///////////////////////////////////////////////////////////////////////// // $Id: string.cc,v 1.20 2002-10-16 22:10:06 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #define LOG_THIS BX_CPU_THIS_PTR #if BX_SUPPORT_X86_64==0 #define RSI ESI #define RDI EDI #define RAX EAX #endif #if BX_SUPPORT_X86_64 #define IsLongMode() (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) #else #define IsLongMode() (0) #endif /* MOVSB ES:[EDI], DS:[ESI] DS may be overridden * mov string from DS:[ESI] into ES:[EDI] */ void BX_CPU_C::MOVSB_XbYb(bxInstruction_c *i) { unsigned seg; Bit8u temp8; if (!BX_NULL_SEG_REG(i->seg())) { seg = i->seg(); } else { seg = BX_SEG_REG_DS; } #if BX_CPU_LEVEL >= 3 #if BX_SUPPORT_X86_64 if (i->as64L()) { Bit64u rsi, rdi; rsi = RSI; rdi = RDI; read_virtual_byte(seg, rsi, &temp8); write_virtual_byte(BX_SEG_REG_ES, rdi, &temp8); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement RSI, RDI */ rsi--; rdi--; } else { /* increment RSI, RDI */ rsi++; rdi++; } RSI = rsi; RDI = rdi; } else #endif // #if BX_SUPPORT_X86_64 if (i->as32L()) { Bit32u esi, edi; esi = ESI; edi = EDI; read_virtual_byte(seg, esi, &temp8); write_virtual_byte(BX_SEG_REG_ES, edi, &temp8); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI, EDI */ esi--; edi--; } else { /* increment ESI, EDI */ esi++; edi++; } // zero extension of RSI/RDI RSI = esi; RDI = edi; } else #endif /* BX_CPU_LEVEL >= 3 */ { /* 16 bit address mode */ unsigned incr; Bit16u si, di; si = SI; di = DI; #if BX_SupportRepeatSpeedups #if (BX_DEBUGGER == 0) /* If conditions are right, we can transfer IO to physical memory * in a batch, rather than one instruction at a time. */ if (i->repUsedL() && !BX_CPU_THIS_PTR async_event) { Bit32u byteCount; #if BX_SUPPORT_X86_64 if (i->as64L()) byteCount = RCX; // Truncated to 32bits. (we're only doing 1 page) else #endif if (i->as32L()) byteCount = ECX; else byteCount = CX; if (byteCount) { Bit32u bytesFitSrc, bytesFitDst; Bit8u *hostAddrSrc, *hostAddrDst; unsigned pointerDelta; bx_segment_reg_t *srcSegPtr, *dstSegPtr; bx_address laddrDst, laddrSrc; Bit32u paddrDst, paddrSrc; srcSegPtr = &BX_CPU_THIS_PTR sregs[seg]; dstSegPtr = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES]; // Do segment checks for the 1st word. We do not want to // trip an exception beyond this, because the address would // be incorrect. After we know how many bytes we will directly // transfer, we can do the full segment limit check ourselves // without generating an exception. read_virtual_checks(srcSegPtr, si, 1); laddrSrc = srcSegPtr->cache.u.segment.base + si; if (BX_CPU_THIS_PTR cr0.pg) { paddrSrc = dtranslate_linear(laddrSrc, CPL==3, BX_READ); } else { paddrSrc = laddrSrc; } // If we want to write directly into the physical memory array, // we need the A20 address. paddrSrc = A20ADDR(paddrSrc); write_virtual_checks(dstSegPtr, di, 1); laddrDst = dstSegPtr->cache.u.segment.base + di; if (BX_CPU_THIS_PTR cr0.pg) { paddrDst = dtranslate_linear(laddrDst, CPL==3, BX_WRITE); } else { paddrDst = laddrDst; } // If we want to write directly into the physical memory array, // we need the A20 address. paddrDst = A20ADDR(paddrDst); hostAddrSrc = BX_CPU_THIS_PTR mem->getHostMemAddr(BX_CPU_THIS, paddrSrc, BX_READ); hostAddrDst = BX_CPU_THIS_PTR mem->getHostMemAddr(BX_CPU_THIS, paddrDst, BX_WRITE); if ( hostAddrSrc && hostAddrDst ) { // See how many bytes can fit in the rest of this page. if (BX_CPU_THIS_PTR get_DF ()) { // Counting downward. bytesFitSrc = 1 + (paddrSrc & 0xfff); bytesFitDst = 1 + (paddrDst & 0xfff); pointerDelta = (unsigned) -1; } else { // Counting upward. bytesFitSrc = (0x1000 - (paddrSrc & 0xfff)); bytesFitDst = (0x1000 - (paddrDst & 0xfff)); pointerDelta = 1; } // Restrict count to the number that will fit in either // source or dest pages. if (byteCount > bytesFitSrc) byteCount = bytesFitSrc; if (byteCount > bytesFitDst) byteCount = bytesFitDst; if (byteCount > bx_pc_system.getNumCpuTicksLeftNextEvent()) byteCount = bx_pc_system.getNumCpuTicksLeftNextEvent(); // If after all the restrictions, there is anything left to do... if (byteCount) { unsigned j; Bit32u srcSegLimit, dstSegLimit; srcSegLimit = srcSegPtr->cache.u.segment.limit_scaled; dstSegLimit = dstSegPtr->cache.u.segment.limit_scaled; // For 16-bit addressing mode, clamp the segment limits to 16bits // so we don't have to worry about computations using si/di // rolling over 16-bit boundaries. if (!i->as32L()) { if (srcSegLimit > 0xffff) srcSegLimit = 0xffff; if (dstSegLimit > 0xffff) dstSegLimit = 0xffff; } // Before we copy memory, we need to make sure that the segments // allow the accesses up to the given source and dest offset. If // the cache.valid bits have SegAccessWOK and ROK, we know that // the cache is valid for those operations, and that the segments // are non expand-down (thus we can make a simple limit check). if ( !