///////////////////////////////////////////////////////////////////////// // $Id: data_xfer16.cc,v 1.6 2001-10-03 13:10:37 bdenney Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #define LOG_THIS BX_CPU_THIS_PTR void BX_CPU_C::MOV_RXIw(BxInstruction_t *i) { BX_CPU_THIS_PTR gen_reg[i->b1 & 0x07].word.rx = i->Iw; } void BX_CPU_C::XCHG_RXAX(BxInstruction_t *i) { Bit16u temp16; temp16 = AX; AX = BX_CPU_THIS_PTR gen_reg[i->b1 & 0x07].word.rx; BX_CPU_THIS_PTR gen_reg[i->b1 & 0x07].word.rx = temp16; } void BX_CPU_C::MOV_EwGw(BxInstruction_t *i) { Bit16u op2_16; /* op2_16 is a register, op2_addr is an index of a register */ op2_16 = BX_READ_16BIT_REG(i->nnn); /* op1_16 is a register or memory reference */ /* now write op2 to op1 */ if (i->mod == 0xc0) { BX_WRITE_16BIT_REG(i->rm, op2_16); } else { write_virtual_word(i->seg, i->rm_addr, &op2_16); } } void BX_CPU_C::MOV_GwEw(BxInstruction_t *i) { Bit16u op2_16; if (i->mod == 0xc0) { op2_16 = BX_READ_16BIT_REG(i->rm); } else { /* pointer, segment address pair */ read_virtual_word(i->seg, i->rm_addr, &op2_16); } BX_WRITE_16BIT_REG(i->nnn, op2_16); } void BX_CPU_C::MOV_EwSw(BxInstruction_t *i) { Bit16u seg_reg; #if BX_CPU_LEVEL < 3 BX_PANIC(("MOV_EwSw: incomplete for CPU < 3")); #endif seg_reg = BX_CPU_THIS_PTR sregs[i->nnn].selector.value; if (i->mod == 0xc0) { // ??? BX_WRITE_16BIT_REG(mem_addr, seg_reg); if ( i->os_32 ) { BX_WRITE_32BIT_REG(i->rm, seg_reg); } else { BX_WRITE_16BIT_REG(i->rm, seg_reg); } } else { write_virtual_word(i->seg, i->rm_addr, &seg_reg); } } void BX_CPU_C::MOV_SwEw(BxInstruction_t *i) { Bit16u op2_16; #if BX_CPU_LEVEL < 3 BX_PANIC(("MOV_SwEw: incomplete for CPU < 3")); #endif if (i->mod == 0xc0) { op2_16 = BX_READ_16BIT_REG(i->rm); } else { read_virtual_word(i->seg, i->rm_addr, &op2_16); } load_seg_reg(&BX_CPU_THIS_PTR sregs[i->nnn], op2_16); if (i->nnn == BX_SEG_REG_SS) { // MOV SS inhibits interrupts, debug exceptions and single-step // trap exceptions until the execution boundary following the // next instruction is reached. // Same code as POP_SS() BX_CPU_THIS_PTR inhibit_mask |= BX_INHIBIT_INTERRUPTS | BX_INHIBIT_DEBUG; BX_CPU_THIS_PTR async_event = 1; } } void BX_CPU_C::LEA_GwM(BxInstruction_t *i) { if (i->mod == 0xc0) { BX_PANIC(("LEA_GvM: op2 is a register")); UndefinedOpcode(i); return; } BX_WRITE_16BIT_REG(i->nnn, (Bit16u) i->rm_addr); } void BX_CPU_C::MOV_AXOw(BxInstruction_t *i) { Bit16u temp_16; Bit32u addr_32; addr_32 = i->Id; /* read from memory address */ if (!BX_NULL_SEG_REG(i->seg)) { read_virtual_word(i->seg, addr_32, &temp_16); } else { read_virtual_word(BX_SEG_REG_DS, addr_32, &temp_16); } /* write to register */ AX = temp_16; } void BX_CPU_C::MOV_OwAX(BxInstruction_t *i) { Bit16u temp_16; Bit32u addr_32; addr_32 = i->Id; /* read from register */ temp_16 = AX; /* write to memory address */ if (!BX_NULL_SEG_REG(i->seg)) { write_virtual_word(i->seg, addr_32, &temp_16); } else { write_virtual_word(BX_SEG_REG_DS, addr_32, &temp_16); } } void BX_CPU_C::MOV_EwIw(BxInstruction_t *i) { Bit16u op2_16; op2_16 = i->Iw; /* now write sum back to destination */ if (i->mod == 0xc0) { BX_WRITE_16BIT_REG(i->rm, op2_16); } else { write_virtual_word(i->seg, i->rm_addr, &op2_16); } } void BX_CPU_C::MOVZX_GwEb(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("MOVZX_GvEb: not supported on < 386")); #else Bit8u op2_8; if (i->mod == 0xc0) { op2_8 = BX_READ_8BIT_REG(i->rm); } else { /* pointer, segment