///////////////////////////////////////////////////////////////////////// // $Id: access.cc,v 1.59 2005-08-01 21:40:10 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #define LOG_THIS BX_CPU_THIS_PTR #if BX_SUPPORT_X86_64 #define LPFOf(laddr) ((laddr) & BX_CONST64(0xfffffffffffff000)) #else #define LPFOf(laddr) ((laddr) & 0xfffff000) #endif void BX_CPP_AttrRegparmN(3) BX_CPU_C::write_virtual_checks(bx_segment_reg_t *seg, bx_address offset, unsigned length) { Bit32u upper_limit; #if BX_SUPPORT_X86_64 if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) { // do canonical checks if (!IsCanonical(offset)) { BX_ERROR(("Canonical Address Failure %08x%08x",(Bit32u)(offset >> 32),(Bit32u)(offset & 0xffffffff))); exception(BX_GP_EXCEPTION, 0, 0); } seg->cache.valid |= SegAccessWOK; return; } #endif if (protected_mode()) { if (seg->cache.valid==0) { exception(BX_GP_EXCEPTION, 0, 0); return; } if (seg->cache.p == 0) { /* not present */ BX_INFO(("write_virtual_checks(): segment not present")); exception(int_number(seg), 0, 0); return; } switch (seg->cache.type) { case 0: case 1: // read only case 4: case 5: // read only, expand down case 8: case 9: // execute only case 10: case 11: // execute/read case 12: case 13: // execute only, conforming case 14: case 15: // execute/read-only, conforming BX_INFO(("write_virtual_checks(): no write access to seg")); exception(int_number(seg), 0, 0); return; case 2: case 3: /* read/write */ if (offset > (seg->cache.u.segment.limit_scaled - length + 1) || (length-1 > seg->cache.u.segment.limit_scaled)) { BX_INFO(("write_virtual_checks(): write beyond limit, r/w")); exception(int_number(seg), 0, 0); return; } if (seg->cache.u.segment.limit_scaled >= 7) { // Mark cache as being OK type for succeeding writes. The limit // checks still needs to be done though, but is more simple. We // could probably also optimize that out with a flag for the case // when limit is the maximum 32bit value. Limit should accomodate // at least a dword, since we subtract from it in the simple // limit check in other functions, and we don't want the value to roll. // Only normal segments (not expand down) are handled this way. seg->cache.valid |= SegAccessWOK; } break; case 6: case 7: /* read write, expand down */ if (seg->cache.u.segment.d_b) upper_limit = 0xffffffff; else upper_limit = 0x0000ffff; if ((offset <= seg->cache.u.segment.limit_scaled) || (offset > upper_limit) || ((upper_limit - offset) < (length - 1))) { BX_INFO(("write_virtual_checks(): write beyond limit, r/w ED")); exception(int_number(seg), 0, 0); return; } break; } return; } else { /* real mode */ if (offset > (seg->cache.u.segment.limit_scaled - length + 1) || (length-1 > seg->cache.u.segment.limit_scaled)) { if (seg == & BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS]) exception(BX_SS_EXCEPTION, 0, 0); else exception(BX_GP_EXCEPTION, 0, 0); } if (seg->cache.u.segment.limit_scaled >= 7) { // Mark cache as being OK type for succeeding writes. See notes above. seg->cache.valid |= SegAccessWOK; } } } void BX_CPP_AttrRegparmN(3) BX_CPU_C::read_virtual_checks(bx_segment_reg_t *seg, bx_address offset, unsigned length) { Bit32u upper_limit; #if BX_SUPPORT_X86_64 if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) { // do canonical checks if (!IsCanonical(offset)) { BX_ERROR(("Canonical Address Failure %08x%08x",(Bit32u)(offset >> 32),(Bit32u)(offset & 0xffffffff))); exception(BX_GP_EXCEPTION, 0, 0); } seg->cache.valid |= SegAccessROK; return; } #endif if (protected_mode()) { if (seg->cache.valid==0) { BX_ERROR(("seg[%s]->selector.value = %04x", BX_CPU_THIS_PTR strseg(seg), (unsigned) seg->selector.value)); exception(BX_GP_EXCEPTION, 0, 0); return; } if (seg->cache.p == 0) { /* not present */ BX_INFO(("read_virtual_checks(): segment not present")); exception(int_number(seg), 0, 0); return; } switch (seg->cache.type) { case 0: case 1: /* read only */ case 10: case 11: /* execute/read */ case 14: case 15: /* execute/read-only, conforming */ if (offset > (seg->cache.u.segment.limit_scaled - length + 1) || (length-1 > seg->cache.u.segment.limit_scaled)) { BX_INFO(("read_virtual_checks(): read beyond limit")); exception(int_number(seg), 0, 0); return; } if (seg->cache.u.segment.limit_scaled >= 7) { // Mark cache as being OK type for succeeding reads. See notes for // write checks; similar code. seg->cache.valid |= SegAccessROK; } break; case 2: case 3: /* read/write */ if (offset > (seg->cache.u.segment.limit_scaled - length + 1) || (length-1 > seg->cache.u.segment.limit_scaled)) { BX_INFO(("read_virtual_checks(): read beyond limit")); exception(int_number(seg), 0, 0); return; } if (seg->cache.u.segment.limit_scaled >= 7) { // Mark cache as being OK type for succeeding reads. See notes for // write checks; similar code. seg->cache.valid |= SegAccessROK; } break; case 4: case 5: /* read only, expand down */ if (seg->cache.u.segment.d_b) upper_limit = 0xffffffff; else upper_limit = 0x0000ffff; if ((offset <= seg->cache.u.segment.limit_scaled) || (offset > upper_limit) || ((upper_limit - offset) < (length - 1))) { BX_INFO(("read_virtual_checks(): read beyond limit")); exception(int_number(seg), 0, 0); return; } break; case 6: case 7: /* read write, expand down */ if (seg->cache.u.segment.d_b) upper_limit = 0xffffffff; else upper_limit = 0x0000ffff; if ((offset <= seg->cache.u.segment.limit_scaled) || (offset > upper_limit) || ((upper_limit - offset) < (length - 1))) { BX_INFO(("read_virtual_checks(): read beyond limit")); exception(int_number(seg), 0, 0); return; } break; case 8: case 9: /* execute only */ case 12: case 13: /* execute only, conforming */ /* can't read or write an execute-only segment */ BX_INFO(("read_virtual_checks(): execute only")); exception(int_number(seg), 0, 0); return; } return; } else { /* real mode */ if (offset > (seg->cache.u.segment.limit_scaled - length + 1) || (length-1 > seg->cache.u.segment.limit_scaled)) { if (seg == & BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS]) exception(BX_SS_EXCEPTION, 0, 0); else exception(BX_GP_EXCEPTION, 0, 0); } if (seg->cache.u.segment.limit_scaled >= 7) { // Mark cache as being OK type for succeeding reads. See notes for // write checks; similar code. seg->cache.valid |= SegAccessROK; } } } char * BX_CPP_AttrRegparmN(1) BX_CPU_C::strseg(bx_segment_reg_t *seg) { if (seg == &BX_CPU_THIS_PTR sregs[0]) return("ES"); else if (seg == & BX_CPU_THIS_PTR sregs[1]) return("CS"); else if (seg == & BX_CPU_THIS_PTR sregs[2]) return("SS"); else if (seg == &BX_CPU_THIS_PTR sregs[3]) return("DS"); else if (seg == &BX_CPU_THIS_PTR sregs[4]) return("FS"); else if (seg == &BX_CPU_THIS_PTR sregs[5]) return("GS"); else { BX_ERROR(("undefined segment passed to strseg()!")); return("??"); } } int BX_CPU_C::int_number(bx_segment_reg_t *seg) { if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS]) return(BX_SS_EXCEPTION); else return(BX_GP_EXCEPTION); } void BX_CPP_AttrRegparmN(3) BX_CPU_C::write_virtual_byte(unsigned s, bx_address offset, Bit8u *data) { bx_address laddr; bx_segment_reg_t *seg; seg = &BX_CPU_THIS_PTR sregs[s]; if (seg->cache.valid & SegAccessWOK) { if (((BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) && IsCanonical(offset)) || (offset <= seg->cache.u.segment.limit_scaled)) { unsigned pl; accessOK: laddr = BX_CPU_THIS_PTR get_segment_base(s) + offset; BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 1, BX_WRITE); pl = (CPL==3); #if BX_SupportGuest2HostTLB Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr); bx_address lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == BX_TLB_LPF_VALUE(lpf)) { // See if the TLB entry privilege level allows us write access // from this CPL. Bit32u accessBits = tlbEntry->accessBits; if (accessBits & (0x04 << pl)) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u pageOffset = laddr & 0xfff; Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset); // Current write access has privilege. *hostAddr = *data; #if BX_SUPPORT_ICACHE