(srcSegPtr->cache.valid & SegAccessROK) || !(dstSegPtr->cache.valid & SegAccessWOK) ) { goto noAcceleration16; } if ( !IsLongMode() ) { // Now make sure transfer will fit within the constraints of the // segment boundaries, 0..limit for non expand-down. We know // byteCount >= 1 here. if (BX_CPU_THIS_PTR get_DF ()) { // Counting downward. Bit32u minOffset = (byteCount-1); if ( si < minOffset ) goto noAcceleration16; if ( di < minOffset ) goto noAcceleration16; } else { // Counting upward. Bit32u srcMaxOffset = (srcSegLimit - byteCount) + 1; Bit32u dstMaxOffset = (dstSegLimit - byteCount) + 1; if ( si > srcMaxOffset ) goto noAcceleration16; if ( di > dstMaxOffset ) goto noAcceleration16; } } // Transfer data directly using host addresses. for (j=0; jas64L()) RCX -= (byteCount-1); else #endif if (i->as32L()) ECX -= (byteCount-1); else CX -= (byteCount-1); incr = byteCount; goto doIncr16; } } } } noAcceleration16: #endif // (BX_DEBUGGER == 0) #endif // BX_SupportRepeatSpeedups read_virtual_byte(seg, si, &temp8); write_virtual_byte(BX_SEG_REG_ES, di, &temp8); incr = 1; #if BX_SupportRepeatSpeedups #if (BX_DEBUGGER == 0) doIncr16: #endif // (BX_DEBUGGER == 0) #endif // BX_SupportRepeatSpeedups if (BX_CPU_THIS_PTR get_DF ()) { /* decrement SI, DI */ si -= incr; di -= incr; } else { /* increment SI, DI */ si += incr; di += incr; } SI = si; DI = di; } } void BX_CPU_C::MOVSW_XvYv(bxInstruction_c *i) { unsigned seg; unsigned incr; if (!BX_NULL_SEG_REG(i->seg())) { seg = i->seg(); } else { seg = BX_SEG_REG_DS; } #if BX_CPU_LEVEL >= 3 #if BX_SUPPORT_X86_64 if (i->as64L()) { Bit64u rsi, rdi; rsi = RSI; rdi = RDI; if (i->os64L()) { Bit64u temp64; read_virtual_qword(seg, rsi, &temp64); write_virtual_qword(BX_SEG_REG_ES, rdi, &temp64); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement RSI */ rsi -= 8; rdi -= 8; } else { /* increment ESI */ rsi += 8; rdi += 8; } } /* if (i->os64L()) ... */ else if (i->os32L()) { Bit32u temp32; read_virtual_dword(seg, rsi, &temp32); write_virtual_dword(BX_SEG_REG_ES, rdi, &temp32); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement RSI */ rsi -= 4; rdi -= 4; } else { /* increment ESI */ rsi += 4; rdi += 4; } } /* if (i->os32L()) ... */ else { /* 16 bit opsize mode */ Bit16u temp16; read_virtual_word(seg, rsi, &temp16); write_virtual_word(BX_SEG_REG_ES, rdi, &temp16); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement RSI */ rsi -= 2; rdi -= 2; } else { /* increment RSI */ rsi += 2; rdi += 2; } } RSI = rsi; RDI = rdi; } else #endif // #if BX_SUPPORT_X86_64 if (i->as32L()) { Bit32u esi, edi; esi = ESI; edi = EDI; #if BX_SUPPORT_X86_64 if (i->os64L()) { Bit64u temp64; read_virtual_qword(seg, esi, &temp64); write_virtual_qword(BX_SEG_REG_ES, edi, &temp64); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ esi -= 8; edi -= 8; } else { /* increment ESI */ esi += 8; edi += 8; } } /* if (i->os32L()) ... */ else #endif // #if BX_SUPPORT_X86_64 if (i->os32L()) { Bit32u temp32; #if BX_SupportRepeatSpeedups #if (BX_DEBUGGER == 0) #if (defined(__i386__) && __i386__) /* If conditions are right, we can transfer IO to physical memory * in a batch, rather than one instruction at a time. */ if (i->repUsedL() && !BX_CPU_THIS_PTR async_event) { Bit32u dwordCount; #if BX_SUPPORT_X86_64 if (i->as64L()) dwordCount = RCX; // Truncated to 32bits. (we're only doing 1 page) else #endif if (i->as32L()) dwordCount = ECX; else dwordCount = CX; if (dwordCount) { Bit32u dwordsFitSrc, dwordsFitDst; Bit8u *hostAddrSrc, *hostAddrDst; unsigned pointerDelta; bx_segment_reg_t *srcSegPtr, *dstSegPtr; bx_address laddrDst, laddrSrc; Bit32u paddrDst, paddrSrc; srcSegPtr = &BX_CPU_THIS_PTR sregs[seg]; dstSegPtr = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES]; // Do segment checks for the 1st word. We do not want to // trip an exception beyond this, because the address would // be incorrect. After we know how many bytes we will directly // transfer, we can do the full segment limit check ourselves // without generating an exception. read_virtual_checks(srcSegPtr, esi, 4); laddrSrc = srcSegPtr->cache.u.segment.base + esi; if (BX_CPU_THIS_PTR cr0.pg) { paddrSrc = dtranslate_linear(laddrSrc, CPL==3, BX_READ); } else { paddrSrc = laddrSrc; } // If we want to write directly into the physical memory array, // we need the A20 address. paddrSrc = A20ADDR(paddrSrc); write_virtual_checks(dstSegPtr, edi, 4); laddrDst = dstSegPtr->cache.u.segment.base + edi; if (BX_CPU_THIS_PTR cr0.pg) { paddrDst = dtranslate_linear(laddrDst, CPL==3, BX_WRITE); } else { paddrDst = laddrDst; } // If we want to write directly into the physical memory array, // we need the A20 address. paddrDst = A20ADDR(paddrDst); hostAddrSrc = BX_CPU_THIS_PTR