///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001-2017 The Bochs Project // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR #include "decoder/ia_opcodes.h" BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::SHLD_EwGwM(bxInstruction_c *i) { Bit32u temp_32, result_32; unsigned count; unsigned of, cf; /* op1:op2 << count. result stored in op1 */ if (i->getIaOpcode() == BX_IA_SHLD_EwGw) count = CL; else // BX_IA_SHLD_EwGwIb count = i->Ib(); count &= 0x1f; // use only 5 LSB's bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); Bit32u op1_16 = (Bit32u) read_RMW_virtual_word(i->seg(), eaddr); if (count) { Bit32u op2_16 = (Bit32u) BX_READ_16BIT_REG(i->src()); /* count < 32, since only lower 5 bits used */ temp_32 = (op1_16 << 16) | (op2_16); // double formed by op1:op2 result_32 = temp_32 << count; // hack to act like x86 SHLD when count > 16 if (count > 16) { // for Pentium processor, when count > 16, actually shifting op1:op2:op2 << count, // it is the same as shifting op2:op2 by count-16 // For P6 and later (CPU_LEVEL >= 6), when count > 16, actually shifting op1:op2:op1 << count, // which is the same as shifting op2:op1 by count-16 // The behavior is undefined so both ways are correct, we prefer P6 way of implementation result_32 |= (op1_16 << (count - 16)); } Bit16u result_16 = (Bit16u)(result_32 >> 16); write_RMW_linear_word(result_16); SET_FLAGS_OSZAPC_LOGIC_16(result_16); cf = (temp_32 >> (32 - count)) & 0x1; of = cf ^ (result_16 >> 15); // of = cf ^ result15 BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::SHLD_EwGwR(bxInstruction_c *i) { Bit32u temp_32, result_32; unsigned count; unsigned of, cf; /* op1:op2 << count. result stored in op1 */ if (i->getIaOpcode() == BX_IA_SHLD_EwGw) count = CL; else // BX_IA_SHLD_EwGwIb count = i->Ib(); count &= 0x1f; // use only 5 LSB's if (count) { Bit32u op1_16 = (Bit32u) BX_READ_16BIT_REG(i->dst()); Bit32u op2_16 = (Bit32u) BX_READ_16BIT_REG(i->src()); /* count < 32, since only lower 5 bits used */ temp_32 = (op1_16 << 16) | (op2_16); // double formed by op1:op2 result_32 = temp_32 << count; // hack to act like x86 SHLD when count > 16 if (count > 16) { // for Pentium processor, when count > 16, actually shifting op1:op2:op2 << count, // it is the same as shifting op2:op2 by count-16 // For P6 and later (CPU_LEVEL >= 6), when count > 16, actually shifting op1:op2:op1 << count, // which is the same as shifting op2:op1 by count-16 // The behavior is undefined so both ways are correct, we prefer P6 way of implementation result_32 |= (op1_16 << (count - 16)); } Bit16u result_16 = (Bit16u)(result_32 >> 16); BX_WRITE_16BIT_REG(i->dst(), result_16); SET_FLAGS_OSZAPC_LOGIC_16(result_16); cf = (temp_32 >> (32 - count)) & 0x1; of = cf ^ (result_16 >> 15); // of = cf ^ result15 BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::SHRD_EwGwM(bxInstruction_c *i) { Bit32u temp_32, result_32; unsigned count; unsigned cf, of; if (i->getIaOpcode() == BX_IA_SHRD_EwGw) count = CL; else // BX_IA_SHRD_EwGwIb count = i->Ib(); count &= 0x1f; /* use only 5 LSB's */ bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); Bit32u op1_16 = (Bit32u) read_RMW_virtual_word(i->seg(), eaddr); if (count) { Bit32u op2_16 = (Bit32u) BX_READ_16BIT_REG(i->src()); /* count < 32, since only lower 5 bits used */ temp_32 = (op2_16 << 16) | op1_16; // double formed by op2:op1 result_32 = temp_32 >> count; // hack to act like x86 SHRD when count > 16 if (count > 16) { // for Pentium processor, when count > 16, actually shifting op2:op2:op1 >> count, // it is the same as shifting op2:op2 by count-16 // For P6 and later (CPU_LEVEL >= 6), when count > 16, actually shifting op1:op2:op1 >> count, // which is the same as shifting op1:op2 by count-16 // The behavior is undefined so both ways are