return(BX_PIT_THIS s.timer.read(3)); break; case 0x61: /* AT, port 61h */ BX_PIT_THIS s.refresh_clock_div2 = !BX_PIT_THIS s.refresh_clock_div2; return( (BX_PIT_THIS s.timer.read_OUT(2)<<5) | (BX_PIT_THIS s.refresh_clock_div2<<4) | (BX_PIT_THIS s.speaker_data_on<<1) | (BX_PIT_THIS s.timer.read_GATE(2)?1:0) ); break; default: BX_PANIC(("pit: unsupported io read from port %04x", address)); } return(0); /* keep compiler happy */ } // static IO port write callback handler // redirects to non-static class handler to avoid virtual functions void bx_pit_c::write_handler(void *this_ptr, Bit32u address, Bit32u dvalue, unsigned io_len) { #if !BX_USE_PIT_SMF bx_pit_c *class_ptr = (bx_pit_c *) this_ptr; class_ptr->write(address, dvalue, io_len); } void bx_pit_c::write( Bit32u address, Bit32u dvalue, unsigned int io_len ) { #else UNUSED(this_ptr); #endif // !BX_USE_PIT_SMF Bit8u value; Bit64u time_passed = bx_pc_system.time_usec()-BX_PIT_THIS s.last_usec; Bit32u time_passed32 = time_passed; BX_DEBUG(("pit: entering write handler")); if(time_passed32) { periodic(time_passed32); } BX_PIT_THIS s.last_usec=BX_PIT_THIS s.last_usec + time_passed; value = (Bit8u ) dvalue; if (io_len > 1) BX_PANIC(("pit: io write to port %04x, len=%u", (unsigned) address, (unsigned) io_len)); if (bx_dbg.pit) BX_INFO(("pit: write to port %04x = %02x", (unsigned) address, (unsigned) value)); switch (address) { case 0x40: /* timer 0: write count register */ BX_PIT_THIS s.timer.write(0,value); break; case 0x41: /* timer 1: write count register */ BX_PIT_THIS s.timer.write( 1,value ); break; case 0x42: /* timer 2: write count register */ BX_PIT_THIS s.timer.write( 2,value ); break; case 0x43: /* timer 0-2 mode control */ BX_PIT_THIS s.timer.write( 3,value ); break; case 0x61: BX_PIT_THIS s.speaker_data_on = (value >> 1) & 0x01; /*??? only on AT+ */ BX_PIT_THIS s.timer.set_GATE(2, value & 0x01); #if BX_CPU_LEVEL < 2 /* ??? XT: */ bx_kbd_port61h_write(value); #endif break; default: BX_PANIC(("pit: unsupported io write to port %04x = %02x", (unsigned) address, (unsigned) value)); } if ((BX_PIT_THIS s.timer.read_OUT(0))==1) { bx_pic.raise_irq(0); } else { bx_pic.lower_irq(0); } if(time_passed || (BX_PIT_THIS s.last_next_event_time != BX_PIT_THIS s.timer.get_next_event_time()) ) { BX_DEBUG(("pit: RESETting timer.")); bx_pc_system.deactivate_timer(BX_PIT_THIS s.timer_handle[0]); BX_DEBUG(("deactivated timer.")); if(BX_PIT_THIS s.timer.get_next_event_time()) { bx_pc_system.activate_timer(BX_PIT_THIS s.timer_handle[0], MAX(1,TICKS_TO_USEC(BX_PIT_THIS s.timer.get_next_event_time())), 0); BX_DEBUG(("activated timer.")); } BX_PIT_THIS s.last_next_event_time = BX_PIT_THIS s.timer.get_next_event_time(); } BX_DEBUG(("s.last_usec=%d",BX_PIT_THIS s.last_usec)); BX_DEBUG(("s.timer_id=%d",BX_PIT_THIS s.timer_handle[0])); BX_DEBUG(("s.timer.get_next_event_time=%x",BX_PIT_THIS s.timer.get_next_event_time())); BX_DEBUG(("s.last_next_event_time=%d",BX_PIT_THIS s.last_next_event_time)); } int bx_pit_c::SaveState( class state_file *fd ) { fd->write_check ("8254 start"); fd->write (&BX_PIT_THIS s, sizeof (BX_PIT_THIS s)); fd->write_check ("8254 end"); return(0); } int bx_pit_c::LoadState( class state_file *fd ) { fd->read_check ("8254 start"); fd->read (&BX_PIT_THIS s, sizeof (BX_PIT_THIS s)); fd->read_check ("8254 end"); return(0); } #if 0 void bx_kbd_port61h_write(Bit8u value) { // PcError("KBD_PORT61H_WRITE(): not implemented yet"); UNUSED( value ); } #endif Boolean bx_pit_c::periodic( Bit32u usec_delta ) { Boolean prev_timer0_out = BX_PIT_THIS s.timer.read_OUT(0); Boolean want_interrupt = 0; Bit32u ticks_delta = 0; #if BX_USE_REALTIME_PIT ticks_delta=(Bit32u)(USEC_TO_TICKS(usec_delta)); BX_PIT_THIS s.total_ticks += ticks_delta; second_update_data(); #else BX_PIT_THIS s.total_usec += usec_delta; ticks_delta=(Bit32u)((USEC_TO_TICKS((Bit64u)(BX_PIT_THIS s.total_usec)))-BX_PIT_THIS s.total_ticks); BX_PIT_THIS s.total_ticks += ticks_delta; while ((BX_PIT_THIS s.total_ticks >= 1193181) && (BX_PIT_THIS s.total_usec >= 1000000)) { BX_PIT_THIS s.total_ticks -= 1193181; BX_PIT_THIS s.total_usec -= 1000000; } #endif while(ticks_delta>0) { Bit32u maxchange=BX_PIT_THIS s.timer.get_next_event_time(); Bit32u timedelta=maxchange; if((maxchange==0) || (maxchange>ticks_delta)) { timedelta=ticks_delta; } BX_PIT_THIS s.timer.clock_all(timedelta); if ( (prev_timer0_out==0) ) { if ((BX_PIT_THIS s.timer.read_OUT(0))==1) { bx_pic.raise_irq(0); prev_timer0_out=1; } } else { if ((BX_PIT_THIS s.timer.read_OUT(0))==0) { bx_pic.lower_irq(0); prev_timer0_out=0; } } prev_timer0_out=BX_PIT_THIS s.timer.read_OUT(0); ticks_delta-=timedelta; } return(want_interrupt); } #if BX_USE_REALTIME_PIT void bx_pit_c::second_update_data(void) { Bit64u timediff=(time(NULL)*TIME_MULTIPLIER/TIME_DIVIDER)-BX_PIT_THIS s.last_time; BX_PIT_THIS s.last_time += timediff; if(timediff) { Bit64s tickstemp; BX_PIT_THIS s.total_sec += timediff; if(timediff==1) printf("1\n"); printf("timediff: %lld, total_sec: %lld, total_ticks: %lld\n",timediff, BX_PIT_THIS s.total_sec, BX_PIT_THIS s.total_ticks); tickstemp = (((BX_PIT_THIS s.total_sec)*TICKS_PER_SECOND)-BX_PIT_THIS s.total_ticks) + TICKS_PER_SECOND; // while((BX_PIT_THIS s.total_sec >= 0) && (BX_PIT_THIS s.total_ticks >= TICKS_PER_SECOND)) { // BX_PIT_THIS s.total_sec -= 1; // BX_PIT_THIS s.total_ticks -= TICKS_PER_SECOND; // } if(tickstemp > (TICKS_PER_SECOND*1.5)) { printf("Running WAY too slow. tps:%lld\n",tickstemp); tickstemp = TICKS_PER_SECOND*1.5; printf("..................... tps:%lld\n",tickstemp); } else if(tickstemp < (TICKS_PER_SECOND*0.5)) { printf("Running WAY too fast. tps:%lld\n",tickstemp); tickstemp = TICKS_PER_SECOND*0.5; printf("..................... tps:%lld\n",tickstemp); } BX_PIT_THIS s.ticks_per_second = tickstemp; BX_PIT_THIS s.usec_per_second = ((bx_pc_system.time_usec()-BX_PIT_THIS s.last_sec_usec)/timediff)*USEC_ALPHA_B + USEC_ALPHA*BX_PIT_THIS s.usec_per_second; BX_PIT_THIS s.last_sec_usec = bx_pc_system.time_usec(); printf("Parms: ticks_per_second=%lld, usec_per_second=%lld\n",BX_PIT_THIS s.ticks_per_second, BX_PIT_THIS s.usec_per_second); } } #endif // #if BX_USE_REALTIME_PIT #endif // #if BX_USE_NEW_PIT