mem->getHostMemAddr(BX_CPU_THIS, paddrSrc, BX_READ); hostAddrDst = BX_CPU_THIS_PTR mem->getHostMemAddr(BX_CPU_THIS, paddrDst, BX_WRITE); if ( hostAddrSrc && hostAddrDst ) { // See how many dwords can fit in the rest of this page. if (BX_CPU_THIS_PTR get_DF ()) { // Counting downward. // Note: 1st dword must not cross page boundary. if ( ((paddrSrc & 0xfff) > 0xffc) || ((paddrDst & 0xfff) > 0xffc) ) goto noAcceleration32; dwordsFitSrc = (4 + (paddrSrc & 0xfff)) >> 2; dwordsFitDst = (4 + (paddrDst & 0xfff)) >> 2; pointerDelta = (unsigned) -4; } else { // Counting upward. dwordsFitSrc = (0x1000 - (paddrSrc & 0xfff)) >> 2; dwordsFitDst = (0x1000 - (paddrDst & 0xfff)) >> 2; pointerDelta = 4; } // Restrict dword count to the number that will fit in either // source or dest pages. if (dwordCount > dwordsFitSrc) dwordCount = dwordsFitSrc; if (dwordCount > dwordsFitDst) dwordCount = dwordsFitDst; if (dwordCount > bx_pc_system.getNumCpuTicksLeftNextEvent()) dwordCount = bx_pc_system.getNumCpuTicksLeftNextEvent(); // If after all the restrictions, there is anything left to do... if (dwordCount) { unsigned j; Bit32u srcSegLimit, dstSegLimit; srcSegLimit = srcSegPtr->cache.u.segment.limit_scaled; dstSegLimit = dstSegPtr->cache.u.segment.limit_scaled; // For 16-bit addressing mode, clamp the segment limits to 16bits // so we don't have to worry about computations using si/di // rolling over 16-bit boundaries. if (!i->as32L()) { if (srcSegLimit > 0xffff) srcSegLimit = 0xffff; if (dstSegLimit > 0xffff) dstSegLimit = 0xffff; } // Before we copy memory, we need to make sure that the segments // allow the accesses up to the given source and dest offset. If // the cache.valid bits have SegAccessWOK and ROK, we know that // the cache is valid for those operations, and that the segments // are non expand-down (thus we can make a simple limit check). if ( !(srcSegPtr->cache.valid & SegAccessROK) || !(dstSegPtr->cache.valid & SegAccessWOK) ) { goto noAcceleration32; } if ( !IsLongMode() ) { // Now make sure transfer will fit within the constraints of the // segment boundaries, 0..limit for non expand-down. We know // dwordCount >= 1 here. if (BX_CPU_THIS_PTR get_DF ()) { // Counting downward. Bit32u minOffset = (dwordCount-1) << 2; if ( esi < minOffset ) goto noAcceleration32; if ( edi < minOffset ) goto noAcceleration32; } else { // Counting upward. Bit32u srcMaxOffset = (srcSegLimit - (dwordCount<<2)) + 1; Bit32u dstMaxOffset = (dstSegLimit - (dwordCount<<2)) + 1; if ( esi > srcMaxOffset ) goto noAcceleration32; if ( edi > dstMaxOffset ) goto noAcceleration32; } } // Transfer data directly using host addresses. for (j=0; jas64L()) RCX -= (dwordCount-1); else #endif if (i->as32L()) ECX -= (dwordCount-1); else CX -= (dwordCount-1); incr = dwordCount << 2; // count * 4. goto doIncr32; } } } } noAcceleration32: #endif // __i386__ #endif // (BX_DEBUGGER == 0) #endif // BX_SupportRepeatSpeedups read_virtual_dword(seg, esi, &temp32); write_virtual_dword(BX_SEG_REG_ES, edi, &temp32); incr = 4; #if BX_SupportRepeatSpeedups #if (BX_DEBUGGER == 0) #if (defined(__i386__) && __i386__) doIncr32: #endif #endif #endif if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ esi -= incr; edi -= incr; } else { /* increment ESI */ esi += incr; edi += incr; } } /* if (i->os32L()) ... */ else { /* 16 bit opsize mode */ Bit16u temp16; read_virtual_word(seg, esi, &temp16); write_virtual_word(BX_SEG_REG_ES, edi, &temp16); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ esi -= 2; edi -= 2; } else { /* increment ESI */ esi += 2; edi += 2; } } // zero extension of RSI/RDI RSI = esi; RDI = edi; } else #endif /* BX_CPU_LEVEL >= 3 */ { /* 16bit address mode */ Bit16u si, di; si = SI; di = DI; #if BX_CPU_LEVEL >= 3 if (i->os32L()) { Bit32u temp32; read_virtual_dword(seg, si, &temp32); write_virtual_dword(BX_SEG_REG_ES, di, &temp32); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ si -= 4; di -= 4; } else { /* increment ESI */ si += 4; di += 4; } } /* if (i->os32L()) ... */ else #endif /* BX_CPU_LEVEL >= 3 */ { /* 16 bit opsize mode */ Bit16u temp16; #if BX_SupportRepeatSpeedups #if (BX_DEBUGGER == 0) #if (defined(__i386__) && __i386__) /* If conditions are right, we can transfer IO to physical memory * in a batch, rather than one instruction at a time. */ if (i->repUsedL() && !BX_CPU_THIS_PTR async_event) { Bit32u wordCount; #if BX_SUPPORT_X86_64 if (i->as64L()) wordCount = RCX; // Truncated to 32bits. (we're only doing 1 page) else #endif if (i->as32L()) wordCount = ECX; else wordCount = CX; if (wordCount) { Bit32u wordsFitSrc, wordsFitDst; Bit8u *hostAddrSrc, *hostAddrDst; unsigned pointerDelta; bx_segment_reg_t *srcSegPtr, *dstSegPtr; bx_address laddrDst, laddrSrc; Bit32u paddrDst, paddrSrc; srcSegPtr = &BX_CPU_THIS_PTR sregs[seg]; dstSegPtr = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES]; // Do segment checks for the 1st word. We do not want to // trip an exception beyond this, because the address would // be incorrect. After we know how many bytes we will directly // transfer, we can do the full segment limit check ourselves // without generating an exception. read_virtual_checks(srcSegPtr, si, 2); laddrSrc = srcSegPtr->cache.u.segment.base + si; if (BX_CPU_THIS_PTR cr0.pg) { paddrSrc = dtranslate_linear(laddrSrc, CPL==3, BX_READ); } else { paddrSrc = laddrSrc; } // If we want to write directly into the physical memory array, // we need the A20 address. paddrSrc = A20ADDR(paddrSrc); write_virtual_checks(dstSegPtr, di, 2); laddrDst = dstSegPtr->cache.u.segment.base + di; if (BX_CPU_THIS_PTR cr0.pg) { paddrDst = dtranslate_linear(laddrDst, CPL==3, BX_WRITE); } else { paddrDst = laddrDst; } // If we want to write directly into the physical memory array, // we need the A20 address. paddrDst = A20ADDR(paddrDst); hostAddrSrc = BX_CPU_THIS_PTR mem->getHostMemAddr(BX_CPU_THIS, paddrSrc, BX_READ); hostAddrDst = BX_CPU_THIS_PTR mem->getHostMemAddr(BX_CPU_THIS, paddrDst, BX_WRITE); if ( hostAddrSrc && hostAddrDst ) { // See how many words can fit in the rest of this page. if (BX_CPU_THIS_PTR get_DF ()) { // Counting downward. // Note: 1st word must not cross page boundary. if ( ((paddrSrc & 0xfff) > 0xffe) || ((paddrDst & 0xfff) > 0xffe) ) goto noAcceleration16; wordsFitSrc = (2 + (paddrSrc & 0xfff)) >> 1; wordsFitDst = (2 + (paddrDst & 0xfff)) >> 1; pointerDelta = (unsigned) -2; } else { // Counting upward. wordsFitSrc = (0x1000 - (paddrSrc & 0xfff)) >> 1; wordsFitDst = (0x1000 - (paddrDst & 0xfff)) >> 1; pointerDelta = 2; } // Restrict word count to the number that will fit in either // source or dest pages. if (wordCount > wordsFitSrc) wordCount = wordsFitSrc; if (wordCount > wordsFitDst) wordCount = wordsFitDst; if (wordCount > bx_pc_system.getNumCpuTicksLeftNextEvent()) wordCount = bx_pc_system.getNumCpuTicksLeftNextEvent(); // If after all the restrictions, there is anything left to do... if (wordCount) { unsigned j; Bit32u srcSegLimit, dstSegLimit; srcSegLimit = srcSegPtr->cache.u.segment.limit_scaled; dstSegLimit = dstSegPtr->cache.u.segment.limit_scaled; // For 16-bit addressing mode, clamp the segment limits to 16bits // so we don't have to worry about computations using si/di // rolling over 16-bit boundaries. if (!i->as32L()) { if (srcSegLimit > 0xffff) srcSegLimit = 0xffff; if (dstSegLimit > 0xffff) dstSegLimit = 0xffff; } // Before we copy memory, we need to make sure that the segments // allow the accesses up to the given source and dest offset. If // the cache.valid bits have SegAccessWOK and ROK, we know that // the cache is valid for those operations, and that the segments // are non expand-down (thus we can make a simple limit check). if ( !(srcSegPtr->cache.valid & SegAccessROK) || !(dstSegPtr->cache.valid & SegAccessWOK) ) { goto noAcceleration16; } if ( !IsLongMode() ) { // Now make sure transfer will fit within the constraints of the // segment boundaries, 0..limit for non expand-down. We know // wordCount >= 1 here. if (BX_CPU_THIS_PTR get_DF ()) { // Counting downward. Bit32u minOffset = (wordCount-1) << 1; if ( si < minOffset ) goto noAcceleration16; if ( di < minOffset ) goto noAcceleration16; } else { // Counting upward. Bit32u srcMaxOffset = (srcSegLimit - (wordCount<<1)) + 1; Bit32u dstMaxOffset = (dstSegLimit - (wordCount<<1)) + 1; if ( si > srcMaxOffset ) goto noAcceleration16; if ( di > dstMaxOffset ) goto noAcceleration16; } } // Transfer data directly using host addresses. for (j=0; jas64L()) RCX -= (wordCount-1); else #endif if (i->as32L()) ECX -= (wordCount-1); else CX -= (wordCount-1); incr = wordCount << 1; // count * 2. goto doIncr16; } } } } noAcceleration16: #endif // __i386__ #endif // (BX_DEBUGGER == 0) #endif // BX_SupportRepeatSpeedups read_virtual_word(seg, si, &temp16); write_virtual_word(BX_SEG_REG_ES, di, &temp16); incr = 2; #if BX_SupportRepeatSpeedups #if (BX_DEBUGGER == 0) #if (defined(__i386__) && __i386__) doIncr16: #endif #endif #endif if (BX_CPU_THIS_PTR get_DF ()) { /* decrement SI, DI */ si -= incr; di -= incr; } else { /* increment SI, DI */ si += incr; di += incr; } } SI = si; DI = di; } } void BX_CPU_C::CMPSB_XbYb(bxInstruction_c *i) { unsigned seg; Bit8u op1_8, op2_8, diff_8; if (!BX_NULL_SEG_REG(i->seg())) { seg = i->seg(); } else { seg = BX_SEG_REG_DS; } #if BX_CPU_LEVEL >= 3 #if BX_SUPPORT_X86_64 if (i->as64L()) { Bit64u rsi, rdi; rsi = RSI; rdi = RDI; read_virtual_byte(seg, rsi, &op1_8); read_virtual_byte(BX_SEG_REG_ES, rdi, &op2_8); diff_8 = op1_8 - op2_8; SET_FLAGS_OSZAPC_8(op1_8, op2_8, diff_8, BX_INSTR_CMPS8); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement RSI */ rsi--; rdi--; } else { /* increment