pageWriteStampTable.decWriteStamp(tlbEntry->ppf); #endif return; } } #endif // BX_SupportGuest2HostTLB access_linear(laddr, 1, pl, BX_WRITE, (void *) data); return; } } write_virtual_checks(seg, offset, 1); goto accessOK; } void BX_CPP_AttrRegparmN(3) BX_CPU_C::write_virtual_word(unsigned s, bx_address offset, Bit16u *data) { bx_address laddr; bx_segment_reg_t *seg; seg = &BX_CPU_THIS_PTR sregs[s]; if (seg->cache.valid & SegAccessWOK) { if (((BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) && IsCanonical(offset)) || (offset < seg->cache.u.segment.limit_scaled)) { unsigned pl; accessOK: laddr = BX_CPU_THIS_PTR get_segment_base(s) + offset; BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 2, BX_WRITE); pl = (CPL==3); #if BX_SupportGuest2HostTLB Bit32u pageOffset = laddr & 0xfff; if (pageOffset <= 0xffe) { // Make sure access does not span 2 pages. Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr); bx_address lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == BX_TLB_LPF_VALUE(lpf)) { // See if the TLB entry privilege level allows us write access // from this CPL. Bit32u accessBits = tlbEntry->accessBits; if (accessBits & (0x04 << pl)) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset); // Current write access has privilege. WriteHostWordToLittleEndian(hostAddr, *data); #if BX_SUPPORT_ICACHE pageWriteStampTable.decWriteStamp(tlbEntry->ppf); #endif return; } } } #endif // BX_SupportGuest2HostTLB access_linear(laddr, 2, pl, BX_WRITE, (void *) data); return; } } write_virtual_checks(seg, offset, 2); goto accessOK; } void BX_CPP_AttrRegparmN(3) BX_CPU_C::write_virtual_dword(unsigned s, bx_address offset, Bit32u *data) { bx_address laddr; bx_segment_reg_t *seg; seg = &BX_CPU_THIS_PTR sregs[s]; if (seg->cache.valid & SegAccessWOK) { if (((BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) && IsCanonical(offset)) || (offset < (seg->cache.u.segment.limit_scaled-2))) { unsigned pl; accessOK: laddr = BX_CPU_THIS_PTR get_segment_base(s) + offset; BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 4, BX_WRITE); pl = (CPL==3); #if BX_SupportGuest2HostTLB Bit32u pageOffset = laddr & 0xfff; if (pageOffset <= 0xffc) { // Make sure access does not span 2 pages. Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr); bx_address lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == BX_TLB_LPF_VALUE(lpf)) { // See if the TLB entry privilege level allows us write access // from this CPL. Bit32u accessBits = tlbEntry->accessBits; if (accessBits & (0x04 << pl)) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset); // Current write access has privilege. WriteHostDWordToLittleEndian(hostAddr, *data); #if BX_SUPPORT_ICACHE pageWriteStampTable.decWriteStamp(tlbEntry->ppf); #endif return; } } } #endif // BX_SupportGuest2HostTLB access_linear(laddr, 4, pl, BX_WRITE, (void *) data); return; } } write_virtual_checks(seg, offset, 4); goto accessOK; } void BX_CPP_AttrRegparmN(3) BX_CPU_C::write_virtual_qword(unsigned s, bx_address offset, Bit64u *data) { bx_address laddr; bx_segment_reg_t *seg; seg = &BX_CPU_THIS_PTR sregs[s]; if (seg->cache.valid & SegAccessWOK) { if (((BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) && IsCanonical(offset)) || (offset <= (seg->cache.u.segment.limit_scaled-7))) { unsigned pl; accessOK: laddr = BX_CPU_THIS_PTR get_segment_base(s) + offset; BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 8, BX_WRITE); pl = (CPL==3); #if BX_SupportGuest2HostTLB Bit32u pageOffset = laddr & 0xfff; if (pageOffset <= 0xff8) { // Make sure access does not span 2 pages. Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr); bx_address lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == BX_TLB_LPF_VALUE(lpf)) { // See if the TLB entry privilege level allows us write access // from this CPL. Bit32u accessBits = tlbEntry->accessBits; if (accessBits & (0x04 << pl)) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset); // Current write access has privilege. WriteHostQWordToLittleEndian(hostAddr, *data); #if BX_SUPPORT_ICACHE pageWriteStampTable.decWriteStamp(tlbEntry->ppf); #endif return; } } } #endif // BX_SupportGuest2HostTLB access_linear(laddr, 8, pl, BX_WRITE, (void *) data); return; } } write_virtual_checks(seg, offset, 8); goto accessOK; } void BX_CPP_AttrRegparmN(3) BX_CPU_C::read_virtual_byte(unsigned s, bx_address offset, Bit8u *data) { bx_address laddr; bx_segment_reg_t *seg; seg = &BX_CPU_THIS_PTR sregs[s]; if (seg->cache.valid & SegAccessROK) { if (((BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) && IsCanonical(offset)) || (offset <= seg->cache.u.segment.limit_scaled)) { unsigned pl; accessOK: laddr = BX_CPU_THIS_PTR get_segment_base(s) + offset; BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 1, BX_READ); pl = (CPL==3); #if BX_SupportGuest2HostTLB Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr); bx_address lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == BX_TLB_LPF_VALUE(lpf)) { // See if the TLB entry privilege level allows us read access // from this CPL. Bit32u accessBits = tlbEntry->accessBits; if (accessBits & (1<hostPageAddr; Bit32u pageOffset = laddr & 0xfff; Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset); *data = *hostAddr; return; } } #endif // BX_SupportGuest2HostTLB access_linear(laddr, 1, pl, BX_READ, (void *) data); return; } } read_virtual_checks(seg, offset, 1); goto accessOK; } void BX_CPP_AttrRegparmN(3) BX_CPU_C::read_virtual_word(unsigned s, bx_address offset, Bit16u *data) { bx_address laddr; bx_segment_reg_t *seg; seg = &BX_CPU_THIS_PTR sregs[s]; if (seg->cache.valid & SegAccessROK) { if (((BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) && IsCanonical(offset)) || (offset < seg->cache.u.segment.limit_scaled)) { unsigned pl; accessOK: laddr = BX_CPU_THIS_PTR get_segment_base(s) + offset; BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 2, BX_READ); pl = (CPL==3); #if BX_SupportGuest2HostTLB Bit32u pageOffset = laddr & 0xfff; if (pageOffset <= 0xffe) { // Make sure access does not span 2 pages. Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr); bx_address lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == BX_TLB_LPF_VALUE(lpf)) { // See if the TLB entry privilege level allows us read access // from this CPL. Bit32u accessBits = tlbEntry->accessBits; if (accessBits & (1<hostPageAddr; Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset); ReadHostWordFromLittleEndian(hostAddr, *data); return; } } } #endif // BX_SupportGuest2HostTLB access_linear(laddr, 2, pl, BX_READ, (void *) data); return; } } read_virtual_checks(seg, offset, 2); goto accessOK; } void BX_CPP_AttrRegparmN(3) BX_CPU_C::read_virtual_dword(unsigned s, bx_address offset, Bit32u *data) { bx_address laddr; bx_segment_reg_t *seg; seg = &BX_CPU_THIS_PTR sregs[s]; if (seg->cache.valid & SegAccessROK) { if (((BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) && IsCanonical(offset)) || (offset < (seg->cache.u.segment.limit_scaled-2))) { unsigned pl; accessOK: laddr = BX_CPU_THIS_PTR get_segment_base(s) + offset; BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 4, BX_READ); pl = (CPL==3); #if BX_SupportGuest2HostTLB Bit32u pageOffset = laddr & 0xfff; if (pageOffset <= 0xffc) { // Make sure access does not span 2 pages. Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr); bx_address lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == BX_TLB_LPF_VALUE(lpf)) { // See if the TLB entry privilege level allows us read access // from this CPL. Bit32u accessBits = tlbEntry->accessBits; if (accessBits & (1<hostPageAddr; Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset); ReadHostDWordFromLittleEndian(hostAddr, *data); return; } } } #endif // BX_SupportGuest2HostTLB access_linear(laddr, 4, pl, BX_READ, (void *) data); return; } } read_virtual_checks(seg, offset, 4); goto accessOK; } void BX_CPP_AttrRegparmN(3) BX_CPU_C::read_virtual_qword(unsigned s, bx_address offset, Bit64u *data) { bx_address laddr; bx_segment_reg_t *seg; seg = &BX_CPU_THIS_PTR sregs[s]; if (seg->cache.valid & SegAccessROK) { if (((BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) && IsCanonical(offset)) || (offset <= (seg->cache.u.segment.limit_scaled-7))) { unsigned pl; accessOK: laddr = BX_CPU_THIS_PTR get_segment_base(s) + offset; BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 8, BX_READ); pl = (CPL==3); #if BX_SupportGuest2HostTLB Bit32u pageOffset = laddr & 0xfff; if (pageOffset <= 0xff8) { // Make sure access does not span 2 pages. Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr); bx_address lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == BX_TLB_LPF_VALUE(lpf)) { // See if the TLB entry privilege level allows us read access // from this CPL. Bit32u accessBits = tlbEntry->accessBits; if (accessBits & (1<hostPageAddr; Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset); ReadHostQWordFromLittleEndian(hostAddr, *data); return; } } } #endif // BX_SupportGuest2HostTLB access_linear(laddr, 8, pl, BX_READ, (void *) data); return; } } read_virtual_checks(seg, offset, 8); goto accessOK; } ////////////////////////////////////////////////////////////// // special Read-Modify-Write operations // // address translation info is kept across read/write calls // ////////////////////////////////////////////////////////////// void BX_CPP_AttrRegparmN(3) BX_CPU_C::read_RMW_virtual_byte(unsigned s, bx_address offset, Bit8u *data) { bx_address laddr; bx_segment_reg_t *seg; seg = &BX_CPU_THIS_PTR sregs[s]; if (seg->cache.valid & SegAccessWOK) { if (((BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) && IsCanonical(offset)) || (offset <= seg->cache.u.segment.limit_scaled)) { unsigned pl; accessOK: laddr = BX_CPU_THIS_PTR get_segment_base(s) + offset; BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 1, BX_RW); pl = (CPL==3); #if BX_SupportGuest2HostTLB Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr); bx_address lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == BX_TLB_LPF_VALUE(lpf)) { // See if the TLB entry privilege level allows us write access // from this CPL. Bit32u accessBits = tlbEntry->accessBits; if (accessBits & (0x04 << pl)) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u pageOffset = laddr & 0xfff; Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset); // Current write access has privilege. *data = *hostAddr; BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr; #if BX_SUPPORT_ICACHE pageWriteStampTable.decWriteStamp(tlbEntry->ppf); #endif return; } } #endif // BX_SupportGuest2HostTLB // Accelerated attempt falls through to long path. Do it the // old fashioned way... access_linear(laddr, 1, pl, BX_RW, (void *) data); return; } } write_virtual_checks(seg, offset, 1); goto accessOK; } void BX_CPP_AttrRegparmN(3) BX_CPU_C::read_RMW_virtual_word(unsigned s, bx_address offset, Bit16u *data) { bx_address laddr; bx_segment_reg_t *seg; seg = &BX_CPU_THIS_PTR sregs[s]; if (seg->cache.valid & SegAccessWOK) { if (((BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) && IsCanonical(offset)) || (offset < seg->cache.u.segment.limit_scaled)) { unsigned pl; accessOK: laddr = BX_CPU_THIS_PTR get_segment_base(s) + offset; BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 2, BX_RW); pl = (CPL==3); #if BX_SupportGuest2HostTLB Bit32u pageOffset = laddr & 0xfff; if (pageOffset <= 0xffe) { // Make sure access does not span 2 pages. Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr); bx_address lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if ((tlbEntry->lpf == BX_TLB_LPF_VALUE(lpf))) { // See if the TLB entry privilege level allows us write access // from this CPL. Bit32u accessBits = tlbEntry->accessBits; if (accessBits & (0x04 << pl)) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset); // Current write access has privilege. ReadHostWordFromLittleEndian(hostAddr, *data); BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr; #if BX_SUPPORT_ICACHE pageWriteStampTable.decWriteStamp(tlbEntry->ppf); #endif return; } } } #endif // BX_SupportGuest2HostTLB access_linear(laddr, 2, pl, BX_RW, (void *) data); return; } } write_virtual_checks(seg, offset, 2); goto accessOK; } void BX_CPP_AttrRegparmN(3) BX_CPU_C::read_RMW_virtual_dword(unsigned s, bx_address offset, Bit32u *data) { bx_address laddr; bx_segment_reg_t *seg; seg = &BX_CPU_THIS_PTR sregs[s]; if (seg->cache.valid & SegAccessWOK) { if (((BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) && IsCanonical(offset)) || (offset < (seg->cache.u.segment.limit_scaled-2))) { unsigned pl; accessOK: laddr = BX_CPU_THIS_PTR get_segment_base(s) + offset; BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 4, BX_RW); pl = (CPL==3); #if BX_SupportGuest2HostTLB Bit32u pageOffset = laddr & 0xfff; if (pageOffset <= 0xffc) { // Make sure access does not span 2 pages. Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr); bx_address lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == BX_TLB_LPF_VALUE(lpf)) { // See if the TLB entry privilege level allows us write access // from this CPL. Bit32u accessBits = tlbEntry->accessBits; if (accessBits & (0x04 << pl)) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset); // Current write access has privilege. ReadHostDWordFromLittleEndian(hostAddr, *data); BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr; #if BX_SUPPORT_ICACHE pageWriteStampTable.decWriteStamp(tlbEntry->ppf); #endif return; } } } #endif // BX_SupportGuest2HostTLB access_linear(laddr, 4, pl, BX_RW, (void *) data); return; } } write_virtual_checks(seg, offset, 4); goto accessOK; } void BX_CPP_AttrRegparmN(3) BX_CPU_C::read_RMW_virtual_qword(unsigned s, bx_address offset, Bit64u *data) { bx_address laddr; bx_segment_reg_t *seg; seg = &BX_CPU_THIS_PTR sregs[s]; if (seg->cache.valid & SegAccessWOK) { if (((BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) && IsCanonical(offset)) || (offset <= (seg->cache.u.segment.limit_scaled-7))) { unsigned pl; accessOK: laddr = BX_CPU_THIS_PTR get_segment_base(s) + offset; BX_INSTR_MEM_DATA(BX_CPU_ID, laddr, 8, BX_RW); pl = (CPL==3); #if BX_SupportGuest2HostTLB Bit32u pageOffset = laddr & 0xfff; if (pageOffset <= 0xff8) { // Make sure access does not span 2 pages. Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr); bx_address lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if ((tlbEntry->lpf == BX_TLB_LPF_VALUE(lpf))) { // See if the TLB entry privilege level allows us write access // from this CPL. Bit32u accessBits = tlbEntry->accessBits; if (accessBits & (0x04 << pl)) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset); // Current write access has privilege. ReadHostQWordFromLittleEndian(hostAddr, *data); BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr; #if BX_SUPPORT_ICACHE pageWriteStampTable.decWriteStamp(tlbEntry->ppf); #endif return; } } } #endif // BX_SupportGuest2HostTLB access_linear(laddr, 8, pl, BX_RW, (void *) data); return; } } write_virtual_checks(seg, offset, 8); goto accessOK; } void BX_CPP_AttrRegparmN(1) BX_CPU_C::write_RMW_virtual_byte(Bit8u val8) { if (BX_CPU_THIS_PTR address_xlation.pages > 2) { // Pages > 2 means it stores a host address for direct access. Bit8u *hostAddr = (Bit8u *) BX_CPU_THIS_PTR address_xlation.pages; *hostAddr = val8; } else { // address_xlation.pages must be 1 BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1, 1, &val8); } } void BX_CPP_AttrRegparmN(1) BX_CPU_C::write_RMW_virtual_word(Bit16u val16) { if (BX_CPU_THIS_PTR address_xlation.pages > 2) { // Pages > 2 means it stores a host address for direct access. Bit16u *hostAddr = (Bit16u *) BX_CPU_THIS_PTR address_xlation.pages; WriteHostWordToLittleEndian(hostAddr, val16); } else if (BX_CPU_THIS_PTR address_xlation.pages == 1) { BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1, 2, &val16); } else { #ifdef BX_LITTLE_ENDIAN BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1, 1, &val16); BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress2, 1, ((Bit8u *) &val16) + 1); #else BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1, 