address pair */ read_virtual_byte(i->seg, i->rm_addr, &op2_8); } /* zero extend byte op2 into word op1 */ BX_WRITE_16BIT_REG(i->nnn, (Bit16u) op2_8); #endif /* BX_CPU_LEVEL < 3 */ } void BX_CPU_C::MOVZX_GwEw(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("MOVZX_GvEw: not supported on < 386")); #else Bit16u op2_16; if (i->mod == 0xc0) { op2_16 = BX_READ_16BIT_REG(i->rm); } else { /* pointer, segment address pair */ read_virtual_word(i->seg, i->rm_addr, &op2_16); } /* normal move */ BX_WRITE_16BIT_REG(i->nnn, op2_16); #endif /* BX_CPU_LEVEL < 3 */ } void BX_CPU_C::MOVSX_GwEb(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("MOVSX_GvEb: not supported on < 386")); #else Bit8u op2_8; if (i->mod == 0xc0) { op2_8 = BX_READ_8BIT_REG(i->rm); } else { /* pointer, segment address pair */ read_virtual_byte(i->seg, i->rm_addr, &op2_8); } /* sign extend byte op2 into word op1 */ BX_WRITE_16BIT_REG(i->nnn, (Bit8s) op2_8); #endif /* BX_CPU_LEVEL < 3 */ } void BX_CPU_C::MOVSX_GwEw(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("MOVSX_GvEw: not supported on < 386")); #else Bit16u op2_16; if (i->mod == 0xc0) { op2_16 = BX_READ_16BIT_REG(i->rm); } else { /* pointer, segment address pair */ read_virtual_word(i->seg, i->rm_addr, &op2_16); } /* normal move */ BX_WRITE_16BIT_REG(i->nnn, op2_16); #endif /* BX_CPU_LEVEL < 3 */ } void BX_CPU_C::XCHG_EwGw(BxInstruction_t *i) { Bit16u op2_16, op1_16; #ifdef MAGIC_BREAKPOINT #if BX_DEBUGGER // (mch) Magic break point if (i->nnn == 3 && i->mod == 0xc0 && i->rm == 3) { BX_CPU_THIS_PTR magic_break = 1; } #endif #endif /* op2_16 is a register, op2_addr is an index of a register */ op2_16 = BX_READ_16BIT_REG(i->nnn); /* op1_16 is a register or memory reference */ if (i->mod == 0xc0) { op1_16 = BX_READ_16BIT_REG(i->rm); BX_WRITE_16BIT_REG(i->rm, op2_16); } else { /* pointer, segment address pair */ read_RMW_virtual_word(i->seg, i->rm_addr, &op1_16); write_RMW_virtual_word(op2_16); } BX_WRITE_16BIT_REG(i->nnn, op1_16); } void BX_CPU_C::CMOV_GwEw(BxInstruction_t *i) { #if (BX_CPU_LEVEL >= 6) || (BX_CPU_LEVEL_HACKED >= 6) // Note: CMOV accesses a memory source operand (read), regardless // of whether condition is true or not. Thus, exceptions may // occur even if the MOV does not take place. Boolean condition; Bit16u op2_16; switch (i->b1) { // CMOV opcodes: case 0x140: condition = get_OF(); break; case 0x141: condition = !get_OF(); break; case 0x142: condition = get_CF(); break; case 0x143: condition = !get_CF(); break; case 0x144: condition = get_ZF(); break; case 0x145: condition = !get_ZF(); break; case 0x146: condition = get_CF() || get_ZF(); break; case 0x147: condition = !get_CF() && !get_ZF(); break; case 0x148: condition = get_SF(); break; case 0x149: condition = !get_SF(); break; case 0x14A: condition = get_PF(); break; case 0x14B: condition = !get_PF(); break; case 0x14C: condition = get_SF() != get_OF(); break; case 0x14D: condition = get_SF() == get_OF(); break; case 0x14E: condition = get_ZF() || (get_SF() != get_OF()); break; case 0x14F: condition = !get_ZF() && (get_SF() == get_OF()); break; default: condition = 0; BX_PANIC(("CMOV_GwEw: default case")); } if (i->mod == 0xc0) { op2_16 = BX_READ_16BIT_REG(i->rm); } else { /* pointer, segment address pair */ read_virtual_word(i->seg, i->rm_addr, &op2_16); } if (condition) { BX_WRITE_16BIT_REG(i->nnn, op2_16); } #else BX_PANIC(("cmov_gwew called")); #endif }