RSI */ rsi++; rdi++; } RDI = rdi; RSI = rsi; } else #endif // #if BX_SUPPORT_X86_64 if (i->as32L()) { Bit32u esi, edi; esi = ESI; edi = EDI; read_virtual_byte(seg, esi, &op1_8); read_virtual_byte(BX_SEG_REG_ES, edi, &op2_8); diff_8 = op1_8 - op2_8; SET_FLAGS_OSZAPC_8(op1_8, op2_8, diff_8, BX_INSTR_CMPS8); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ esi--; edi--; } else { /* increment ESI */ esi++; edi++; } // zero extension of RSI/RDI RDI = edi; RSI = esi; } else #endif /* BX_CPU_LEVEL >= 3 */ { /* 16bit address mode */ Bit16u si, di; si = SI; di = DI; read_virtual_byte(seg, si, &op1_8); read_virtual_byte(BX_SEG_REG_ES, di, &op2_8); #if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms) Bit32u flags32; asmCmp8(op1_8, op2_8, flags32); setEFlagsOSZAPC(flags32); #else diff_8 = op1_8 - op2_8; SET_FLAGS_OSZAPC_8(op1_8, op2_8, diff_8, BX_INSTR_CMPS8); #endif if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ si--; di--; } else { /* increment ESI */ si++; di++; } DI = di; SI = si; } } void BX_CPU_C::CMPSW_XvYv(bxInstruction_c *i) { unsigned seg; if (!BX_NULL_SEG_REG(i->seg())) { seg = i->seg(); } else { seg = BX_SEG_REG_DS; } #if BX_CPU_LEVEL >= 3 #if BX_SUPPORT_X86_64 if (i->as64L()) { Bit64u rsi, rdi; rsi = RSI; rdi = RDI; if (i->os64L()) { Bit64u op1_64, op2_64, diff_64; read_virtual_qword(seg, rsi, &op1_64); read_virtual_qword(BX_SEG_REG_ES, rdi, &op2_64); diff_64 = op1_64 - op2_64; SET_FLAGS_OSZAPC_64(op1_64, op2_64, diff_64, BX_INSTR_CMPS64); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ rsi -= 8; rdi -= 8; } else { /* increment ESI */ rsi += 8; rdi += 8; } } else if (i->os32L()) { Bit32u op1_32, op2_32, diff_32; read_virtual_dword(seg, rsi, &op1_32); read_virtual_dword(BX_SEG_REG_ES, rdi, &op2_32); diff_32 = op1_32 - op2_32; SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_INSTR_CMPS32); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ rsi -= 4; rdi -= 4; } else { /* increment ESI */ rsi += 4; rdi += 4; } } else { /* 16 bit opsize */ Bit16u op1_16, op2_16, diff_16; read_virtual_word(seg, rsi, &op1_16); read_virtual_word(BX_SEG_REG_ES, rdi, &op2_16); diff_16 = op1_16 - op2_16; SET_FLAGS_OSZAPC_16(op1_16, op2_16, diff_16, BX_INSTR_CMPS16); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ rsi -= 2; rdi -= 2; } else { /* increment ESI */ rsi += 2; rdi += 2; } } RDI = rdi; RSI = rsi; } else #endif // #if BX_SUPPORT_X86_64 if (i->as32L()) { Bit32u esi, edi; esi = ESI; edi = EDI; #if BX_SUPPORT_X86_64 if (i->os64L()) { Bit64u op1_64, op2_64, diff_64; read_virtual_qword(seg, esi, &op1_64); read_virtual_qword(BX_SEG_REG_ES, edi, &op2_64); diff_64 = op1_64 - op2_64; SET_FLAGS_OSZAPC_64(op1_64, op2_64, diff_64, BX_INSTR_CMPS64); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ esi -= 8; edi -= 8; } else { /* increment ESI */ esi += 8; edi += 8; } } else #endif // #if BX_SUPPORT_X86_64 if (i->os32L()) { Bit32u op1_32, op2_32, diff_32; read_virtual_dword(seg, esi, &op1_32); read_virtual_dword(BX_SEG_REG_ES, edi, &op2_32); diff_32 = op1_32 - op2_32; SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_INSTR_CMPS32); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ esi -= 4; edi -= 4; } else { /* increment ESI */ esi += 4; edi += 4; } } else { /* 16 bit opsize */ Bit16u op1_16, op2_16; read_virtual_word(seg, esi, &op1_16); read_virtual_word(BX_SEG_REG_ES, edi, &op2_16); #if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms) Bit32u flags32; asmCmp16(op1_16, op2_16, flags32); setEFlagsOSZAPC(flags32); #else Bit16u diff_16; diff_16 = op1_16 - op2_16; SET_FLAGS_OSZAPC_16(op1_16, op2_16, diff_16, BX_INSTR_CMPS16); #endif if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ esi -= 2; edi -= 2; } else { /* increment ESI */ esi += 2; edi += 2; } } // zero extension of RSI/RDI RDI = edi; RSI = esi; } else #endif /* BX_CPU_LEVEL >= 3 */ { /* 16 bit address mode */ Bit16u si, di; si = SI; di = DI; #if BX_CPU_LEVEL >= 3 if (i->os32L()) { Bit32u op1_32, op2_32, diff_32; read_virtual_dword(seg, si, &op1_32); read_virtual_dword(BX_SEG_REG_ES, di, &op2_32); diff_32 = op1_32 - op2_32; SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_INSTR_CMPS32); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ si -= 4; di -= 4; } else { /* increment ESI */ si += 4; di += 4; } } else #endif /* BX_CPU_LEVEL >= 3 */ { /* 16 bit opsize */ Bit16u op1_16, op2_16; read_virtual_word(seg, si, &op1_16); read_virtual_word(BX_SEG_REG_ES, di, &op2_16); #if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms) Bit32u flags32; asmCmp16(op1_16, op2_16, flags32); setEFlagsOSZAPC(flags32); #else Bit16u diff_16; diff_16 = op1_16 - op2_16; SET_FLAGS_OSZAPC_16(op1_16, op2_16, diff_16, BX_INSTR_CMPS16); #endif if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ si -= 2; di -= 2; } else { /* increment