///////////////////////////////////////////////////////////////////////// // $Id: shift64.cc,v 1.40 2009-06-20 20:39:51 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR #if BX_SUPPORT_X86_64 void BX_CPP_AttrRegparmN(1) BX_CPU_C::SHLD_EqGqM(bxInstruction_c *i) { Bit64u op1_64, op2_64, result_64; unsigned count; unsigned cf, of; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); /* pointer, segment address pair */ op1_64 = read_RMW_virtual_qword_64(i->seg(), eaddr); if (i->b1() == 0xa4) // 0x1a4 count = i->Ib(); else // 0x1a5 count = CL; count &= 0x3f; // use only 6 LSB's if (!count) return; op2_64 = BX_READ_64BIT_REG(i->nnn()); result_64 = (op1_64 << count) | (op2_64 >> (64 - count)); write_RMW_virtual_qword(result_64); SET_FLAGS_OSZAPC_LOGIC_64(result_64); cf = (op1_64 >> (64 - count)) & 0x1; of = cf ^ (result_64 >> 63); // of = cf ^ result63 SET_FLAGS_OxxxxC(of, cf); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SHLD_EqGqR(bxInstruction_c *i) { Bit64u op1_64, op2_64, result_64; unsigned count; unsigned cf, of; if (i->b1() == 0xa4) // 0x1a4 count = i->Ib(); else // 0x1a5 count = CL; count &= 0x3f; // use only 6 LSB's if (!count) return; op1_64 = BX_READ_64BIT_REG(i->rm()); op2_64 = BX_READ_64BIT_REG(i->nnn()); result_64 = (op1_64 << count) | (op2_64 >> (64 - count)); BX_WRITE_64BIT_REG(i->rm(), result_64); SET_FLAGS_OSZAPC_LOGIC_64(result_64); cf = (op1_64 >> (64 - count)) & 0x1; of = cf ^ (result_64 >> 63); // of = cf ^ result63 SET_FLAGS_OxxxxC(of, cf); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SHRD_EqGqM(bxInstruction_c *i) { Bit64u op1_64, op2_64, result_64; unsigned count; unsigned cf, of; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); /* pointer, segment address pair */ op1_64 = read_RMW_virtual_qword_64(i->seg(), eaddr); if (i->b1() == 0xac) // 0x1ac count = i->Ib(); else // 0x1ad count = CL; count &= 0x3f; // use only 6 LSB's if (!count) return; op2_64 = BX_READ_64BIT_REG(i->nnn()); result_64 = (op2_64 << (64 - count)) | (op1_64 >> count); write_RMW_virtual_qword(result_64); SET_FLAGS_OSZAPC_LOGIC_64(result_64); cf = (op1_64 >> (count - 1)) & 0x1; of = ((result_64 << 1) ^ result_64) >> 63; // of = result62 ^ result63 SET_FLAGS_OxxxxC(of, cf); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SHRD_EqGqR(bxInstruction_c *i) { Bit64u op1_64, op2_64, result_64; unsigned count; unsigned cf, of; if (i->b1() == 0xac) // 0x1ac count = i->Ib(); else // 0x1ad count = CL; count &= 0x3f; // use only 6 LSB's if (!count) return; op1_64 = BX_READ_64BIT_REG(i->rm()); op2_64 = BX_READ_64BIT_REG(i->nnn()); result_64 = (op2_64 << (64 - count)) | (op1_64 >> count); BX_WRITE_64BIT_REG(i->rm(), result_64); SET_FLAGS_OSZAPC_LOGIC_64(result_64); cf = (op1_64 >> (count - 1)) & 0x1; of = ((result_64 << 1) ^ result_64) >> 63; // of = result62 ^ result63 SET_FLAGS_OxxxxC(of, cf); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::ROL_EqM(bxInstruction_c *i) { Bit64u op1_64, result_64; unsigned count; unsigned bit0, bit63; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); /* pointer, segment address pair */ op1_64 = read_RMW_virtual_qword_64(i->seg(), eaddr); if (i->b1() == 0xd3) count = CL; else // 0xc1 or 0xd1 count = i->Ib(); count &= 0x3f; if (! count) return; result_64 = (op1_64 << count) | (op1_64 >> (64 - count)); write_RMW_virtual_qword(result_64); bit0 = (result_64 & 0x1); bit63 = (result_64 >> 63); // of = cf ^ result63 SET_FLAGS_OxxxxC(bit0 ^ bit63, bit0); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::ROL_EqR(bxInstruction_c *i) { Bit64u op1_64, result_64; unsigned count; unsigned bit0, bit63; if (i->b1() == 0xd3) count = CL; else // 0xc1 or 0xd1 count = i->Ib(); count &= 0x3f; if (! count) return; op1_64 = BX_READ_64BIT_REG(i->rm()); result_64 = (op1_64 << count) | (op1_64 >> (64 - count)); BX_WRITE_64BIT_REG(i->rm(), result_64); bit0 = (result_64 & 0x1); bit63 = (result_64 >> 63); // of = cf ^ result63 SET_FLAGS_OxxxxC(bit0 ^ bit63, bit0); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::ROR_EqM(bxInstruction_c *i) { Bit64u op1_64, result_64; unsigned count; unsigned bit62, bit63; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); /* pointer, segment address pair */ op1_64 = read_RMW_virtual_qword_64(i->seg(), eaddr); if (i->b1() == 0xd3) count = CL; else // 0xc1 or 0xd1 count = i->Ib(); count &= 0x3f; if (! count) return; result_64 = (op1_64 >> count) | (op1_64 << (64 - count)); write_RMW_virtual_qword(result_64); bit63 = (result_64 >> 63) & 1; bit62 = (result_64 >> 62) & 1; // of = result62 ^ result63 SET_FLAGS_OxxxxC(bit62 ^ bit63, bit63); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::ROR_EqR(bxInstruction_c *i) { Bit64u op1_64, result_64; unsigned count; unsigned bit62, bit63; if (i->b1() == 0xd3) count = CL; else // 0xc1 or 0xd1 count = i->Ib(); count &= 0x3f; if (! count) return; op1_64 = BX_READ_64BIT_REG(i->rm()); result_64 = (op1_64 >> count) | (op1_64 << (64 - count)); BX_WRITE_64BIT_REG(i->rm(), result_64); bit63 = (result_64 >> 63) & 1; bit62 = (result_64 >> 62) & 1; // of = result62 ^ result63 SET_FLAGS_OxxxxC(bit62 ^ bit63, bit63); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::RCL_EqM(bxInstruction_c *i) { Bit64u op1_64, result_64; unsigned count; unsigned cf, of; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); /* pointer, segment address pair */ op1_64 = read_RMW_virtual_qword_64(i->seg(), eaddr); if (i->b1() == 0xd3) count = CL; else // 0xc1 or 0xd1 count = i->Ib(); count &= 0x3f; if (!count) return; if (count==1) { result_64 = (op1_64 << 1) | getB_CF(); } else { result_64 = (op1_64 << count) | (getB_CF() << (count - 1)) | (op1_64 >> (65 - count)); } write_RMW_virtual_qword(result_64); cf = (op1_64 >> (64 - count)) & 0x1; of = cf ^ (result_64 >> 63); // of = cf ^ result63 SET_FLAGS_OxxxxC(of, cf); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::RCL_EqR(bxInstruction_c *i) { Bit64u op1_64, result_64; unsigned count; unsigned cf, of; if (i->b1() == 0xd3) count = CL; else // 0xc1 or 0xd1 count = i->Ib(); count &= 0x3f; if (!count) return; op1_64 = BX_READ_64BIT_REG(i->rm()); if (count==1) { result_64 = (op1_64 << 1) | getB_CF(); } else { result_64 = (op1_64 << count) | (getB_CF() << (count - 1)) | (op1_64 >> (65 - count)); } BX_WRITE_64BIT_REG(i->rm(), result_64); cf = (op1_64 >> (64 - count)) & 0x1; of = cf ^ (result_64 >> 63); // of = cf ^ result63 SET_FLAGS_OxxxxC(of, cf); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::RCR_EqM(bxInstruction_c *i) { Bit64u op1_64, result_64; unsigned count; unsigned of, cf; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); /* pointer, segment address pair */ op1_64 = read_RMW_virtual_qword_64(i->seg(), eaddr); if (i->b1() == 0xd3) count = CL; else // 0xc1 or 0xd1 count = i->Ib(); count &= 0x3f; if (!count) return; if (count==1) { result_64 = (op1_64 >> 1) | (((Bit64u) getB_CF()) << 63); } else { result_64 = (op1_64 >> count) | (getB_CF() << (64 - count)) | (op1_64 << (65 - count)); } write_RMW_virtual_qword(result_64); cf = (op1_64 >> (count - 1)) & 0x1; of = ((result_64 << 1) ^ result_64) >> 63; SET_FLAGS_OxxxxC(of, cf); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::RCR_EqR(bxInstruction_c *i) { Bit64u op1_64, result_64; unsigned count; unsigned of, cf; if (i->b1() == 0xd3) count = CL; else // 0xc1 or 0xd1 count = i->Ib(); count &= 0x3f; if (!count) return; op1_64 = BX_READ_64BIT_REG(i->rm()); if (count==1) { result_64 = (op1_64 >> 1) | (((Bit64u) getB_CF()) << 63); } else { result_64 = (op1_64 >> count) | (getB_CF() << (64 - count)) | (op1_64 << (65 - count)); } BX_WRITE_64BIT_REG(i->rm(), result_64); cf = (op1_64 >> (count - 1)) & 0x1; of = ((result_64 << 1) ^ result_64) >> 