correct, we prefer P6 way of implementation result_32 |= (op1_16 << (32 - count)); } Bit16u result_16 = (Bit16u) result_32; write_RMW_linear_word(result_16); SET_FLAGS_OSZAPC_LOGIC_16(result_16); cf = (op1_16 >> (count - 1)) & 0x1; of = ((Bit16u)((result_16 << 1) ^ result_16) >> 15) & 0x1; // of = result14 ^ result15 if (count > 16) cf = (op2_16 >> (count - 17)) & 0x1; // undefined flags behavior matching real HW BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::SHRD_EwGwR(bxInstruction_c *i) { Bit32u temp_32, result_32; unsigned count; unsigned cf, of; if (i->getIaOpcode() == BX_IA_SHRD_EwGw) count = CL; else // BX_IA_SHRD_EwGwIb count = i->Ib(); count &= 0x1f; /* use only 5 LSB's */ if (count) { Bit32u op1_16 = (Bit32u) BX_READ_16BIT_REG(i->dst()); Bit32u op2_16 = (Bit32u) BX_READ_16BIT_REG(i->src()); /* count < 32, since only lower 5 bits used */ temp_32 = (op2_16 << 16) | op1_16; // double formed by op2:op1 result_32 = temp_32 >> count; // hack to act like x86 SHRD when count > 16 if (count > 16) { // for Pentium processor, when count > 16, actually shifting op2:op2:op1 >> count, // it is the same as shifting op2:op2 by count-16 // For P6 and later (CPU_LEVEL >= 6), when count > 16, actually shifting op1:op2:op1 >> count, // which is the same as shifting op1:op2 by count-16 // The behavior is undefined so both ways are correct, we prefer P6 way of implementation result_32 |= (op1_16 << (32 - count)); } Bit16u result_16 = (Bit16u) result_32; BX_WRITE_16BIT_REG(i->dst(), result_16); SET_FLAGS_OSZAPC_LOGIC_16(result_16); cf = (op1_16 >> (count - 1)) & 0x1; of = ((Bit16u)((result_16 << 1) ^ result_16) >> 15) & 0x1; // of = result14 ^ result15 if (count > 16) cf = (op2_16 >> (count - 17)) & 0x1; // undefined flags behavior matching real HW BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::ROL_EwM(bxInstruction_c *i) { unsigned count; unsigned bit0, bit15; if (i->getIaOpcode() == BX_IA_ROL_Ew) count = CL; else count = i->Ib(); bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); /* pointer, segment address pair */ Bit16u op1_16 = read_RMW_virtual_word(i->seg(), eaddr); if ((count & 0x0f) == 0) { if (count & 0x10) { bit0 = (op1_16 & 0x1); bit15 = (op1_16 >> 15); // of = cf ^ result15 BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(bit0 ^ bit15, bit0); } } else { count &= 0x0f; // only use bottom 4 bits Bit16u result_16 = (op1_16 << count) | (op1_16 >> (16 - count)); write_RMW_linear_word(result_16); bit0 = (result_16 & 0x1); bit15 = (result_16 >> 15); // of = cf ^ result15 BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(bit0 ^ bit15, bit0); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::ROL_EwR(bxInstruction_c *i) { unsigned count; unsigned bit0, bit15; if (i->getIaOpcode() == BX_IA_ROL_Ew) count = CL; else count = i->Ib(); Bit16u op1_16 = BX_READ_16BIT_REG(i->dst()); if ((count & 0x0f) == 0) { if (count & 0x10) { bit0 = (op1_16 & 0x1); bit15 = (op1_16 >> 15); // of = cf ^ result15 BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(bit0 ^ bit15, bit0); } } else { count &= 0x0f; // only use bottom 4 bits Bit16u result_16 = (op1_16 << count) | (op1_16 >> (16 - count)); BX_WRITE_16BIT_REG(i->dst(), result_16); bit0 = (result_16 & 0x1); bit15 = (result_16 >> 15); // of = cf ^ result15 BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(bit0 ^ bit15, bit0); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::ROR_EwM(bxInstruction_c *i) { unsigned count; unsigned bit14, bit15; if (i->getIaOpcode() == BX_IA_ROR_Ew) count = CL; else count = i->Ib(); bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); /* pointer, segment address pair */ Bit16u op1_16 = read_RMW_virtual_word(i->seg(), eaddr); if ((count & 0x0f) == 0) { if (count & 0x10) { bit14 = (op1_16 >> 14) & 1; bit15 = (op1_16 >> 15) & 