///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // 32 bit Bochs BIOS init code // Copyright (C) 2006 Fabrice Bellard // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA #include #include #include "rombios.h" typedef signed char int8_t; typedef short int16_t; typedef int int32_t; typedef long long int64_t; typedef unsigned char uint8_t; typedef unsigned short uint16_t; typedef unsigned int uint32_t; typedef unsigned long long uint64_t; #define cpuid(index, eax, ebx, ecx, edx) \ asm volatile ("cpuid" \ : "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) \ : "0" (index)) #define wbinvd() asm volatile("wbinvd") static inline void outl(int addr, int val) { asm volatile ("outl %1, %w0" : : "d" (addr), "a" (val)); } static inline void outw(int addr, int val) { asm volatile ("outw %w1, %w0" : : "d" (addr), "a" (val)); } static inline void outb(int addr, int val) { asm volatile ("outb %b1, %w0" : : "d" (addr), "a" (val)); } static inline uint32_t inl(int addr) { uint32_t val; asm volatile ("inl %w1, %0" : "=a" (val) : "d" (addr)); return val; } static inline uint16_t inw(int addr) { uint16_t val; asm volatile ("inw %w1, %w0" : "=a" (val) : "d" (addr)); return val; } static inline uint8_t inb(int addr) { uint8_t val; asm volatile ("inb %w1, %b0" : "=a" (val) : "d" (addr)); return val; } static inline void writel(void *addr, uint32_t val) { *(volatile uint32_t *)addr = val; } static inline void writew(void *addr, uint16_t val) { *(volatile uint16_t *)addr = val; } static inline void writeb(void *addr, uint8_t val) { *(volatile uint8_t *)addr = val; } static inline uint32_t readl(const void *addr) { return *(volatile const uint32_t *)addr; } static inline uint16_t readw(const void *addr) { return *(volatile const uint16_t *)addr; } static inline uint8_t readb(const void *addr) { return *(volatile const uint8_t *)addr; } static inline void putch(int c) { outb(INFO_PORT, c); } static uint64_t rdmsr(unsigned index) { unsigned long long ret; asm ("rdmsr" : "=A"(ret) : "c"(index)); return ret; } static void wrmsr(unsigned index, uint64_t val) { asm volatile ("wrmsr" : : "c"(index), "A"(val)); } static inline int isdigit(int c) { return c >= '0' && c <= '9'; } void *memset(void *d1, int val, size_t len) { uint8_t *d = d1; while (len--) { *d++ = val; } return d1; } void *memcpy(void *d1, const void *s1, size_t len) { uint8_t *d = d1; const uint8_t *s = s1; while (len--) { *d++ = *s++; } return d1; } void *memmove(void *d1, const void *s1, size_t len) { uint8_t *d = d1; const uint8_t *s = s1; if (d <= s) { while (len--) { *d++ = *s++; } } else { d += len; s += len; while (len--) { *--d = *--s; } } return d1; } int memcmp(const void *s1, const void *s2, size_t len) { const int8_t *p1 = s1; const int8_t *p2 = s2; while (len--) { int r = *p1++ - *p2++; if(r) return r; } return 0; } size_t strlen(const char *s) { const char *s1; for(s1 = s; *s1 != '\0'; s1++); return s1 - s; } /* from BSD ppp sources */ int vsnprintf(char *buf, int buflen, const char *fmt, va_list args) { int c, i, n; int width, prec, fillch; int base, len, neg; unsigned long val = 0; const char *f; char *str, *buf0; char num[32]; static const char hexchars[] = "0123456789abcdef"; buf0 = buf; --buflen; while (buflen > 0) { for (f = fmt; *f != '%' && *f != 0; ++f) ; if (f > fmt) { len = f - fmt; if (len > buflen) len = buflen; memcpy(buf, fmt, len); buf += len; buflen -= len; fmt = f; } if (*fmt == 0) break; c = *++fmt; width = prec = 0; fillch = ' '; if (c == '0') { fillch = '0'; c = *++fmt; } if (c == '*') { width = va_arg(args, int); c = *++fmt; } else { while (isdigit(c)) { width = width * 10 + c - '0'; c = *++fmt; } } if (c == '.') { c = *++fmt; if (c == '*') { prec = va_arg(args, int); c = *++fmt; } else { while (isdigit(c)) { prec = prec * 10 + c - '0'; c = *++fmt; } } } /* modifiers */ switch(c) { case 'l': c = *++fmt; break; default: break; } str = 0; base = 0; neg = 0; ++fmt; switch (c) { case 'd': i = va_arg(args, int); if (i < 0) { neg = 1; val = -i; } else val = i; base = 10; break; case 'o': val = va_arg(args, unsigned int); base = 8; break; case 'x': case 'X': val = va_arg(args, unsigned int); base = 16; break; case 'p': val = (unsigned long) va_arg(args, void *); base = 16; neg = 2; break; case 's': str = va_arg(args, char *); break; case 'c': num[0] = va_arg(args, int); num[1] = 0; str = num; break; default: *buf++ = '%'; if (c != '%') --fmt; /* so %z outputs %z etc. */ --buflen; continue; } if (base != 0) { str = num + sizeof(num); *--str = 0; while (str > num + neg) { *--str = hexchars[val % base]; val = val / base; if (--prec <= 0 && val == 0) break; } switch (neg) { case 1: *--str = '-'; break; case 2: *--str = 'x'; *--str = '0'; break; } len = num + sizeof(num) - 1 - str; } else { len = strlen(str); if (prec > 0 && len > prec) len = prec; } if (width > 0) { if (width > buflen) width = buflen; if ((n = width - len) > 0) { buflen -= n; for (; n > 0; --n) *buf++ = fillch; } } if (len > buflen) len = buflen; memcpy(buf, str, len); buf += len; buflen -= len; } *buf = 0; return buf - buf0; } int snprintf(char * buf, size_t size, const char *fmt, ...) { va_list args; int i; va_start(args, fmt); i = vsnprintf(buf, size, fmt, args); va_end(args); return i; } void bios_printf(int flags, const char *fmt, ...) { va_list ap; char buf[1024]; const char *s; if ((flags & BIOS_PRINTF_DEBHALT) == BIOS_PRINTF_DEBHALT) outb(PANIC_PORT2, 0x00); va_start(ap, fmt); vsnprintf(buf, sizeof(buf), fmt, ap); s = buf; while (*s) putch(*s++); va_end(ap); } void delay_ms(int n) { int i, j; for(i = 0; i < n; i++) { #ifdef BX_QEMU volatile int k; /* approximative ! */ for(j = 0; j < 1000000; j++) { k++; } #else { int r1, r2; j = 66; r1 = inb(0x61) & 0x10; do { r2 = inb(0x61) & 0x10; if (r1 != r2) { j--; r1 = r2; } } while (j > 0); } #endif } } uint16_t smp_cpus; uint32_t cpuid_signature; uint32_t cpuid_features; uint32_t cpuid_ext_features; unsigned long ram_size; uint64_t ram_end; uint8_t bios_uuid[16]; #ifdef BX_USE_EBDA_TABLES unsigned long ebda_cur_addr; #endif int acpi_enabled; uint32_t pm_io_base, smb_io_base; int pm_sci_int; unsigned long bios_table_cur_addr; unsigned long bios_table_end_addr; void wrmsr_smp(uint32_t index, uint64_t val) { static struct { uint32_t ecx, eax, edx; } *p = (void *)SMP_MSR_ADDR; wrmsr(index, val); p->ecx = index; p->eax = val; p->edx = val >> 32; ++p; p->ecx = 0; } #ifdef BX_QEMU int qemu_cfg_port; void qemu_cfg_select(int f) { outw(QEMU_CFG_CTL_PORT, f); } int qemu_cfg_port_probe() { char *sig = "QEMU"; int i; qemu_cfg_select(QEMU_CFG_SIGNATURE); for (i = 0; i < 4; i++) if (inb(QEMU_CFG_DATA_PORT) != sig[i]) return 0; return 1; } void qemu_cfg_read(uint8_t *buf, int len) { while (len--) *(buf++) = inb(QEMU_CFG_DATA_PORT); } #endif void uuid_probe(void) { #ifdef BX_QEMU if(qemu_cfg_port) { qemu_cfg_select(QEMU_CFG_UUID); qemu_cfg_read(bios_uuid, 16); return; } #endif memset(bios_uuid, 0, 16); } void cpu_probe(void) { uint32_t eax, ebx, ecx, edx; cpuid(1, eax, ebx, ecx, edx); cpuid_signature = eax; cpuid_features = edx; cpuid_ext_features = ecx; } static int cmos_readb(int addr) { outb(0x70, addr); return inb(0x71); } void setup_mtrr(void) { int i, vcnt, fix, wc; uint32_t mtrr_cap; union { uint8_t valb[8]; uint64_t val; } u; *(uint32_t *)SMP_MSR_ADDR = 0; if (!