///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001-2009 The Bochs Project // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR // This array defines a look-up table for the even parity-ness // of an 8bit quantity, for optimal assignment of the parity bit // in the EFLAGS register const Bit8u bx_parity_lookup[256] = { 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 }; #define op1_8 ((Bit8u)(BX_CPU_THIS_PTR oszapc.op1)) #define op2_8 ((Bit8u)(BX_CPU_THIS_PTR oszapc.op2)) #define result_8 ((Bit8u)(BX_CPU_THIS_PTR oszapc.result)) #define op1_16 ((Bit16u)(BX_CPU_THIS_PTR oszapc.op1)) #define op2_16 ((Bit16u)(BX_CPU_THIS_PTR oszapc.op2)) #define result_16 ((Bit16u)(BX_CPU_THIS_PTR oszapc.result)) #define op1_32 ((Bit32u)(BX_CPU_THIS_PTR oszapc.op1)) #define op2_32 ((Bit32u)(BX_CPU_THIS_PTR oszapc.op2)) #define result_32 ((Bit32u)(BX_CPU_THIS_PTR oszapc.result)) #if BX_SUPPORT_X86_64 #define op1_64 ((Bit64u)(BX_CPU_THIS_PTR oszapc.op1)) #define op2_64 ((Bit64u)(BX_CPU_THIS_PTR oszapc.op2)) #define result_64 ((Bit64u)(BX_CPU_THIS_PTR oszapc.result)) #endif bx_bool BX_CPU_C::get_CFLazy(void) { unsigned cf; switch (BX_CPU_THIS_PTR oszapc.instr) { case BX_LF_INSTR_ADD8: case BX_LF_INSTR_ADD16: case BX_LF_INSTR_ADD32: cf = (result_32 < op1_32); break; #if BX_SUPPORT_X86_64 case BX_LF_INSTR_ADD64: cf = (result_64 < op1_64); break; #endif // used only if CF = 1 when executing ADC instruction case BX_LF_INSTR_ADC8: case BX_LF_INSTR_ADC16: case BX_LF_INSTR_ADC32: cf = (result_32 <= op1_32); break; #if BX_SUPPORT_X86_64 // used only if CF = 1 when executing ADC instruction case BX_LF_INSTR_ADC64: cf = (result_64 <= op1_64); break; #endif case BX_LF_INSTR_SUB8: case BX_LF_INSTR_SUB16: case BX_LF_INSTR_SUB32: cf = (op1_32 < op2_32); break; #if BX_SUPPORT_X86_64 case BX_LF_INSTR_SUB64: cf = (op1_64 < op2_64); break; #endif // used only if CF = 1 when executing SBB instruction case BX_LF_INSTR_SBB8: cf = (op1_8 < result_8) || (op2_8==0xff); break; // used only if CF = 1 when executing SBB instruction case BX_LF_INSTR_SBB16: cf = (op1_16 < result_16) || (op2_16==0xffff); break; // used only if CF = 1 when executing SBB instruction case BX_LF_INSTR_SBB32: cf = (op1_32 < result_32) || (op2_32==0xffffffff); break; #if BX_SUPPORT_X86_64 // used only if CF = 1 when executing SBB instruction case BX_LF_INSTR_SBB64: cf = (op1_64 < result_64) || (op2_64==BX_CONST64(0xffffffffffffffff)); break; #endif case BX_LF_INSTR_NEG8: case BX_LF_INSTR_NEG16: case BX_LF_INSTR_NEG32: cf = (result_32 != 0); break; #if BX_SUPPORT_X86_64 case BX_LF_INSTR_NEG64: cf = (result_64 != 0); break; #endif case BX_LF_INSTR_LOGIC8: case BX_LF_INSTR_LOGIC16: case BX_LF_INSTR_LOGIC32: #if BX_SUPPORT_X86_64 case BX_LF_INSTR_LOGIC64: #endif cf = 0; break; default: cf = 0; // Keep compiler quiet. BX_PANIC(("get_CF: OSZAPC: unknown instr %u", (unsigned) BX_CPU_THIS_PTR oszapc.instr)); } return(cf); } bx_bool BX_CPU_C::get_AFLazy(void) { unsigned af; switch (BX_CPU_THIS_PTR oszapc.instr) { case BX_LF_INSTR_ADD8: case BX_LF_INSTR_ADC8: case BX_LF_INSTR_SUB8: case BX_LF_INSTR_SBB8: case BX_LF_INSTR_ADD16: case BX_LF_INSTR_ADC16: case BX_LF_INSTR_SUB16: case BX_LF_INSTR_SBB16: case BX_LF_INSTR_ADD32: case BX_LF_INSTR_ADC32: case BX_LF_INSTR_SUB32: case BX_LF_INSTR_SBB32: #if BX_SUPPORT_X86_64 case BX_LF_INSTR_ADD64: case BX_LF_INSTR_ADC64: case BX_LF_INSTR_SUB64: case BX_LF_INSTR_SBB64: #endif af = ((op1_8 ^ op2_8) ^ result_8) & 0x10; break; case BX_LF_INSTR_NEG8: case BX_LF_INSTR_NEG16: case BX_LF_INSTR_NEG32: #if BX_SUPPORT_X86_64 case BX_LF_INSTR_NEG64: #endif af = (result_8 & 0xf) != 0; break; case BX_LF_INSTR_INC8: case BX_LF_INSTR_INC16: case BX_LF_INSTR_INC32: #if BX_SUPPORT_X86_64 case BX_LF_INSTR_INC64: #endif af = (result_8 & 0xf) == 0; break; case BX_LF_INSTR_DEC8: case BX_LF_INSTR_DEC16: case BX_LF_INSTR_DEC32: #if BX_SUPPORT_X86_64 case BX_LF_INSTR_DEC64: #endif af = (result_8 & 0xf) == 0xf; break; case BX_LF_INSTR_LOGIC8: case BX_LF_INSTR_LOGIC16: case BX_LF_INSTR_LOGIC32: #if BX_SUPPORT_X86_64 case BX_LF_INSTR_LOGIC64: #endif af = 0; break; default: af = 0; // Keep compiler quiet. BX_PANIC(("get_AF: OSZAPC: unknown instr %u", (unsigned) BX_CPU_THIS_PTR oszapc.instr)); } return(af); } #define GET_ADD_OVERFLOW(op1, op2, result, mask) \ (((((op1) ^ (result)) & ((op2) ^ (result))) & (mask)) != 0) #define GET_SUB_OVERFLOW(op1, op2, result, mask) \ (((((op1) ^ (op2)) & ((op1) ^ (result))) & (mask)) != 0) bx_bool BX_CPU_C::get_OFLazy(void) { unsigned of; switch (BX_CPU_THIS_PTR oszapc.instr) { case BX_LF_INSTR_ADD8: case BX_LF_INSTR_ADC8: case BX_LF_INSTR_ADD16: case BX_LF_INSTR_ADC16: case BX_LF_INSTR_ADD32: case BX_LF_INSTR_ADC32: of = GET_ADD_OVERFLOW(op1_32, op2_32, result_32, 0x80000000); break; #if BX_SUPPORT_X86_64 case BX_LF_INSTR_ADD64: case BX_LF_INSTR_ADC64: of = GET_ADD_OVERFLOW(op1_64, op2_64, result_64, BX_CONST64(0x8000000000000000)); break; #endif case BX_LF_INSTR_SUB8: case BX_LF_INSTR_SBB8: case BX_LF_INSTR_SUB16: case BX_LF_INSTR_SBB16: case BX_LF_INSTR_SUB32: case BX_LF_INSTR_SBB32: of = GET_SUB_OVERFLOW(op1_32, op2_32, result_32, 0x80000000); break; #if BX_SUPPORT_X86_64 case BX_LF_INSTR_SUB64: case BX_LF_INSTR_SBB64: of = GET_SUB_OVERFLOW(op1_64, op2_64, result_64, BX_CONST64(0x8000000000000000)); break; #endif case BX_LF_INSTR_LOGIC8: case BX_LF_INSTR_LOGIC16: case BX_LF_INSTR_LOGIC32: #if BX_SUPPORT_X86_64 case BX_LF_INSTR_LOGIC64: #endif of = 0; break; case BX_LF_INSTR_NEG8: case BX_LF_INSTR_INC8: of = (result_8 == 0x80); break; case BX_LF_INSTR_NEG16: case BX_LF_INSTR_INC16: of = (result_16 == 0x8000); break; case BX_LF_INSTR_NEG32: case BX_LF_INSTR_INC32: of = (result_32 == 0x80000000); break; #if BX_SUPPORT_X86_64 case BX_LF_INSTR_NEG64: case BX_LF_INSTR_INC64: of = (result_64 == BX_CONST64(0x8000000000000000)); break; #endif case BX_LF_INSTR_DEC8: of = (result_8 == 0x7F); break; case BX_LF_INSTR_DEC16: of = (result_16 == 0x7FFF); break; case BX_LF_INSTR_DEC32: of = (result_32 == 0x7FFFFFFF); break; #if BX_SUPPORT_X86_64 case BX_LF_INSTR_DEC64: of = (result_64 == BX_CONST64(0x7FFFFFFFFFFFFFFF)); break; #endif default: of = 0; // Keep compiler happy. BX_PANIC(("get_OF: OSZAPC: unknown instr")); } return(of); }