ESI */ si += 2; di += 2; } } DI = di; SI = si; } } void BX_CPU_C::SCASB_ALXb(bxInstruction_c *i) { Bit8u op1_8, op2_8; #if BX_CPU_LEVEL >= 3 #if BX_SUPPORT_X86_64 if (i->as64L()) { Bit64u rdi; Bit8u diff_8; rdi = RDI; op1_8 = AL; read_virtual_byte(BX_SEG_REG_ES, rdi, &op2_8); diff_8 = op1_8 - op2_8; SET_FLAGS_OSZAPC_8(op1_8, op2_8, diff_8, BX_INSTR_SCAS8); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ rdi--; } else { /* increment ESI */ rdi++; } RDI = rdi; } else #endif // #if BX_SUPPORT_X86_64 if (i->as32L()) { Bit32u edi; edi = EDI; op1_8 = AL; read_virtual_byte(BX_SEG_REG_ES, edi, &op2_8); #if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms) Bit32u flags32; asmCmp8(op1_8, op2_8, flags32); setEFlagsOSZAPC(flags32); #else Bit8u diff_8; diff_8 = op1_8 - op2_8; SET_FLAGS_OSZAPC_8(op1_8, op2_8, diff_8, BX_INSTR_SCAS8); #endif if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ edi--; } else { /* increment ESI */ edi++; } // zero extension of RDI RDI = edi; } else #endif /* BX_CPU_LEVEL >= 3 */ { /* 16bit address mode */ Bit16u di; di = DI; op1_8 = AL; read_virtual_byte(BX_SEG_REG_ES, di, &op2_8); #if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms) Bit32u flags32; asmCmp8(op1_8, op2_8, flags32); setEFlagsOSZAPC(flags32); #else Bit8u diff_8; diff_8 = op1_8 - op2_8; SET_FLAGS_OSZAPC_8(op1_8, op2_8, diff_8, BX_INSTR_SCAS8); #endif if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ di--; } else { /* increment ESI */ di++; } DI = di; } } void BX_CPU_C::SCASW_eAXXv(bxInstruction_c *i) { #if BX_CPU_LEVEL >= 3 #if BX_SUPPORT_X86_64 if (i->as64L()) { Bit64u rdi; rdi = RDI; if (i->os64L()) { Bit64u op1_64, op2_64, diff_64; op1_64 = RAX; read_virtual_qword(BX_SEG_REG_ES, rdi, &op2_64); diff_64 = op1_64 - op2_64; SET_FLAGS_OSZAPC_64(op1_64, op2_64, diff_64, BX_INSTR_SCAS64); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement EDI */ rdi -= 8; } else { /* increment EDI */ rdi += 8; } } else if (i->os32L()) { Bit32u op1_32, op2_32, diff_32; op1_32 = EAX; read_virtual_dword(BX_SEG_REG_ES, rdi, &op2_32); diff_32 = op1_32 - op2_32; SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_INSTR_SCAS32); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement EDI */ rdi -= 4; } else { /* increment EDI */ rdi += 4; } } else { /* 16 bit opsize */ Bit16u op1_16, op2_16, diff_16; op1_16 = AX; read_virtual_word(BX_SEG_REG_ES, rdi, &op2_16); diff_16 = op1_16 - op2_16; SET_FLAGS_OSZAPC_16(op1_16, op2_16, diff_16, BX_INSTR_SCAS16); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ rdi -= 2; } else { /* increment ESI */ rdi += 2; } } RDI = rdi; } else #endif // #if BX_SUPPORT_X86_64 if (i->as32L()) { Bit32u edi; edi = EDI; #if BX_SUPPORT_X86_64 if (i->os64L()) { Bit64u op1_64, op2_64, diff_64; op1_64 = RAX; read_virtual_qword(BX_SEG_REG_ES, edi, &op2_64); diff_64 = op1_64 - op2_64; SET_FLAGS_OSZAPC_64(op1_64, op2_64, diff_64, BX_INSTR_SCAS64); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ edi -= 8; } else { /* increment ESI */ edi += 8; } } else #endif // #if BX_SUPPORT_X86_64 if (i->os32L()) { Bit32u op1_32, op2_32, diff_32; op1_32 = EAX; read_virtual_dword(BX_SEG_REG_ES, edi, &op2_32); diff_32 = op1_32 - op2_32; SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_INSTR_SCAS32); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ edi -= 4; } else { /* increment ESI */ edi += 4; } } else { /* 16 bit opsize */ Bit16u op1_16, op2_16; op1_16 = AX; read_virtual_word(BX_SEG_REG_ES, edi, &op2_16); #if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms) Bit32u flags32; asmCmp16(op1_16, op2_16, flags32); setEFlagsOSZAPC(flags32); #else Bit16u diff_16; diff_16 = op1_16 - op2_16; SET_FLAGS_OSZAPC_16(op1_16, op2_16, diff_16, BX_INSTR_SCAS16); #endif if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ edi -= 2; } else { /* increment ESI */ edi += 2; } } // zero extension of RDI RDI = edi; } else #endif /* BX_CPU_LEVEL >= 3 */ { /* 16bit address mode */ Bit16u di; di = DI; #if BX_CPU_LEVEL >= 3 if (i->os32L()) { Bit32u op1_32, op2_32, diff_32; op1_32 = EAX; read_virtual_dword(BX_SEG_REG_ES, di, &op2_32); diff_32 = op1_32 - op2_32; SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_INSTR_SCAS32); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ di -= 4; } else { /* increment ESI */ di += 4; } } else #endif /* BX_CPU_LEVEL >= 3 */ { /* 16 bit opsize */ Bit16u op1_16, op2_16; op1_16 = AX; read_virtual_word(BX_SEG_REG_ES, di, &op2_16); #if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms) Bit32u flags32; asmCmp16(op1_16, op2_16, flags32); setEFlagsOSZAPC(flags32); #else Bit16u diff_16; diff_16 = op1_16 - op2_16; SET_FLAGS_OSZAPC_16(op1_16, op2_16, diff_16, BX_INSTR_SCAS16); #endif if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ di -= 2; } else { /* increment ESI */ di += 