(cpuid_features & CPUID_MTRR)) return; if (!(cpuid_features & CPUID_MSR)) return; mtrr_cap = rdmsr(MSR_MTRRcap); vcnt = mtrr_cap & 0xff; fix = mtrr_cap & 0x100; wc = mtrr_cap & 0x400; if (!vcnt || !fix) return; u.val = 0; for (i = 0; i < 8; ++i) if (ram_size >= 65536 * (i + 1)) u.valb[i] = 6; wrmsr_smp(MSR_MTRRfix64K_00000, u.val); u.val = 0; for (i = 0; i < 8; ++i) if (ram_size >= 65536 * 8 + 16384 * (i + 1)) u.valb[i] = 6; wrmsr_smp(MSR_MTRRfix16K_80000, u.val); wrmsr_smp(MSR_MTRRfix16K_A0000, 0); wrmsr_smp(MSR_MTRRfix4K_C0000, 0); wrmsr_smp(MSR_MTRRfix4K_C8000, 0); wrmsr_smp(MSR_MTRRfix4K_D0000, 0); wrmsr_smp(MSR_MTRRfix4K_D8000, 0); wrmsr_smp(MSR_MTRRfix4K_E0000, 0); wrmsr_smp(MSR_MTRRfix4K_E8000, 0); wrmsr_smp(MSR_MTRRfix4K_F0000, 0); wrmsr_smp(MSR_MTRRfix4K_F8000, 0); /* Mark 3-4GB as UC, anything not specified defaults to WB */ wrmsr_smp(MTRRphysBase_MSR(0), 0xc0000000 | MTRR_MEMTYPE_UC); /* Make sure no reserved bit set to '1 in MTRRphysMask_MSR */ wrmsr_smp(MTRRphysMask_MSR(0), (uint32_t)(~(0x40000000 - 1)) | 0x800); wrmsr_smp(MSR_MTRRdefType, 0xc00 | MTRR_MEMTYPE_WB); } void ram_probe(void) { if (cmos_readb(0x34) | cmos_readb(0x35)) ram_size = (cmos_readb(0x34) | (cmos_readb(0x35) << 8)) * 65536 + 16 * 1024 * 1024; else ram_size = (cmos_readb(0x30) | (cmos_readb(0x31) << 8)) * 1024 + 1 * 1024 * 1024; BX_INFO("ram_size=0x%08lx\n", ram_size); if (cmos_readb(0x5b) | cmos_readb(0x5c) | cmos_readb(0x5d)) ram_end = (((uint64_t)cmos_readb(0x5b) << 16) | ((uint64_t)cmos_readb(0x5c) << 24) | ((uint64_t)cmos_readb(0x5d) << 32)) + (1ull << 32); else ram_end = ram_size; BX_INFO("ram_end=%ldMB\n", ram_end >> 20); #ifdef BX_USE_EBDA_TABLES ebda_cur_addr = ((*(uint16_t *)(0x40e)) << 4) + 0x386; BX_INFO("ebda_cur_addr: 0x%08lx\n", ebda_cur_addr); #endif } /****************************************************/ /* SMP probe */ extern uint8_t smp_ap_boot_code_start; extern uint8_t smp_ap_boot_code_end; /* find the number of CPUs by launching a SIPI to them */ void smp_probe(void) { uint32_t val, sipi_vector; writew(&smp_cpus, 1); if (cpuid_features & CPUID_APIC) { /* enable local APIC */ val = readl(APIC_BASE + APIC_SVR); val |= APIC_ENABLED; writel(APIC_BASE + APIC_SVR, val); /* copy AP boot code */ memcpy((void *)AP_BOOT_ADDR, &smp_ap_boot_code_start, &smp_ap_boot_code_end - &smp_ap_boot_code_start); /* broadcast SIPI */ writel(APIC_BASE + APIC_ICR_LOW, 0x000C4500); sipi_vector = AP_BOOT_ADDR >> 12; writel(APIC_BASE + APIC_ICR_LOW, 0x000C4600 | sipi_vector); #ifndef BX_QEMU delay_ms(10); #else while (cmos_readb(0x5f) + 1 != readw(&smp_cpus)) ; #endif } BX_INFO("Found %d cpu(s)\n", readw(&smp_cpus)); } /****************************************************/ /* PCI init */ typedef struct PCIDevice { int bus; int devfn; } PCIDevice; static uint32_t pci_bios_io_addr; static uint32_t pci_bios_mem_addr; static uint32_t pci_bios_rom_start; /* host irqs corresponding to PCI irqs A-D */ static uint8_t pci_irqs[4] = { 11, 9, 11, 9 }; static PCIDevice i440_pcidev = {-1, -1}; static void pci_config_writel(PCIDevice *d, uint32_t addr, uint32_t val) { outl(0xcf8, 0x80000000 | (d->bus << 16) | (d->devfn << 8) | (addr & 0xfc)); outl(0xcfc, val); } static void pci_config_writew(PCIDevice *d, uint32_t addr, uint32_t val) { outl(0xcf8, 0x80000000 | (d->bus << 16) | (d->devfn << 8) | (addr & 0xfc)); outw(0xcfc + (addr & 2), val); } static void pci_config_writeb(PCIDevice *d, uint32_t addr, uint32_t val) { outl(0xcf8, 0x80000000 | (d->bus << 16) | (d->devfn << 8) | (addr & 0xfc)); outb(0xcfc + (addr & 3), val); } static uint32_t pci_config_readl(PCIDevice *d, uint32_t addr) { outl(0xcf8, 0x80000000 | (d->bus << 16) | (d->devfn << 8) | (addr & 0xfc)); return inl(0xcfc); } static uint32_t pci_config_readw(PCIDevice *d, uint32_t addr) { outl(0xcf8, 0x80000000 | (d->bus << 16) | (d->devfn << 8) | (addr & 0xfc)); return inw(0xcfc + (addr & 2)); } static uint32_t pci_config_readb(PCIDevice *d, uint32_t addr) { outl(0xcf8, 0x80000000 | (d->bus << 16) | (d->devfn << 8) | (addr & 0xfc)); return inb(0xcfc + (addr & 3)); } static void pci_set_io_region_addr(PCIDevice *d, int region_num, uint32_t addr) { uint16_t cmd; uint32_t ofs, old_addr; if ( region_num == PCI_ROM_SLOT ) { ofs = PCI_ROM_ADDRESS; addr |= PCI_ROM_ADDRESS_ENABLE; }else{ ofs = PCI_BASE_ADDRESS_0 + region_num * 4; } old_addr = pci_config_readl(d, ofs); pci_config_writel(d, ofs, addr); BX_INFO("region %d: 0x%08x\n", region_num, addr & ~0x01); /* enable memory mappings */ cmd = pci_config_readw(d, PCI_COMMAND); if ( region_num == PCI_ROM_SLOT ) cmd |= PCI_COMMAND_MEMORY; else if (old_addr & PCI_ADDRESS_SPACE_IO) cmd |= PCI_COMMAND_IO; else cmd |= PCI_COMMAND_MEMORY; pci_config_writew(d, PCI_COMMAND, cmd); } /* return the global irq number corresponding to a given device irq pin. We could also use the bus number to have a more precise mapping. */ static int pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num) { int slot_addend; slot_addend = (pci_dev->devfn >> 3) - 1; return (irq_num + slot_addend) & 3; } static void find_bios_table_area(void) { unsigned long addr; for(addr = 0xf0000; addr < 0x100000; addr += 16) { if (*(uint32_t *)addr == 0xaafb4442) { bios_table_cur_addr = addr + 8; bios_table_end_addr = bios_table_cur_addr + *(uint32_t *)(addr + 4); BX_INFO("bios_table_addr: 0x%08lx end=0x%08lx\n", bios_table_cur_addr, bios_table_end_addr); return; } } return; } static void bios_shadow_init(PCIDevice *d) { int v; if (bios_table_cur_addr == 0) return; /* remap the BIOS to shadow RAM an keep it read/write while we are writing tables */ v = pci_config_readb(d, 0x59); v &= 0xcf; pci_config_writeb(d, 0x59, v); memcpy((void *)BIOS_TMP_STORAGE, (void *)0x000f0000, 0x10000); v |= 0x30; pci_config_writeb(d, 0x59, v); memcpy((void *)0x000f0000, (void *)BIOS_TMP_STORAGE, 0x10000); i440_pcidev = *d; } static void bios_lock_shadow_ram(void) { PCIDevice *d = &i440_pcidev; int v; wbinvd(); v = pci_config_readb(d, 0x59); v = (v & 0x0f) | (0x10); pci_config_writeb(d, 0x59, v); } static void pci_bios_init_bridges(PCIDevice *d) { uint16_t vendor_id, device_id; vendor_id = pci_config_readw(d, PCI_VENDOR_ID); device_id = pci_config_readw(d, PCI_DEVICE_ID); if (vendor_id == PCI_VENDOR_ID_INTEL && (device_id == PCI_DEVICE_ID_INTEL_82371SB_0 || device_id == PCI_DEVICE_ID_INTEL_82371AB_0)) { int i, irq; uint8_t elcr[2]; /* PIIX3/PIIX4 PCI to ISA bridge */ elcr[0] = 0x00; elcr[1] = 0x00; for(i = 0; i < 4; i++) { irq = pci_irqs[i]; /* set to trigger level */ elcr[irq >> 3] |= (1 << (irq & 7)); /* activate irq remapping in PIIX */ pci_config_writeb(d, 0x60 + i, irq); } outb(0x4d0, elcr[0]); outb(0x4d1, elcr[1]); BX_INFO("PIIX3/PIIX4 init: elcr=%02x %02x\n", elcr[0], elcr[1]); } else if (vendor_id == PCI_VENDOR_ID_INTEL && device_id == PCI_DEVICE_ID_INTEL_82441) { /* i440 PCI bridge */ bios_shadow_init(d); } } extern uint8_t smm_relocation_start, smm_relocation_end; extern uint8_t smm_code_start, smm_code_end; #ifdef BX_USE_SMM static void smm_init(PCIDevice *d) { uint32_t value; /* check if SMM init is already done */ value = pci_config_readl(d, 0x58); if ((value & (1 << 25)) == 0) { /* enable the SMM memory window */ pci_config_writeb(&i440_pcidev, 0x72, 0x02 | 0x48); /* save original memory content */ memcpy((void *)0xa8000, (void *)0x38000, 0x8000); /* copy the SMM relocation code */ memcpy((void *)0x38000, &smm_relocation_start, &smm_relocation_end - &smm_relocation_start); /* enable SMI generation when writing to the APMC register */ pci_config_writel(d, 0x58, value | (1 << 25)); /* init APM status port */ outb(0xb3, 0x01); /* raise an SMI interrupt */ outb(0xb2, 0x00); /* wait until SMM code executed */ while (inb(0xb3) != 0x00); /* restore original memory content */ memcpy((void *)0x38000, (void *)0xa8000, 0x8000); /* copy the SMM code */ memcpy((void *)0xa8000, &smm_code_start, &smm_code_end - &smm_code_start); wbinvd(); /* close the SMM memory window and enable normal SMM */ pci_config_writeb(&i440_pcidev, 0x72, 0x02 | 0x08); } } #endif static void piix4_pm_enable(PCIDevice *d) { /* PIIX4 Power Management device (for ACPI) */ pci_config_writel(d, 0x40, PM_IO_BASE | 1); pci_config_writeb(d, 0x80, 0x01); /* enable PM io space */ pci_config_writel(d, 0x90, SMB_IO_BASE | 1); pci_config_writeb(d, 0xd2, 0x09); /* enable SMBus io space */ #ifdef BX_USE_SMM smm_init(d); #endif } static void pci_bios_init_pcirom(PCIDevice *d, uint32_t paddr) { PCIDevice d1, *i440fx = &d1; uint32_t tmpaddr, size; uint8_t reg, v; int copied, shift, tmpsize; i440fx->bus = 0; i440fx->devfn = 0; if (paddr != 0) { size = readb((void *)(paddr + 2)); if (size & 0x03) { size &= 0xfc; size += 0x04; } size <<= 9; if ((pci_bios_rom_start + size) > 0xe0000) return; tmpaddr = pci_bios_rom_start; copied = 0; do { tmpsize = 0x4000 - (tmpaddr & 0x3fff); if ((size - copied) < tmpsize) { tmpsize = size - copied; } reg = 0x5a + (uint8_t)((tmpaddr >> 15) & 0x07); if (tmpaddr & 0x4000) { shift = 4; } else { shift = 0; } v = pci_config_readb(i440fx, reg); v = (v & (~(0x03 << shift))) | (0x02 << shift); pci_config_writeb(i440fx, reg, v); memcpy((void *)tmpaddr, (void *)(paddr + copied), tmpsize); v = (v & (~(0x03 << shift))) | (0x01 << shift); pci_config_writeb(i440fx, reg, v); tmpaddr += tmpsize; copied += tmpsize; } while (copied < size); BX_INFO("PCI ROM copied to 0x%05x (size=0x%05x)\n", pci_bios_rom_start, size); pci_bios_rom_start += size; pci_config_writeb(d, PCI_ROM_ADDRESS, 0x00); } } static void pci_bios_init_device(PCIDevice *d) { PCIDevice d1, *i440fx = &d1; uint16_t class; uint32_t *paddr; int i, pin, pic_irq, vendor_id, device_id; i440fx->bus = 0; i440fx->devfn = 0; class = pci_config_readw(d, PCI_CLASS_DEVICE); vendor_id = pci_config_readw(d, PCI_VENDOR_ID); device_id = pci_config_readw(d, PCI_DEVICE_ID); BX_INFO("PCI: bus=%d devfn=0x%02x: vendor_id=0x%04x device_id=0x%04x class=0x%04x\n", d->bus, d->devfn, vendor_id, device_id, class); switch(class) { case PCI_CLASS_STORAGE_IDE: if (vendor_id == PCI_VENDOR_ID_INTEL && (device_id == PCI_DEVICE_ID_INTEL_82371SB_1 || device_id == PCI_DEVICE_ID_INTEL_82371AB)) { /* PIIX3/PIIX4 IDE */ pci_config_writew(d, 0x40, 0x8000); // enable IDE0 pci_config_writew(d, 0x42, 0x8000); // enable IDE1 goto default_map; } else { /* IDE: we map it as in ISA mode */ pci_set_io_region_addr(d, 0, 0x1f0); pci_set_io_region_addr(d, 1, 0x3f4); pci_set_io_region_addr(d, 2, 0x170); pci_set_io_region_addr(d, 3, 0x374); } break; case PCI_CLASS_SYSTEM_PIC: if (vendor_id == PCI_VENDOR_ID_IBM) { /* IBM */ if (device_id == 0x0046 || device_id == 0xFFFF) { /* MPIC & MPIC2 */ pci_set_io_region_addr(d, 0, 0x80800000 + 0x00040000); } } break; case 0xff00: if (vendor_id == PCI_VENDOR_ID_APPLE && (device_id == 0x0017 || device_id == 0x0022)) { /* macio bridge */ pci_set_io_region_addr(d, 0, 0x80800000); } break; default: default_map: /* default memory mappings */ for(i = 0; i < PCI_NUM_REGIONS; i++) { int ofs; uint32_t val, size ; if (i == PCI_ROM_SLOT) { ofs = PCI_ROM_ADDRESS; pci_config_writel(d, ofs, 0xfffffffe); } else { ofs = PCI_BASE_ADDRESS_0 + i * 4; pci_config_writel(d, ofs, 0xffffffff); } val = pci_config_readl(d, ofs); if (val != 0) { size = (~(val & ~0xf)) + 1; if (val & PCI_ADDRESS_SPACE_IO) paddr = &pci_bios_io_addr; else paddr = &pci_bios_mem_addr; *paddr = (*paddr + size - 1) & ~(size - 1); pci_set_io_region_addr(d, i, *paddr); if ((i == PCI_ROM_SLOT) && (class == PCI_CLASS_DISPLAY_VGA)) { pci_bios_init_pcirom(d, *paddr); } *paddr += size; } } break; } /* map the interrupt */ pin = pci_config_readb(d, PCI_INTERRUPT_PIN); if (pin != 0) { pin = pci_slot_get_pirq(d, pin - 1); pic_irq = pci_irqs[pin]; pci_config_writeb(d, PCI_INTERRUPT_LINE, pic_irq); } if (vendor_id == PCI_VENDOR_ID_INTEL && device_id == PCI_DEVICE_ID_INTEL_82371AB_3) { /* PIIX4 Power Management device (for ACPI) */ pm_io_base = PM_IO_BASE; smb_io_base = SMB_IO_BASE; // acpi sci is hardwired to 9 pci_config_writeb(d, PCI_INTERRUPT_LINE, 9); pm_sci_int = pci_config_readb(d, PCI_INTERRUPT_LINE); piix4_pm_enable(d); acpi_enabled = 1; } } static void pci_bios_init_optrom(PCIDevice *d) { uint32_t paddr; uint16_t class; class = pci_config_readw(d, PCI_CLASS_DEVICE); if (class != PCI_CLASS_DISPLAY_VGA) { paddr = pci_config_readl(d, PCI_ROM_ADDRESS) & 0xfffffc00; pci_bios_init_pcirom(d, paddr); } } void pci_for_each_device(void (*init_func)(PCIDevice *d)) { PCIDevice d1, *d = &d1; int bus, devfn; uint16_t vendor_id, device_id; for(bus = 0; bus < 1; bus++) { for(devfn = 0; devfn < 256; devfn++) { d->bus = bus; d->devfn = devfn; vendor_id = pci_config_readw(d, PCI_VENDOR_ID); device_id = pci_config_readw(d, PCI_DEVICE_ID); if (vendor_id != 0xffff || device_id != 0xffff) { init_func(d); } } } } void pci_bios_init(void) { pci_bios_io_addr = 0xc000; pci_bios_mem_addr = 0xc0000000; pci_bios_rom_start = 0xc0000; pci_for_each_device(pci_bios_init_bridges); pci_for_each_device(pci_bios_init_device); pci_for_each_device(pci_bios_init_optrom); } /****************************************************/ /* Multi Processor table init */ static void putb(uint8_t **pp, int val) { uint8_t *q; q = *pp; *q++ = val; *pp = q; } static void putstr(uint8_t **pp, const char *str) { uint8_t *q; q = *pp; while (*str) *q++ = *str++; *pp = q; } static void putle16(uint8_t **pp, int val) { uint8_t *q; q = *pp; *q++ = val; *q++ = val >> 8; *pp = q; } static void putle32(uint8_t **pp, int val) { uint8_t *q; q = *pp; *q++ = val; *q++ = val >> 8; *q++ = val >> 16; *q++ = val >> 24; *pp = q; } static int mpf_checksum(const uint8_t *data, int len) { int sum, i; sum = 0; for(i = 0; i < len; i++) sum += data[i]; return sum & 0xff; } static unsigned long align(unsigned long addr, unsigned long v) { return (addr + v - 1) & ~(v - 1); } static void mptable_init(void) { uint8_t *mp_config_table, *q, *float_pointer_struct; int ioapic_id, i, len; int mp_config_table_size; #ifdef BX_USE_EBDA_TABLES if (ram_size - ACPI_DATA_SIZE - MPTABLE_MAX_SIZE < 0x100000) { BX_INFO("Not enough memory for MPC table\n"); return; } mp_config_table = (uint8_t *)(ram_size - ACPI_DATA_SIZE - MPTABLE_MAX_SIZE); #else bios_table_cur_addr = align(bios_table_cur_addr, 16); mp_config_table = (uint8_t *)bios_table_cur_addr; #endif q = mp_config_table; putstr(&q, "PCMP"); /* "PCMP signature */ putle16(&q, 0); /* table length (patched