1; // of = result14 ^ result15 BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(bit14 ^ bit15, bit15); } } else { count &= 0x0f; // use only 4 LSB's Bit16u result_16 = (op1_16 >> count) | (op1_16 << (16 - count)); write_RMW_linear_word(result_16); bit14 = (result_16 >> 14) & 1; bit15 = (result_16 >> 15) & 1; // of = result14 ^ result15 BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(bit14 ^ bit15, bit15); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::ROR_EwR(bxInstruction_c *i) { unsigned count; unsigned bit14, bit15; if (i->getIaOpcode() == BX_IA_ROR_Ew) count = CL; else count = i->Ib(); Bit16u op1_16 = BX_READ_16BIT_REG(i->dst()); if ((count & 0x0f) == 0) { if (count & 0x10) { bit14 = (op1_16 >> 14) & 1; bit15 = (op1_16 >> 15) & 1; // of = result14 ^ result15 BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(bit14 ^ bit15, bit15); } } else { count &= 0x0f; // use only 4 LSB's Bit16u result_16 = (op1_16 >> count) | (op1_16 << (16 - count)); BX_WRITE_16BIT_REG(i->dst(), result_16); bit14 = (result_16 >> 14) & 1; bit15 = (result_16 >> 15) & 1; // of = result14 ^ result15 BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(bit14 ^ bit15, bit15); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::RCL_EwM(bxInstruction_c *i) { Bit16u result_16; unsigned count; unsigned of, cf; if (i->getIaOpcode() == BX_IA_RCL_Ew) count = CL; else count = i->Ib(); count = (count & 0x1f) % 17; bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); /* pointer, segment address pair */ Bit16u op1_16 = read_RMW_virtual_word(i->seg(), eaddr); unsigned temp_CF = getB_CF(); if (count) { if (count==1) { result_16 = (op1_16 << 1) | temp_CF; } else if (count==16) { result_16 = (temp_CF << 15) | (op1_16 >> 1); } else { // 2..15 result_16 = (op1_16 << count) | (temp_CF << (count - 1)) | (op1_16 >> (17 - count)); } write_RMW_linear_word(result_16); cf = (op1_16 >> (16 - count)) & 0x1; of = cf ^ (result_16 >> 15); // of = cf ^ result15 BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::RCL_EwR(bxInstruction_c *i) { Bit16u result_16; unsigned count; unsigned of, cf; if (i->getIaOpcode() == BX_IA_RCL_Ew) count = CL; else count = i->Ib(); count = (count & 0x1f) % 17; unsigned temp_CF = getB_CF(); if (count) { Bit16u op1_16 = BX_READ_16BIT_REG(i->dst()); if (count==1) { result_16 = (op1_16 << 1) | temp_CF; } else if (count==16) { result_16 = (temp_CF << 15) | (op1_16 >> 1); } else { // 2..15 result_16 = (op1_16 << count) | (temp_CF << (count - 1)) | (op1_16 >> (17 - count)); } BX_WRITE_16BIT_REG(i->dst(), result_16); cf = (op1_16 >> (16 - count)) & 0x1; of = cf ^ (result_16 >> 15); // of = cf ^ result15 BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::RCR_EwM(bxInstruction_c *i) { unsigned count; unsigned of, cf; if (i->getIaOpcode() == BX_IA_RCR_Ew) count = CL; else count = i->Ib(); count = (count & 0x1f) % 17; bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); /* pointer, segment address pair */ Bit16u op1_16 = read_RMW_virtual_word(i->seg(), eaddr); if (count) { unsigned temp_CF = getB_CF(); Bit16u result_16 = (op1_16 >> count) | (temp_CF << (16 - count)) | (op1_16 << (17 - count)); write_RMW_linear_word(result_16); cf = (op1_16 >> (count - 1)) & 0x1; of = ((Bit16u)((result_16 << 1) ^ result_16) >> 15) & 0x1; // of = result15 ^ result14 BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::RCR_EwR(bxInstruction_c *i) { unsigned count; unsigned of, cf; if (i->getIaOpcode() == BX_IA_RCR_Ew) count = CL; else count = i->Ib(); count = (count & 0x1f) % 17; if (count) { Bit16u op1_16 = BX_READ_16BIT_REG(i->dst()); unsigned temp_CF = getB_CF(); Bit16u result_16 = (op1_16 >> count) | (temp_CF << (16 - count)) | (op1_16 << (17 - count)); BX_WRITE_16BIT_REG(i->dst(), result_16); cf = (op1_16 >> (count - 1)) & 0x1; of = ((Bit16u)((result_16 << 1) ^ result_16) >> 15) & 0x1; // of = result15 ^ result14 BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::SHL_EwM(bxInstruction_c *i) { Bit16u result_16; unsigned count; unsigned of = 0, cf = 0; if (i->getIaOpcode() == BX_IA_SHL_Ew) count = CL; else count = i->Ib(); count &= 0x1f; /* use only 5 LSB's */ bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); /* pointer, segment address pair */ Bit16u op1_16 = read_RMW_virtual_word(i->seg(), eaddr); if (count) { if (count <= 16) { result_16 = (op1_16 << count); cf = (op1_16 >> (16 - count)) & 0x1; of = cf ^ (result_16 >> 15); // of = cf ^ result15 } else { result_16 = 0; } write_RMW_linear_word(result_16); SET_FLAGS_OSZAPC_LOGIC_16(result_16); BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::SHL_EwR(bxInstruction_c *i) { Bit16u result_16; unsigned count; unsigned of = 0, cf = 0; if (i->getIaOpcode() == BX_IA_SHL_Ew) count = CL; else count = i->Ib(); count &= 0x1f; /* use only 5 LSB's */ if (count) { Bit16u op1_16 = BX_READ_16BIT_REG(i->dst()); if (count <= 16) { result_16 = (op1_16 << count); cf = (op1_16 >> (16 - count)) & 0x1; of = cf ^ (result_16 >> 15); // of = cf ^ result15 } else { result_16 = 0; } BX_WRITE_16BIT_REG(i->dst(), result_16); SET_FLAGS_OSZAPC_LOGIC_16(result_16); BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::SHR_EwM(bxInstruction_c *i) { unsigned count; unsigned of, cf; if (i->getIaOpcode() == BX_IA_SHR_Ew) count = CL; else count = i->Ib(); count &= 0x1f; /* use only 5 LSB's */ bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); /* pointer, segment address pair */ Bit16u op1_16 = read_RMW_virtual_word(i->seg(), eaddr); if (count) { Bit16u result_16 = (op1_16 >> count); write_RMW_linear_word(result_16); cf = (op1_16 >> (count - 1)) & 0x1; // note, that of == result15 if count == 1 and // of == 0 if count >= 2 of = ((Bit16u)((result_16 << 1) ^ result_16) >> 15) & 0x1; SET_FLAGS_OSZAPC_LOGIC_16(result_16); BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::SHR_EwR(bxInstruction_c *i) { unsigned count; unsigned of, cf; if (i->getIaOpcode() == BX_IA_SHR_Ew) count = CL; else count = i->Ib(); count &= 0x1f; /* use only 5 LSB's */ if (count) { Bit16u op1_16 = BX_READ_16BIT_REG(i->dst()); Bit16u result_16 = (op1_16 >> count); BX_WRITE_16BIT_REG(i->dst(), result_16); cf = (op1_16 >> (count - 1)) & 0x1; // note, that of == result15 if count == 1 and // of == 0 if count >= 2 of = ((Bit16u)((result_16 << 1) ^ result_16) >> 15) & 0x1; SET_FLAGS_OSZAPC_LOGIC_16(result_16); BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(of, cf); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::SAR_EwM(bxInstruction_c *i) { unsigned count, cf; if (i->getIaOpcode() == BX_IA_SAR_Ew) count = CL; else count = i->Ib(); count &= 0x1f; /* use only 5 LSB's */ bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); Bit16u op1_16 = read_RMW_virtual_word(i->seg(), eaddr); if (count) { Bit16u result_16 = ((Bit16s) op1_16) >> count; cf = (((Bit16s) op1_16) >> (count - 1)) & 0x1; SET_FLAGS_OSZAPC_LOGIC_16(result_16); /* signed overflow cannot happen in SAR instruction */ BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(0, cf); write_RMW_linear_word(result_16); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::SAR_EwR(bxInstruction_c *i) { unsigned count, cf; if (i->getIaOpcode() == BX_IA_SAR_Ew) count = CL; else count = i->Ib(); count &= 0x1f; /* use only 5 LSB's */ if (count) { Bit16u op1_16 = BX_READ_16BIT_REG(i->dst()); Bit16u result_16 = ((Bit16s) op1_16) >> count; BX_WRITE_16BIT_REG(i->dst(), result_16); cf = (((Bit16s) op1_16) >> (count - 1)) & 0x1; SET_FLAGS_OSZAPC_LOGIC_16(result_16); /* signed overflow cannot happen in SAR instruction */ BX_CPU_THIS_PTR oszapc.set_flags_OxxxxC(0, cf); } BX_NEXT_INSTR(i); }