63; SET_FLAGS_OxxxxC(of, cf); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SHL_EqM(bxInstruction_c *i) { Bit64u op1_64, result_64; unsigned count; unsigned cf, of; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); /* pointer, segment address pair */ op1_64 = read_RMW_virtual_qword_64(i->seg(), eaddr); if (i->b1() == 0xd3) count = CL; else // 0xc1 or 0xd1 count = i->Ib(); count &= 0x3f; if (!count) return; /* count < 64, since only lower 6 bits used */ result_64 = (op1_64 << count); cf = (op1_64 >> (64 - count)) & 0x1; of = cf ^ (result_64 >> 63); write_RMW_virtual_qword(result_64); SET_FLAGS_OSZAPC_LOGIC_64(result_64); SET_FLAGS_OxxxxC(of, cf); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SHL_EqR(bxInstruction_c *i) { Bit64u op1_64, result_64; unsigned count; unsigned cf, of; if (i->b1() == 0xd3) count = CL; else // 0xc1 or 0xd1 count = i->Ib(); count &= 0x3f; if (!count) return; op1_64 = BX_READ_64BIT_REG(i->rm()); /* count < 64, since only lower 6 bits used */ result_64 = (op1_64 << count); BX_WRITE_64BIT_REG(i->rm(), result_64); cf = (op1_64 >> (64 - count)) & 0x1; of = cf ^ (result_64 >> 63); SET_FLAGS_OSZAPC_LOGIC_64(result_64); SET_FLAGS_OxxxxC(of, cf); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SHR_EqM(bxInstruction_c *i) { Bit64u op1_64, result_64; unsigned count; unsigned cf, of; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); /* pointer, segment address pair */ op1_64 = read_RMW_virtual_qword_64(i->seg(), eaddr); if (i->b1() == 0xd3) count = CL; else // 0xc1 or 0xd1 count = i->Ib(); count &= 0x3f; if (!count) return; result_64 = (op1_64 >> count); write_RMW_virtual_qword(result_64); cf = (op1_64 >> (count - 1)) & 0x1; // note, that of == result63 if count == 1 and // of == 0 if count >= 2 of = ((result_64 << 1) ^ result_64) >> 63; SET_FLAGS_OSZAPC_LOGIC_64(result_64); SET_FLAGS_OxxxxC(of, cf); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SHR_EqR(bxInstruction_c *i) { Bit64u op1_64, result_64; unsigned count; unsigned cf, of; if (i->b1() == 0xd3) count = CL; else // 0xc1 or 0xd1 count = i->Ib(); count &= 0x3f; if (!count) return; op1_64 = BX_READ_64BIT_REG(i->rm()); result_64 = (op1_64 >> count); BX_WRITE_64BIT_REG(i->rm(), result_64); cf = (op1_64 >> (count - 1)) & 0x1; // note, that of == result63 if count == 1 and // of == 0 if count >= 2 of = ((result_64 << 1) ^ result_64) >> 63; SET_FLAGS_OSZAPC_LOGIC_64(result_64); SET_FLAGS_OxxxxC(of, cf); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SAR_EqM(bxInstruction_c *i) { Bit64u op1_64, result_64; unsigned count; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); /* pointer, segment address pair */ op1_64 = read_RMW_virtual_qword_64(i->seg(), eaddr); if (i->b1() == 0xd3) count = CL; else // 0xc1 or 0xd1 count = i->Ib(); count &= 0x3f; if (!count) return; /* count < 64, since only lower 6 bits used */ if (op1_64 & BX_CONST64(0x8000000000000000)) { result_64 = (op1_64 >> count) | (BX_CONST64(0xffffffffffffffff) << (64 - count)); } else { result_64 = (op1_64 >> count); } write_RMW_virtual_qword(result_64); SET_FLAGS_OSZAPC_LOGIC_64(result_64); set_CF((op1_64 >> (count - 1)) & 1); clear_OF(); /* signed overflow cannot happen in SAR instruction */ } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SAR_EqR(bxInstruction_c *i) { Bit64u op1_64, result_64; unsigned count; if (i->b1() == 0xd3) count = CL; else // 0xc1 or 0xd1 count = i->Ib(); count &= 0x3f; if (!count) return; op1_64 = BX_READ_64BIT_REG(i->rm()); /* count < 64, since only lower 6 bits used */ if (op1_64 & BX_CONST64(0x8000000000000000)) { result_64 = (op1_64 >> count) | (BX_CONST64(0xffffffffffffffff) << (64 - count)); } else { result_64 = (op1_64 >> count); } BX_WRITE_64BIT_REG(i->rm(), result_64); SET_FLAGS_OSZAPC_LOGIC_64(result_64); set_CF((op1_64 >> (count - 1)) & 1); clear_OF(); /* signed overflow cannot happen in SAR instruction */ } #endif /* if BX_SUPPORT_X86_64 */