2; } } DI = di; } } void BX_CPU_C::STOSB_YbAL(bxInstruction_c *i) { Bit8u al; #if BX_SUPPORT_X86_64 if (i->as64L()) { Bit64u rdi; rdi = RDI; al = AL; write_virtual_byte(BX_SEG_REG_ES, rdi, &al); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement EDI */ rdi--; } else { /* increment EDI */ rdi++; } RDI = rdi; } else #endif // #if BX_SUPPORT_X86_64 { Bit32u edi; unsigned incr; #if BX_CPU_LEVEL >= 3 if (i->as32L()) { edi = EDI; } else #endif /* BX_CPU_LEVEL >= 3 */ { /* 16bit address size */ edi = DI; } al = AL; #if BX_SupportRepeatSpeedups #if (BX_DEBUGGER == 0) /* If conditions are right, we can transfer IO to physical memory * in a batch, rather than one instruction at a time. */ if (i->repUsedL() && !BX_CPU_THIS_PTR async_event) { Bit32u byteCount; #if BX_SUPPORT_X86_64 if (i->as64L()) byteCount = RCX; // Truncated to 32bits. (we're only doing 1 page) else #endif if (i->as32L()) byteCount = ECX; else byteCount = CX; if (byteCount) { Bit32u bytesFitDst; Bit8u *hostAddrDst; unsigned pointerDelta; bx_segment_reg_t *dstSegPtr; bx_address laddrDst; Bit32u paddrDst; dstSegPtr = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES]; // Do segment checks for the 1st word. We do not want to // trip an exception beyond this, because the address would // be incorrect. After we know how many bytes we will directly // transfer, we can do the full segment limit check ourselves // without generating an exception. write_virtual_checks(dstSegPtr, edi, 1); laddrDst = dstSegPtr->cache.u.segment.base + edi; if (BX_CPU_THIS_PTR cr0.pg) { paddrDst = dtranslate_linear(laddrDst, CPL==3, BX_WRITE); } else { paddrDst = laddrDst; } // If we want to write directly into the physical memory array, // we need the A20 address. paddrDst = A20ADDR(paddrDst); hostAddrDst = BX_CPU_THIS_PTR mem->getHostMemAddr(BX_CPU_THIS, paddrDst, BX_WRITE); if ( hostAddrDst ) { // See how many bytes can fit in the rest of this page. if (BX_CPU_THIS_PTR get_DF ()) { // Counting downward. bytesFitDst = 1 + (paddrDst & 0xfff); pointerDelta = (unsigned) -1; } else { // Counting upward. bytesFitDst = (0x1000 - (paddrDst & 0xfff)); pointerDelta = 1; } // Restrict count to the number that will fit in either // source or dest pages. if (byteCount > bytesFitDst) byteCount = bytesFitDst; if (byteCount > bx_pc_system.getNumCpuTicksLeftNextEvent()) byteCount = bx_pc_system.getNumCpuTicksLeftNextEvent(); // If after all the restrictions, there is anything left to do... if (byteCount) { unsigned j; Bit32u dstSegLimit; dstSegLimit = dstSegPtr->cache.u.segment.limit_scaled; // For 16-bit addressing mode, clamp the segment limits to 16bits // so we don't have to worry about computations using si/di // rolling over 16-bit boundaries. if (!i->as32L()) { if (dstSegLimit > 0xffff) dstSegLimit = 0xffff; } // Before we copy memory, we need to make sure that the segments // allow the accesses up to the given source and dest offset. If // the cache.valid bits have SegAccessWOK and ROK, we know that // the cache is valid for those operations, and that the segments // are non expand-down (thus we can make a simple limit check). if ( !(dstSegPtr->cache.valid & SegAccessWOK) ) { goto noAcceleration16; } if ( !IsLongMode() ) { // Now make sure transfer will fit within the constraints of the // segment boundaries, 0..limit for non expand-down. We know // byteCount >= 1 here. if (BX_CPU_THIS_PTR get_DF ()) { // Counting downward. Bit32u minOffset = (byteCount-1); if ( edi < minOffset ) goto noAcceleration16; } else { // Counting upward. Bit32u dstMaxOffset = (dstSegLimit - byteCount) + 1; if ( edi > dstMaxOffset ) goto noAcceleration16; } } // Transfer data directly using host addresses. for (j=0; jas64L()) RCX -= (byteCount-1); else #endif if (i->as32L()) ECX -= (byteCount-1); else CX -= (byteCount-1); incr = byteCount; goto doIncr16; } } } } noAcceleration16: #endif // (BX_DEBUGGER == 0) #endif // BX_SupportRepeatSpeedups write_virtual_byte(BX_SEG_REG_ES, edi, &al); incr = 1; #if BX_SupportRepeatSpeedups #if (BX_DEBUGGER == 0) doIncr16: #endif #endif if (BX_CPU_THIS_PTR get_DF ()) { /* decrement EDI */ edi -= incr; } else { /* increment EDI */ edi += incr; } #if BX_CPU_LEVEL >= 3 if (i->as32L()) // zero extension of RDI RDI = edi; else #endif DI = edi; } } void BX_CPU_C::STOSW_YveAX(bxInstruction_c *i) { #if BX_CPU_LEVEL >= 3 #if BX_SUPPORT_X86_64 if (i->as64L()) { Bit64u rdi; rdi = RDI; if (i->os64L()) { Bit64u rax; rax = RAX; write_virtual_qword(BX_SEG_REG_ES, rdi, &rax); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement EDI */ rdi -= 8; } else { /* increment EDI */ rdi += 8; } } /* if (i->os64L()) ... */ else if (i->os32L()) { Bit32u eax; eax = EAX; write_virtual_dword(BX_SEG_REG_ES, rdi, &eax); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement EDI */ rdi -= 