later) */ putb(&q, 4); /* spec rev */ putb(&q, 0); /* checksum (patched later) */ #ifdef BX_QEMU putstr(&q, "QEMUCPU "); /* OEM id */ #else putstr(&q, "BOCHSCPU"); #endif putstr(&q, "0.1 "); /* vendor id */ putle32(&q, 0); /* OEM table ptr */ putle16(&q, 0); /* OEM table size */ putle16(&q, smp_cpus + 18); /* entry count */ putle32(&q, 0xfee00000); /* local APIC addr */ putle16(&q, 0); /* ext table length */ putb(&q, 0); /* ext table checksum */ putb(&q, 0); /* reserved */ for(i = 0; i < smp_cpus; i++) { putb(&q, 0); /* entry type = processor */ putb(&q, i); /* APIC id */ putb(&q, 0x11); /* local APIC version number */ if (i == 0) putb(&q, 3); /* cpu flags: enabled, bootstrap cpu */ else putb(&q, 1); /* cpu flags: enabled */ if (cpuid_signature) { putle32(&q, cpuid_signature); putle32(&q, cpuid_features); } else { putb(&q, 0); /* cpu signature */ putb(&q, 6); putb(&q, 0); putb(&q, 0); putle16(&q, 0x201); /* feature flags */ putle16(&q, 0); } putle16(&q, 0); /* reserved */ putle16(&q, 0); putle16(&q, 0); putle16(&q, 0); } /* isa bus */ putb(&q, 1); /* entry type = bus */ putb(&q, 0); /* bus ID */ putstr(&q, "ISA "); /* ioapic */ ioapic_id = smp_cpus; putb(&q, 2); /* entry type = I/O APIC */ putb(&q, ioapic_id); /* apic ID */ putb(&q, 0x11); /* I/O APIC version number */ putb(&q, 1); /* enable */ putle32(&q, 0xfec00000); /* I/O APIC addr */ /* irqs */ for(i = 0; i < 16; i++) { /* One entry per ioapic input. Input 2 is covered by irq0->inti2 override (i == 0). irq 2 is unused */ if (i == 2) continue; putb(&q, 3); /* entry type = I/O interrupt */ putb(&q, 0); /* interrupt type = vectored interrupt */ putb(&q, 0); /* flags: po=0, el=0 */ putb(&q, 0); putb(&q, 0); /* source bus ID = ISA */ putb(&q, i); /* source bus IRQ */ putb(&q, ioapic_id); /* dest I/O APIC ID */ putb(&q, i == 0 ? 2 : i); /* dest I/O APIC interrupt in */ } /* patch length */ len = q - mp_config_table; mp_config_table[4] = len; mp_config_table[5] = len >> 8; mp_config_table[7] = -mpf_checksum(mp_config_table, q - mp_config_table); mp_config_table_size = q - mp_config_table; #ifndef BX_USE_EBDA_TABLES bios_table_cur_addr += mp_config_table_size; #endif /* floating pointer structure */ #ifdef BX_USE_EBDA_TABLES ebda_cur_addr = align(ebda_cur_addr, 16); float_pointer_struct = (uint8_t *)ebda_cur_addr; #else bios_table_cur_addr = align(bios_table_cur_addr, 16); float_pointer_struct = (uint8_t *)bios_table_cur_addr; #endif q = float_pointer_struct; putstr(&q, "_MP_"); /* pointer to MP config table */ putle32(&q, (unsigned long)mp_config_table); putb(&q, 1); /* length in 16 byte units */ putb(&q, 4); /* MP spec revision */ putb(&q, 0); /* checksum (patched later) */ putb(&q, 0); /* MP feature byte 1 */ putb(&q, 0); putb(&q, 0); putb(&q, 0); putb(&q, 0); float_pointer_struct[10] = -mpf_checksum(float_pointer_struct, q - float_pointer_struct); #ifdef BX_USE_EBDA_TABLES ebda_cur_addr += (q - float_pointer_struct); #else bios_table_cur_addr += (q - float_pointer_struct); #endif BX_INFO("MP table addr=0x%08lx MPC table addr=0x%08lx size=0x%x\n", (unsigned long)float_pointer_struct, (unsigned long)mp_config_table, mp_config_table_size); } /****************************************************/ /* ACPI tables init */ /* Table structure from Linux kernel (the ACPI tables are under the BSD license) */ /* * All tables must be byte-packed to match the ACPI specification, since * the tables are provided by the system BIOS. */ #define ACPI_TABLE_HEADER_DEF /* ACPI common table header */ \ uint8_t signature [4]; /* ACPI signature (4 ASCII characters) */\ uint32_t length; /* Length of table, in bytes, including header */\ uint8_t revision; /* ACPI Specification minor version # */\ uint8_t checksum; /* To make sum of entire table == 0 */\ uint8_t oem_id [6]; /* OEM identification */\ uint8_t oem_table_id [8]; /* OEM table identification */\ uint32_t oem_revision; /* OEM revision number */\ uint8_t asl_compiler_id [4]; /* ASL compiler vendor ID */\ uint32_t asl_compiler_revision; /* ASL compiler revision number */ struct acpi_table_header /* ACPI common table header */ { ACPI_TABLE_HEADER_DEF } __attribute__((__packed__)); struct rsdp_descriptor /* Root System Descriptor Pointer */ { uint8_t signature [8]; /* ACPI signature, contains "RSD PTR " */ uint8_t checksum; /* To make sum of struct == 0 */ uint8_t oem_id [6]; /* OEM identification */ uint8_t revision; /* Must be 0 for 1.0, 2 for 2.0 */ uint32_t rsdt_physical_address; /* 32-bit physical address of RSDT */ uint32_t length; /* XSDT Length in bytes including hdr */ uint64_t xsdt_physical_address; /* 64-bit physical address of XSDT */ uint8_t extended_checksum; /* Checksum of entire table */ uint8_t reserved [3]; /* Reserved field must be 0 */ } __attribute__((__packed__)); /* * ACPI 1.0 Root System Description Table (RSDT) */ struct rsdt_descriptor_rev1 { ACPI_TABLE_HEADER_DEF /* ACPI common table header */ #ifdef BX_QEMU uint32_t table_offset_entry [4]; /* Array of pointers to other */ #else uint32_t table_offset_entry [3]; /* Array of pointers to other */ #endif /* ACPI tables */ } __attribute__((__packed__)); /* * ACPI 1.0 Firmware ACPI Control Structure (FACS) */ struct facs_descriptor_rev1 { uint8_t signature[4]; /* ACPI Signature */ uint32_t length; /* Length of structure, in bytes */ uint32_t hardware_signature; /* Hardware configuration signature */ uint32_t firmware_waking_vector; /* ACPI OS waking vector */ uint32_t global_lock; /* Global Lock */ uint32_t S4bios_f : 1; /* Indicates if S4BIOS support is present */ uint32_t reserved1 : 31; /* Must be 0 */ uint8_t resverved3 [40]; /* Reserved - must be zero */ } __attribute__((__packed__)); /* * ACPI 1.0 Fixed ACPI Description Table (FADT) */ struct fadt_descriptor_rev1 { ACPI_TABLE_HEADER_DEF /* ACPI common table header */ uint32_t firmware_ctrl; /* Physical address of FACS */ uint32_t dsdt; /* Physical address of DSDT */ uint8_t model; /* System Interrupt Model */ uint8_t reserved1; /* Reserved */ uint16_t sci_int; /* System vector of SCI interrupt */ uint32_t smi_cmd; /* Port address of SMI command port */ uint8_t acpi_enable; /* Value to write to smi_cmd to enable ACPI */ uint8_t acpi_disable; /* Value to write to smi_cmd to disable ACPI */ uint8_t S4bios_req; /* Value to write to SMI CMD to enter S4BIOS state */ uint8_t reserved2; /* Reserved - must be zero */ uint32_t pm1a_evt_blk; /* Port address of Power Mgt 1a acpi_event Reg Blk */ uint32_t pm1b_evt_blk; /* Port address of Power Mgt 1b acpi_event Reg Blk */ uint32_t pm1a_cnt_blk; /* Port address of Power Mgt 1a Control Reg Blk */ uint32_t pm1b_cnt_blk; /* Port address of Power Mgt 1b Control Reg Blk */ uint32_t pm2_cnt_blk; /* Port address of Power Mgt 2 Control Reg Blk */ uint32_t pm_tmr_blk; /* Port address of Power Mgt Timer Ctrl Reg Blk */ uint32_t gpe0_blk; /* Port addr of General Purpose acpi_event 0 Reg Blk */ uint32_t gpe1_blk; /* Port addr of General Purpose acpi_event 1 Reg Blk */ uint8_t pm1_evt_len; /* Byte length of ports at pm1_x_evt_blk */ uint8_t pm1_cnt_len; /* Byte length of ports at pm1_x_cnt_blk */ uint8_t pm2_cnt_len; /* Byte Length of ports at pm2_cnt_blk */ uint8_t pm_tmr_len; /* Byte Length of ports at pm_tm_blk */ uint8_t gpe0_blk_len; /* Byte Length of ports at gpe0_blk */ uint8_t gpe1_blk_len; /* Byte Length of ports at gpe1_blk */ uint8_t gpe1_base; /* Offset in gpe model where gpe1 events start */ uint8_t reserved3; /* Reserved */ uint16_t plvl2_lat; /* Worst case HW latency to enter/exit C2 state */ uint16_t plvl3_lat; /* Worst case HW latency to enter/exit C3 state */ uint16_t flush_size; /* Size of area read to flush caches */ uint16_t flush_stride; /* Stride used in flushing caches */ uint8_t duty_offset; /* Bit location of duty cycle field in p_cnt reg */ uint8_t duty_width; /* Bit width of duty cycle field in p_cnt reg */ uint8_t day_alrm; /* Index to day-of-month alarm in RTC CMOS RAM */ uint8_t mon_alrm; /* Index to month-of-year alarm in RTC CMOS RAM */ uint8_t century; /* Index to century in RTC CMOS RAM */ uint8_t reserved4; /* Reserved */ uint8_t reserved4a; /* Reserved */ uint8_t reserved4b; /* Reserved */ #if 0 uint32_t wb_invd : 1; /* The wbinvd instruction works properly */ uint32_t wb_invd_flush : 1; /* The wbinvd flushes but does not invalidate */ uint32_t proc_c1 : 1; /* All processors support C1 state */ uint32_t plvl2_up : 1; /* C2 state works on MP system */ uint32_t pwr_button : 1; /* Power button is handled as a generic feature */ uint32_t sleep_button : 1; /* Sleep button is handled as a generic feature, or not present */ uint32_t fixed_rTC : 1; /* RTC wakeup stat not in fixed register space */ uint32_t rtcs4 : 1; /* RTC wakeup stat not possible from S4 */ uint32_t tmr_val_ext : 1; /* The tmr_val width is 32 bits (0 = 24 bits) */ uint32_t reserved5 : 23; /* Reserved - must be zero */ #else uint32_t flags; #endif } __attribute__((__packed__)); /* * MADT values and structures */ /* Values for MADT PCATCompat */ #define DUAL_PIC 0 #define MULTIPLE_APIC 1 /* Master MADT */ struct multiple_apic_table { ACPI_TABLE_HEADER_DEF /* ACPI common table header */ uint32_t local_apic_address; /* Physical address of local APIC */ #if 0 uint32_t PCATcompat : 1; /* A one indicates system also has dual 8259s */ uint32_t reserved1 : 31; #else uint32_t flags; #endif } __attribute__((__packed__)); /* Values for Type in APIC_HEADER_DEF */ #define APIC_PROCESSOR 0 #define APIC_IO 1 #define APIC_XRUPT_OVERRIDE 2 #define APIC_NMI 3 #define APIC_LOCAL_NMI 4 #define APIC_ADDRESS_OVERRIDE 5 #define APIC_IO_SAPIC 6 #define APIC_LOCAL_SAPIC 7 #define APIC_XRUPT_SOURCE 8 #define APIC_RESERVED 9 /* 9 and greater are reserved */ /* * MADT sub-structures (Follow MULTIPLE_APIC_DESCRIPTION_TABLE) */ #define APIC_HEADER_DEF /* Common APIC sub-structure header */\ uint8_t type; \ uint8_t length; /* Sub-structures for MADT */ struct madt_processor_apic { APIC_HEADER_DEF uint8_t processor_id; /* ACPI processor id */ uint8_t local_apic_id; /* Processor's local APIC id */ #if 0 uint32_t processor_enabled: 1; /* Processor is usable if set */ uint32_t reserved2 : 31; /* Reserved, must be zero */ #else uint32_t flags; #endif } __attribute__((__packed__)); #ifdef BX_QEMU /* * * ACPI 2.0 Generic Address Space definition. * */ struct acpi_20_generic_address { uint8_t address_space_id; uint8_t register_bit_width; uint8_t register_bit_offset; uint8_t reserved; uint64_t address; } __attribute__((__packed__)); /* * * HPET Description Table * */ struct acpi_20_hpet { ACPI_TABLE_HEADER_DEF /* ACPI common table header */ uint32_t timer_block_id; struct acpi_20_generic_address addr; uint8_t hpet_number; uint16_t min_tick; uint8_t page_protect; } __attribute__((__packed__)); #define ACPI_HPET_ADDRESS 0xFED00000UL #endif struct madt_io_apic { APIC_HEADER_DEF uint8_t io_apic_id; /* I/O APIC ID */ uint8_t reserved; /* Reserved - must be zero */ uint32_t address; /* APIC physical address */ uint32_t interrupt; /* Global system interrupt where INTI * lines start */ } __attribute__((__packed__)); struct madt_int_override { APIC_HEADER_DEF uint8_t bus; /* Identifies ISA Bus */ uint8_t source; /* Bus-relative interrupt source */ uint32_t gsi; /* GSI that source will signal */ uint16_t flags; /* MPS INTI flags */ } __attribute__((__packed__)); #include "acpi-dsdt.hex" static inline uint16_t cpu_to_le16(uint16_t x) { return x; } static inline uint32_t cpu_to_le32(uint32_t x) { return x; } static int acpi_checksum(const uint8_t *data, int len) { int sum, i; sum = 0; for(i = 0; i < len; i++) sum += data[i]; return (-sum) & 0xff; } static void acpi_build_table_header(struct acpi_table_header *h, char *sig, int len, uint8_t rev) { memcpy(h->signature, sig, 4); h->length = cpu_to_le32(len); h->revision = rev; #ifdef BX_QEMU memcpy(h->oem_id, "QEMU ", 6); memcpy(h->oem_table_id, "QEMU", 4); #else memcpy(h->oem_id, "BOCHS ", 6); memcpy(h->oem_table_id, "BXPC", 4); #endif memcpy(h->oem_table_id + 4, sig, 4); h->oem_revision = cpu_to_le32(1); #ifdef BX_QEMU memcpy(h->asl_compiler_id, "QEMU", 4); #else memcpy(h->asl_compiler_id, "BXPC", 4); #endif h->asl_compiler_revision = cpu_to_le32(1); h->checksum = acpi_checksum((void *)h, len); } int acpi_build_processor_ssdt(uint8_t *ssdt) { uint8_t *ssdt_ptr = ssdt; int i, length; int acpi_cpus = smp_cpus > 0xff ? 0xff : smp_cpus; ssdt_ptr[9] = 0; // checksum; ssdt_ptr += sizeof(struct acpi_table_header); // caluculate the length of processor block and scope block excluding PkgLength length = 0x0d * acpi_cpus + 4; // build processor scope header *(ssdt_ptr++) = 0x10; // ScopeOp if (length <= 0x3e) { /* Handle 1-4 CPUs with one byte encoding */ *(ssdt_ptr++) = length + 1; } else { /* Handle 5-314 CPUs with two byte encoding */ *(ssdt_ptr++) = 0x40 | ((length + 2) & 0xf); *(ssdt_ptr++) = (length + 2) >> 4; } *(ssdt_ptr++) = '_'; // Name *(ssdt_ptr++) = 'P'; *(ssdt_ptr++) = 'R'; *(ssdt_ptr++) = '_'; // build object for each processor for(i=0;i> 4) < 0xa ? (i >> 4) + '0' : (i >> 4) + 'A' - 0xa; else *(ssdt_ptr++) = 'U'; *(ssdt_ptr++) = (i & 0xf) < 0xa ? (i & 0xf) + '0' : (i & 0xf) + 'A' - 0xa; *(ssdt_ptr++) = i; *(ssdt_ptr++) = 0x10; // Processor block address *(ssdt_ptr++) = 0xb0; *(ssdt_ptr++) = 0; *(ssdt_ptr++) = 0; *(ssdt_ptr++) = 6; // Processor block length } acpi_build_table_header((struct acpi_table_header *)ssdt, "SSDT", ssdt_ptr - ssdt, 1); return ssdt_ptr - ssdt; } /* base_addr must be a multiple of 4KB */ void acpi_bios_init(void) { struct rsdp_descriptor *rsdp; struct rsdt_descriptor_rev1 *rsdt; struct fadt_descriptor_rev1 *fadt; struct facs_descriptor_rev1 *facs; struct multiple_apic_table *madt; uint8_t *dsdt, *ssdt; #ifdef BX_QEMU struct acpi_20_hpet *hpet; uint32_t hpet_addr; #endif uint32_t base_addr, rsdt_addr, fadt_addr, addr, facs_addr, dsdt_addr, ssdt_addr; uint32_t acpi_tables_size, madt_addr, madt_size; int i; if (ram_size - ACPI_DATA_SIZE < 0x100000) { BX_INFO("Not enough memory for ACPI tables\n"); return; } /* reserve memory space for tables */ #ifdef BX_USE_EBDA_TABLES ebda_cur_addr = align(ebda_cur_addr, 16); rsdp = (void *)(ebda_cur_addr); ebda_cur_addr += sizeof(*rsdp); #else bios_table_cur_addr = align(bios_table_cur_addr, 16); rsdp = (void *)(bios_table_cur_addr); bios_table_cur_addr += sizeof(*rsdp); #endif addr = base_addr = ram_size - ACPI_DATA_SIZE; rsdt_addr = addr; rsdt = (void *)(addr); addr += sizeof(*rsdt); fadt_addr = addr; fadt = (void *)(addr); addr += sizeof(*fadt); /* XXX: FACS should be in RAM */ addr = (addr + 63) & ~63; /* 64 byte alignment for FACS */ facs_addr = addr; facs = (void *)(addr); addr += sizeof(*facs); dsdt_addr = addr; dsdt = (void *)(addr); addr += sizeof(AmlCode); ssdt_addr = addr; ssdt = (void *)(addr); addr += acpi_build_processor_ssdt(ssdt); addr = (addr + 7) & ~7; madt_addr = addr; madt_size = sizeof(*madt) + sizeof(struct madt_processor_apic) * smp_cpus + sizeof(struct madt_io_apic) + sizeof(struct madt_int_override); madt = (void *)(addr); addr += madt_size; #ifdef BX_QEMU addr = (addr + 7) & ~7; hpet_addr = addr; hpet = (void *)(addr); addr += sizeof(*hpet); #endif acpi_tables_size = addr - base_addr; BX_INFO("ACPI tables: RSDP addr=0x%08lx ACPI DATA addr=0x%08lx size=0x%x\n", (unsigned long)rsdp, (unsigned long)rsdt, acpi_tables_size); /* RSDP */ memset(rsdp, 0, sizeof(*rsdp)); memcpy(rsdp->signature, "RSD PTR ", 8); #ifdef BX_QEMU memcpy(rsdp->oem_id, "QEMU ", 6); #else memcpy(rsdp->oem_id, "BOCHS ", 6); #endif rsdp->rsdt_physical_address = cpu_to_le32(rsdt_addr); rsdp->checksum = acpi_checksum((void *)rsdp, 20); /* RSDT */ memset(rsdt, 0, sizeof(*rsdt)); rsdt->table_offset_entry[0] = cpu_to_le32(fadt_addr); rsdt->table_offset_entry[1] = cpu_to_le32(madt_addr); rsdt->table_offset_entry[2] = cpu_to_le32(ssdt_addr); #ifdef BX_QEMU rsdt->table_offset_entry[3] = cpu_to_le32(hpet_addr); #endif acpi_build_table_header((struct acpi_table_header *)rsdt, "RSDT", sizeof(*rsdt), 1); /* FADT */ memset(fadt, 0, sizeof(*fadt)); fadt->firmware_ctrl = cpu_to_le32(facs_addr); fadt->dsdt = cpu_to_le32(dsdt_addr); fadt->model = 1; fadt->reserved1 = 0; fadt->sci_int = cpu_to_le16(pm_sci_int); fadt->smi_cmd = cpu_to_le32(SMI_CMD_IO_ADDR); fadt->acpi_enable = 0xf1; fadt->acpi_disable = 0xf0; fadt->pm1a_evt_blk = cpu_to_le32(pm_io_base); fadt->pm1a_cnt_blk = cpu_to_le32(pm_io_base + 0x04); fadt->pm_tmr_blk = cpu_to_le32(pm_io_base + 0x08); fadt->pm1_evt_len = 4; fadt->pm1_cnt_len = 2; fadt->pm_tmr_len = 4; fadt->plvl2_lat = cpu_to_le16(0xfff); // C2 state not supported fadt->plvl3_lat = cpu_to_le16(0xfff); // C3 state not supported /* WBINVD + PROC_C1 + PWR_BUTTON + SLP_BUTTON + FIX_RTC */ fadt->flags = cpu_to_le32((1 << 0) | (1 << 2) | (1 << 4) | (1 << 5) | (1 << 6)); acpi_build_table_header((struct acpi_table_header *)fadt, "FACP", sizeof(*fadt), 1); /* FACS */ memset(facs, 0, sizeof(*facs)); memcpy(facs->signature, "FACS", 4); facs->length = cpu_to_le32(sizeof(*facs)); BX_INFO("Firmware waking vector %p\n", &facs->firmware_waking_vector); /* DSDT */ memcpy(dsdt, AmlCode, sizeof(AmlCode)); /* MADT */ { struct madt_processor_apic *apic; struct madt_io_apic *io_apic; struct madt_int_override *int_override; memset(madt, 0, madt_size); madt->local_apic_address = cpu_to_le32(0xfee00000); madt->flags = cpu_to_le32(1); apic = (void *)(madt + 1); for(i=0;itype = APIC_PROCESSOR; apic->length = sizeof(*apic); apic->processor_id = i; apic->local_apic_id = i; apic->flags = cpu_to_le32(1); apic++; } io_apic = (void *)apic; io_apic->type = APIC_IO; io_apic->length = sizeof(*io_apic); io_apic->io_apic_id = smp_cpus; io_apic->address = cpu_to_le32(0xfec00000); io_apic->interrupt = cpu_to_le32(0); io_apic++; int_override = (void *)io_apic; int_override->type = APIC_XRUPT_OVERRIDE; int_override->length = sizeof(*int_override); int_override->bus = cpu_to_le32(0); int_override->source = cpu_to_le32(0); int_override->gsi = cpu_to_le32(2); int_override->flags = cpu_to_le32(0); acpi_build_table_header((struct acpi_table_header *)madt, "APIC", madt_size, 1); } #ifdef BX_QEMU /* HPET */ memset(hpet, 0, sizeof(*hpet)); /* Note timer_block_id value must be kept in sync with value advertised by * emulated hpet */ hpet->timer_block_id = cpu_to_le32(0x8086a201); hpet->addr.address = cpu_to_le32(ACPI_HPET_ADDRESS); acpi_build_table_header((struct acpi_table_header *)hpet, "HPET", sizeof(*hpet), 1); #endif } /* SMBIOS entry point -- must be written to a 16-bit aligned address between 0xf0000 and 0xfffff. */ struct smbios_entry_point { char anchor_string[4]; uint8_t checksum; uint8_t length; uint8_t smbios_major_version; uint8_t smbios_minor_version; uint16_t max_structure_size; uint8_t entry_point_revision; uint8_t formatted_area[5]; char intermediate_anchor_string[5]; uint8_t intermediate_checksum; uint16_t structure_table_length; uint32_t structure_table_address; uint16_t number_of_structures; uint8_t smbios_bcd_revision; } __attribute__((__packed__)); /* This goes at the beginning of every SMBIOS structure. */ struct smbios_structure_header { uint8_t type; uint8_t length; uint16_t handle; } __attribute__((__packed__)); /* SMBIOS type 0 - BIOS Information */ struct smbios_type_0 { struct smbios_structure_header header; uint8_t vendor_str; uint8_t bios_version_str; uint16_t bios_starting_address_segment; uint8_t bios_release_date_str; uint8_t bios_rom_size; uint8_t bios_characteristics[8]; uint8_t bios_characteristics_extension_bytes[2]; uint8_t system_bios_major_release; uint8_t system_bios_minor_release; uint8_t embedded_controller_major_release; uint8_t embedded_controller_minor_release; } __attribute__((__packed__)); /* SMBIOS type 1 - System Information */ struct smbios_type_1 { struct smbios_structure_header header; uint8_t manufacturer_str; uint8_t product_name_str; uint8_t version_str; uint8_t serial_number_str; uint8_t uuid[16]; uint8_t wake_up_type; uint8_t sku_number_str; uint8_t family_str; } __attribute__((__packed__)); /* SMBIOS type 3 - System Enclosure (v2.3) */ struct smbios_type_3 { struct smbios_structure_header header; uint8_t manufacturer_str; uint8_t type; uint8_t version_str; uint8_t serial_number_str; uint8_t asset_tag_number_str; uint8_t boot_up_state; uint8_t power_supply_state; uint8_t thermal_state; uint8_t security_status; uint32_t oem_defined; uint8_t height; uint8_t number_of_power_cords; uint8_t contained_element_count; // contained elements follow } __attribute__((__packed__)); /* SMBIOS type 4 - Processor Information (v2.0) */ struct smbios_type_4 { struct smbios_structure_header header; uint8_t socket_designation_str; uint8_t processor_type; uint8_t processor_family; uint8_t processor_manufacturer_str; uint32_t processor_id[2]; uint8_t processor_version_str; uint8_t voltage; uint16_t external_clock; uint16_t max_speed; uint16_t current_speed; uint8_t status; uint8_t processor_upgrade; uint16_t l1_cache_handle; uint16_t l2_cache_handle; uint16_t l3_cache_handle; } __attribute__((__packed__)); /* SMBIOS type 16 - Physical Memory Array * Associated with one type 17 (Memory Device). */ struct smbios_type_16 { struct smbios_structure_header header; uint8_t location; uint8_t use; uint8_t error_correction; uint32_t maximum_capacity; uint16_t memory_error_information_handle; uint16_t number_of_memory_devices; } __attribute__((__packed__)); /* SMBIOS type 17 - Memory Device * Associated with one type 19 */ struct smbios_type_17 { struct smbios_structure_header header; uint16_t physical_memory_array_handle; uint16_t memory_error_information_handle; uint16_t total_width; uint16_t data_width; uint16_t size; uint8_t form_factor; uint8_t device_set; uint8_t device_locator_str; uint8_t