4; } else { /* increment EDI */ rdi += 4; } } /* if (i->os32L()) ... */ else { /* 16 bit opsize mode */ Bit16u ax; ax = AX; write_virtual_word(BX_SEG_REG_ES, rdi, &ax); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement EDI */ rdi -= 2; } else { /* increment EDI */ rdi += 2; } } RDI = rdi; } else #endif // #if BX_SUPPORT_X86_64 if (i->as32L()) { Bit32u edi; edi = EDI; #if BX_SUPPORT_X86_64 if (i->os64L()) { Bit64u rax; rax = RAX; write_virtual_qword(BX_SEG_REG_ES, edi, &rax); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement EDI */ edi -= 8; } else { /* increment EDI */ edi += 8; } } /* if (i->os_4) ... */ else #endif // #if BX_SUPPORT_X86_64 if (i->os32L()) { Bit32u eax; eax = EAX; write_virtual_dword(BX_SEG_REG_ES, edi, &eax); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement EDI */ edi -= 4; } else { /* increment EDI */ edi += 4; } } /* if (i->os32L()) ... */ else { /* 16 bit opsize mode */ Bit16u ax; ax = AX; write_virtual_word(BX_SEG_REG_ES, edi, &ax); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement EDI */ edi -= 2; } else { /* increment EDI */ edi += 2; } } // zero extension of RDI RDI = edi; } else #endif /* BX_CPU_LEVEL >= 3 */ { /* 16bit address size */ Bit16u di; di = DI; #if BX_CPU_LEVEL >= 3 if (i->os32L()) { Bit32u eax; eax = EAX; write_virtual_dword(BX_SEG_REG_ES, di, &eax); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement EDI */ di -= 4; } else { /* increment EDI */ di += 4; } } /* if (i->os32L()) ... */ else #endif /* BX_CPU_LEVEL >= 3 */ { /* 16 bit opsize mode */ Bit16u ax; ax = AX; write_virtual_word(BX_SEG_REG_ES, di, &ax); if (BX_CPU_THIS_PTR get_DF ()) { /* decrement EDI */ di -= 2; } else { /* increment EDI */ di += 2; } } DI = di; } } void BX_CPU_C::LODSB_ALXb(bxInstruction_c *i) { unsigned seg; Bit8u al; if (!BX_NULL_SEG_REG(i->seg())) { seg = i->seg(); } else { seg = BX_SEG_REG_DS; } #if BX_CPU_LEVEL >= 3 #if BX_SUPPORT_X86_64 if (i->as64L()) { Bit64u rsi; rsi = RSI; read_virtual_byte(seg, rsi, &al); AL = al; if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ rsi--; } else { /* increment ESI */ rsi++; } RSI = rsi; } else #endif // #if BX_SUPPORT_X86_64 if (i->as32L()) { Bit32u esi; esi = ESI; read_virtual_byte(seg, esi, &al); AL = al; if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ esi--; } else { /* increment ESI */ esi++; } // zero extension of RSI RSI = esi; } else #endif /* BX_CPU_LEVEL >= 3 */ { /* 16bit address mode */ Bit16u si; si = SI; read_virtual_byte(seg, si, &al); AL = al; if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ si--; } else { /* increment ESI */ si++; } SI = si; } } void BX_CPU_C::LODSW_eAXXv(bxInstruction_c *i) { unsigned seg; if (!BX_NULL_SEG_REG(i->seg())) { seg = i->seg(); } else { seg = BX_SEG_REG_DS; } #if BX_CPU_LEVEL >= 3 #if BX_SUPPORT_X86_64 if (i->as64L()) { Bit64u rsi; rsi = RSI; if (i->os64L()) { Bit64u rax; read_virtual_qword(seg, rsi, &rax); RAX = rax; if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ rsi -= 8; } else { /* increment ESI */ rsi += 8; } } /* if (i->os64L()) ... */ else if (i->os32L()) { Bit32u eax; read_virtual_dword(seg, rsi, &eax); RAX = eax; if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ rsi -= 4; } else { /* increment ESI */ rsi += 4; } } /* if (i->os32L()) ... */ else { /* 16 bit opsize mode */ Bit16u ax; read_virtual_word(seg, rsi, &ax); AX = ax; if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ rsi -= 2; } else { /* increment ESI */ rsi += 2; } } RSI = rsi; } else #endif // #if BX_SUPPORT_X86_64 if (i->as32L()) { Bit32u esi; esi = ESI; #if BX_SUPPORT_X86_64 if (i->os64L()) { Bit64u rax; read_virtual_qword(seg, esi, &rax); RAX = rax; if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ esi -= 8; } else { /* increment ESI */ esi += 8; } } /* if (i->os64L()) ... */ else #endif // #if BX_SUPPORT_X86_64 if (i->os32L()) { Bit32u eax; read_virtual_dword(seg, esi, &eax); RAX = eax; if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ esi -= 4; } else { /* increment ESI */ esi += 4; } } /* if (i->os32L()) ... */ else { /* 16 bit opsize mode */ Bit16u ax; read_virtual_word(seg, esi, &ax); AX = ax; if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ esi -= 2; } else { /* increment ESI */ esi += 2; } } // zero extension of RSI RSI = esi; } else #endif /* BX_CPU_LEVEL >= 3 */ { /* 16bit address mode */ Bit16u si; si = SI; #if BX_CPU_LEVEL >= 3 if (i->os32L()) { Bit32u eax; read_virtual_dword(seg, si, &eax); RAX = eax; if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ si -= 4; } else { /* increment ESI */ si += 4; } } else #endif /* BX_CPU_LEVEL >= 3 */ { /* 16 bit opsize mode */ Bit16u ax; read_virtual_word(seg, si, &ax); AX = ax; if (BX_CPU_THIS_PTR get_DF ()) { /* decrement ESI */ si -= 2; } else { /* increment ESI */ si += 2; } } SI = si; } }