bank_locator_str; uint8_t memory_type; uint16_t type_detail; } __attribute__((__packed__)); /* SMBIOS type 19 - Memory Array Mapped Address */ struct smbios_type_19 { struct smbios_structure_header header; uint32_t starting_address; uint32_t ending_address; uint16_t memory_array_handle; uint8_t partition_width; } __attribute__((__packed__)); /* SMBIOS type 20 - Memory Device Mapped Address */ struct smbios_type_20 { struct smbios_structure_header header; uint32_t starting_address; uint32_t ending_address; uint16_t memory_device_handle; uint16_t memory_array_mapped_address_handle; uint8_t partition_row_position; uint8_t interleave_position; uint8_t interleaved_data_depth; } __attribute__((__packed__)); /* SMBIOS type 32 - System Boot Information */ struct smbios_type_32 { struct smbios_structure_header header; uint8_t reserved[6]; uint8_t boot_status; } __attribute__((__packed__)); /* SMBIOS type 127 -- End-of-table */ struct smbios_type_127 { struct smbios_structure_header header; } __attribute__((__packed__)); static void smbios_entry_point_init(void *start, uint16_t max_structure_size, uint16_t structure_table_length, uint32_t structure_table_address, uint16_t number_of_structures) { uint8_t sum; int i; struct smbios_entry_point *ep = (struct smbios_entry_point *)start; memcpy(ep->anchor_string, "_SM_", 4); ep->length = 0x1f; ep->smbios_major_version = 2; ep->smbios_minor_version = 4; ep->max_structure_size = max_structure_size; ep->entry_point_revision = 0; memset(ep->formatted_area, 0, 5); memcpy(ep->intermediate_anchor_string, "_DMI_", 5); ep->structure_table_length = structure_table_length; ep->structure_table_address = structure_table_address; ep->number_of_structures = number_of_structures; ep->smbios_bcd_revision = 0x24; ep->checksum = 0; ep->intermediate_checksum = 0; sum = 0; for (i = 0; i < 0x10; i++) sum += ((int8_t *)start)[i]; ep->checksum = -sum; sum = 0; for (i = 0x10; i < ep->length; i++) sum += ((int8_t *)start)[i]; ep->intermediate_checksum = -sum; } /* Type 0 -- BIOS Information */ #define RELEASE_DATE_STR "01/01/2007" static void * smbios_type_0_init(void *start) { struct smbios_type_0 *p = (struct smbios_type_0 *)start; p->header.type = 0; p->header.length = sizeof(struct smbios_type_0); p->header.handle = 0; p->vendor_str = 1; p->bios_version_str = 2; p->bios_starting_address_segment = 0xe000; p->bios_release_date_str = 3; p->bios_rom_size = 1; /* 128 kB */ memset(p->bios_characteristics, 0, 8); p->bios_characteristics[0] |= 1 << 4; /* Bit 4 - ISA is supported */ #if BX_PCIBIOS p->bios_characteristics[0] |= 1 << 7; /* Bit 7 - PCI is supported */ #endif #if BX_APM p->bios_characteristics[1] |= 1 << 2; /* Bit 10 - APM is supported */ #endif p->bios_characteristics[1] |= 1 << 3; /* Bit 11 - BIOS is Upgradeable (Flash) */ p->bios_characteristics[1] |= 1 << 4; /* Bit 12 - BIOS shadowing is allowed */ #if BX_ELTORITO_BOOT && BX_USE_ATADRV p->bios_characteristics[1] |= 1 << 7; /* Bit 15 - Boot from CD is supported */ p->bios_characteristics[2] |= 1 << 0; /* Bit 16 - Selectable Boot is supported */ #endif #if BX_USE_ATADRV p->bios_characteristics[2] |= 1 << 3; /* Bit 19 - EDD (Enhanced Disk Drive) Specification is supported */ #endif #if BX_SUPPORT_FLOPPY p->bios_characteristics[2] |= 1 << 6; /* Bit 22 - Int 13h - 5.25" / 360 KB Floppy Services are supported */ p->bios_characteristics[2] |= 1 << 7; /* Bit 23 - Int 13h - 5.25" / 1.2 MB Floppy Services are supported */ p->bios_characteristics[3] |= 1 << 0; /* Bit 24 - Int 13h - 3.5" / 720 KB Floppy Services are supported */ p->bios_characteristics[3] |= 1 << 1; /* Bit 25 - Int 13h - 3.5" / 2.88 MB Floppy Services are supported */ #endif p->bios_characteristics[3] |= 1 << 3; /* Bit 27 - Int 9h, 8042 Keyboard services are supported */ p->bios_characteristics[3] |= 1 << 4; /* Bit 28 - Int 14h, Serial Services are supported */ p->bios_characteristics[3] |= 1 << 5; /* Bit 29 - Int 17h, Printer Services are supported */ p->bios_characteristics_extension_bytes[0] = 1; /* Bit 0 - ACPI supported */ p->bios_characteristics_extension_bytes[1] = 0; p->system_bios_major_release = 1; p->system_bios_minor_release = 0; p->embedded_controller_major_release = 0xff; p->embedded_controller_minor_release = 0xff; start += sizeof(struct smbios_type_0); memcpy((char *)start, BX_APPVENDOR, sizeof(BX_APPVENDOR)); start += sizeof(BX_APPVENDOR); memcpy((char *)start, BX_APPNAME, sizeof(BX_APPNAME)); start += sizeof(BX_APPNAME); memcpy((char *)start, RELEASE_DATE_STR, sizeof(RELEASE_DATE_STR)); start += sizeof(RELEASE_DATE_STR); *((uint8_t *)start) = 0; return start+1; } /* Type 1 -- System Information */ static void * smbios_type_1_init(void *start) { struct smbios_type_1 *p = (struct smbios_type_1 *)start; p->header.type = 1; p->header.length = sizeof(struct smbios_type_1); p->header.handle = 0x100; p->manufacturer_str = 0; p->product_name_str = 0; p->version_str = 0; p->serial_number_str = 0; memcpy(p->uuid, bios_uuid, 16); p->wake_up_type = 0x06; /* power switch */ p->sku_number_str = 0; p->family_str = 0; start += sizeof(struct smbios_type_1); *((uint16_t *)start) = 0; return start+2; } /* Type 3 -- System Enclosure */ static void * smbios_type_3_init(void *start) { struct smbios_type_3 *p = (struct smbios_type_3 *)start; p->header.type = 3; p->header.length = sizeof(struct smbios_type_3); p->header.handle = 0x300; p->manufacturer_str = 0; p->type = 0x01; /* other */ p->version_str = 0; p->serial_number_str = 0; p->asset_tag_number_str = 0; p->boot_up_state = 0x03; /* safe */ p->power_supply_state = 0x03; /* safe */ p->thermal_state = 0x03; /* safe */ p->security_status = 0x02; /* unknown */ p->oem_defined = 0; p->height = 0; p->number_of_power_cords = 0; p->contained_element_count = 0; start += sizeof(struct smbios_type_3); *((uint16_t *)start) = 0; return start+2; } /* Type 4 -- Processor Information */ static void * smbios_type_4_init(void *start, unsigned int cpu_number) { struct smbios_type_4 *p = (struct smbios_type_4 *)start; p->header.type = 4; p->header.length = sizeof(struct smbios_type_4); p->header.handle = 0x400 + cpu_number; p->socket_designation_str = 1; p->processor_type = 0x03; /* CPU */ p->processor_family = 0x01; /* other */ p->processor_manufacturer_str = 0; p->processor_id[0] = cpuid_signature; p->processor_id[1] = cpuid_features; p->processor_version_str = 0; p->voltage = 0; p->external_clock = 0; p->max_speed = 0; /* unknown */ p->current_speed = 0; /* unknown */ p->status = 0x41; /* socket populated, CPU enabled */ p->processor_upgrade = 0x01; /* other */ p->l1_cache_handle = 0xffff; /* cache information structure not provided */ p->l2_cache_handle = 0xffff; p->l3_cache_handle = 0xffff; start += sizeof(struct smbios_type_4); memcpy((char *)start, "CPU " "\0" "" "\0" "", 7); ((char *)start)[4] = cpu_number + '0'; return start+7; } /* Type 16 -- Physical Memory Array */ static void * smbios_type_16_init(void *start, uint32_t memsize, int nr_mem_devs) { struct smbios_type_16 *p = (struct smbios_type_16*)start; p->header.type = 16; p->header.length = sizeof(struct smbios_type_16); p->header.handle = 0x1000; p->location = 0x03; /* system board or motherboard */ p->use = 0x03; /* system memory */ p->error_correction = 0x01; /* other */ p->maximum_capacity = memsize * 1024; p->memory_error_information_handle = 0xfffe; /* none provided */ p->number_of_memory_devices = nr_mem_devs; start += sizeof(struct smbios_type_16); *((uint16_t *)start) = 0; return start + 2; } /* Type 17 -- Memory Device */ static void * smbios_type_17_init(void *start, uint32_t memory_size_mb, int instance) { struct smbios_type_17 *p = (struct smbios_type_17 *)start; p->header.type = 17; p->header.length = sizeof(struct smbios_type_17); p->header.handle = 0x1100 + instance; p->physical_memory_array_handle = 0x1000; p->memory_error_information_handle = 0xfffe; /* none provided */ p->total_width = 64; p->data_width = 64; /* TODO: should assert in case something is wrong ASSERT((memory_size_mb & ~0x7fff) == 0); */ p->size = memory_size_mb; p->form_factor = 0x09; /* DIMM */ p->device_set = 0; p->device_locator_str = 1; p->bank_locator_str = 0; p->memory_type = 0x07; /* RAM */ p->type_detail = 0; start += sizeof(struct smbios_type_17); snprintf(start, 8, "DIMM %d", instance); start += strlen(start) + 1; *((uint8_t *)start) = 0; return start+1; } /* Type 19 -- Memory Array Mapped Address */ static void * smbios_type_19_init(void *start, uint32_t memory_size_mb, int instance) { struct smbios_type_19 *p = (struct smbios_type_19 *)start; p->header.type = 19; p->header.length = sizeof(struct smbios_type_19); p->header.handle = 0x1300 + instance; p->starting_address = instance << 24; p->ending_address = p->starting_address + (memory_size_mb << 10) - 1; p->memory_array_handle = 0x1000; p->partition_width = 1; start += sizeof(struct smbios_type_19); *((uint16_t *)start) = 0; return start + 2; } /* Type 20 -- Memory Device Mapped Address */ static void * smbios_type_20_init(void *start, uint32_t memory_size_mb, int instance) { struct smbios_type_20 *p = (struct smbios_type_20 *)start; p->header.type = 20; p->header.length = sizeof(struct smbios_type_20); p->header.handle = 0x1400 + instance; p->starting_address = instance << 24; p->ending_address = p->starting_address + (memory_size_mb << 10) - 1; p->memory_device_handle = 0x1100 + instance; p->memory_array_mapped_address_handle = 0x1300 + instance; p->partition_row_position = 1; p->interleave_position = 0; p->interleaved_data_depth = 0; start += sizeof(struct smbios_type_20); *((uint16_t *)start) = 0; return start+2; } /* Type 32 -- System Boot Information */ static void * smbios_type_32_init(void *start) { struct smbios_type_32 *p = (struct smbios_type_32 *)start; p->header.type = 32; p->header.length = sizeof(struct smbios_type_32); p->header.handle = 0x2000; memset(p->reserved, 0, 6); p->boot_status = 0; /* no errors detected */ start += sizeof(struct smbios_type_32); *((uint16_t *)start) = 0; return start+2; } /* Type 127 -- End of Table */ static void * smbios_type_127_init(void *start) { struct smbios_type_127 *p = (struct smbios_type_127 *)start; p->header.type = 127; p->header.length = sizeof(struct smbios_type_127); p->header.handle = 0x7f00; start += sizeof(struct smbios_type_127); *((uint16_t *)start) = 0; return start + 2; } void smbios_init(void) { unsigned cpu_num, nr_structs = 0, max_struct_size = 0; char *start, *p, *q; int memsize = (ram_end == ram_size) ? ram_size / (1024 * 1024) : (ram_end - (1ull << 32) + ram_size) / (1024 * 1024); int i, nr_mem_devs; bios_table_cur_addr = align(bios_table_cur_addr, 16); start = (void *)(bios_table_cur_addr); p = (char *)start + sizeof(struct smbios_entry_point); #define add_struct(fn) do { \ q = (fn); \ nr_structs++; \ if ((q - p) > max_struct_size) \ max_struct_size = q - p; \ p = q; \ } while (0) add_struct(smbios_type_0_init(p)); add_struct(smbios_type_1_init(p)); add_struct(smbios_type_3_init(p)); for (cpu_num = 1; cpu_num <= smp_cpus; cpu_num++) add_struct(smbios_type_4_init(p, cpu_num)); /* Each 'memory device' covers up to 16GB of address space. */ nr_mem_devs = (memsize + 0x3fff) >> 14; add_struct(smbios_type_16_init(p, memsize, nr_mem_devs)); for ( i = 0; i < nr_mem_devs; i++ ) { uint32_t dev_memsize = ((i == (nr_mem_devs - 1)) ? (((memsize - 1) & 0x3fff) + 1) : 0x4000); add_struct(smbios_type_17_init(p, dev_memsize, i)); add_struct(smbios_type_19_init(p, dev_memsize, i)); add_struct(smbios_type_20_init(p, dev_memsize, i)); } add_struct(smbios_type_32_init(p)); add_struct(smbios_type_127_init(p)); #undef add_struct smbios_entry_point_init( start, max_struct_size, (p - (char *)start) - sizeof(struct smbios_entry_point), (uint32_t)(start + sizeof(struct smbios_entry_point)), nr_structs); bios_table_cur_addr += (p - (char *)start); BX_INFO("SMBIOS table addr=0x%08lx\n", (unsigned long)start); } static uint32_t find_resume_vector(void) { unsigned long addr, start, end; #ifdef BX_USE_EBDA_TABLES start = align(ebda_cur_addr, 16); end = 0xa000 << 4; #else if (bios_table_cur_addr == 0) return 0; start = align(bios_table_cur_addr, 16); end = bios_table_end_addr; #endif for (addr = start; addr < end; addr += 16) { if (!memcmp((void*)addr, "RSD PTR ", 8)) { struct rsdp_descriptor *rsdp = (void*)addr; struct rsdt_descriptor_rev1 *rsdt = (void*)rsdp->rsdt_physical_address; struct fadt_descriptor_rev1 *fadt = (void*)rsdt->table_offset_entry[0]; struct facs_descriptor_rev1 *facs = (void*)fadt->firmware_ctrl; return facs->firmware_waking_vector; } } return 0; } static void find_440fx(PCIDevice *d) { uint16_t vendor_id, device_id; vendor_id = pci_config_readw(d, PCI_VENDOR_ID); device_id = pci_config_readw(d, PCI_DEVICE_ID); if (vendor_id == PCI_VENDOR_ID_INTEL && device_id == PCI_DEVICE_ID_INTEL_82441) i440_pcidev = *d; } static void reinit_piix4_pm(PCIDevice *d) { uint16_t vendor_id, device_id; vendor_id = pci_config_readw(d, PCI_VENDOR_ID); device_id = pci_config_readw(d, PCI_DEVICE_ID); if (vendor_id == PCI_VENDOR_ID_INTEL && device_id == PCI_DEVICE_ID_INTEL_82371AB_3) piix4_pm_enable(d); } void rombios32_init(uint32_t *s3_resume_vector, uint8_t *shutdown_flag) { BX_INFO("Starting rombios32\n"); BX_INFO("Shutdown flag %x\n", *shutdown_flag); #ifdef BX_QEMU qemu_cfg_port = qemu_cfg_port_probe(); #endif ram_probe(); cpu_probe(); setup_mtrr(); smp_probe(); find_bios_table_area(); if (*shutdown_flag == 0xfe) { /* redirect bios read access to RAM */ pci_for_each_device(find_440fx); bios_lock_shadow_ram(); /* bios is already copied */ *s3_resume_vector = find_resume_vector(); if (!*s3_resume_vector) { BX_INFO("This is S3 resume but wakeup vector is NULL\n"); } else { BX_INFO("S3 resume vector %p\n", *s3_resume_vector); pci_for_each_device(reinit_piix4_pm); } return; } pci_bios_init(); #ifndef BX_USE_EBDA_TABLES if (bios_table_cur_addr != 0 && i440_pcidev.bus != -1) { mptable_init(); uuid_probe(); smbios_init(); if (acpi_enabled) acpi_bios_init(); bios_lock_shadow_ram(); } #else mptable_init(); if (bios_table_cur_addr != 0 && i440_pcidev.bus != -1) { uuid_probe(); smbios_init(); } if (acpi_enabled) acpi_bios_init(); BX_INFO("ebda_cur_addr: 0x%08lx\n", ebda_cur_addr); if (ebda_cur_addr > 0xA0000) BX_PANIC("ebda_cur_addr overflow!\n"); #endif BX_INFO("bios_table_cur_addr: 0x%08lx\n", bios_table_cur_addr); if (bios_table_cur_addr > bios_table_end_addr) BX_PANIC("bios_table_end_addr overflow!\n"); }