1, ((Bit8u *) &val16) + 1); BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress2, 1, &val16); #endif } } void BX_CPU_C::write_RMW_virtual_dword(Bit32u val32) { if (BX_CPU_THIS_PTR address_xlation.pages > 2) { // Pages > 2 means it stores a host address for direct access. Bit32u *hostAddr = (Bit32u *) BX_CPU_THIS_PTR address_xlation.pages; WriteHostDWordToLittleEndian(hostAddr, val32); } else if (BX_CPU_THIS_PTR address_xlation.pages == 1) { BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1, 4, &val32); } else { #ifdef BX_LITTLE_ENDIAN BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, &val32); BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, ((Bit8u *) &val32) + BX_CPU_THIS_PTR address_xlation.len1); #else BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, ((Bit8u *) &val32) + (4 - BX_CPU_THIS_PTR address_xlation.len1)); BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, &val32); #endif } } void BX_CPU_C::write_RMW_virtual_qword(Bit64u val64) { if (BX_CPU_THIS_PTR address_xlation.pages > 2) { // Pages > 2 means it stores a host address for direct access. Bit64u *hostAddr = (Bit64u *) BX_CPU_THIS_PTR address_xlation.pages; WriteHostQWordToLittleEndian(hostAddr, val64); } else if (BX_CPU_THIS_PTR address_xlation.pages == 1) { BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1, 8, &val64); } else { #ifdef BX_LITTLE_ENDIAN BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, &val64); BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, ((Bit8u *) &val64) + BX_CPU_THIS_PTR address_xlation.len1); #else BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, ((Bit8u *) &val64) + (8 - BX_CPU_THIS_PTR address_xlation.len1)); BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, &val64); #endif } } // // Some macro defs to make things cleaner for endian-ness issues. // The following routines access a double qword, ie 16-bytes. // For the moment, I redirect these to use the single qword routines // by splitting one access into two. // // Endian Host byte order Guest (x86) byte order // ====================================================== // Little 0..7 8..15 0..7 8..15 // Big 15..8 7...0 0..7 8..15 // // Below are the host memory offsets to each of 2 single quadwords, which // are different across big an little endian machines. The memory // accessing routines take care of the access endian issues when accessing // the physical memory image. // #ifdef BX_LITTLE_ENDIAN # define Host1stDWordOffset 0 # define Host2ndDWordOffset 8 #else # define Host1stDWordOffset 8 # define Host2ndDWordOffset 0 #endif void BX_CPP_AttrRegparmN(3) BX_CPU_C::read_virtual_dqword(unsigned s, bx_address offset, Bit8u *data) { // Read Double Quadword. Bit64u *qwords = (Bit64u*) data; read_virtual_qword(s, offset+Host1stDWordOffset, &qwords[0]); read_virtual_qword(s, offset+Host2ndDWordOffset, &qwords[1]); } void BX_CPP_AttrRegparmN(3) BX_CPU_C::read_virtual_dqword_aligned(unsigned s, bx_address offset, Bit8u *data) { // If double quadword access is unaligned, #GP(0). if (offset & 0xf) { exception(BX_GP_EXCEPTION, 0, 0); } read_virtual_dqword(s, offset, data); } void BX_CPP_AttrRegparmN(3) BX_CPU_C::write_virtual_dqword(unsigned s, bx_address offset, Bit8u *data) { // Write Double Quadword. Bit64u *qwords = (Bit64u*) data; write_virtual_qword(s, offset+Host1stDWordOffset, &qwords[0]); write_virtual_qword(s, offset+Host2ndDWordOffset, &qwords[1]); } void BX_CPP_AttrRegparmN(3) BX_CPU_C::write_virtual_dqword_aligned(unsigned s, bx_address offset, Bit8u *data) { // If double quadword access is unaligned, #GP(0). if (offset & 0xf) { exception(BX_GP_EXCEPTION, 0, 0); } write_virtual_dqword(s, offset, data); } #if BX_SUPPORT_FPU void BX_CPP_AttrRegparmN(3) BX_CPU_C::read_virtual_tword(unsigned s, bx_address offset, floatx80 *data) { // read floating point register read_virtual_qword(s, offset+0, &data->fraction); read_virtual_word (s, offset+8, &data->exp); } void BX_CPP_AttrRegparmN(3) BX_CPU_C::write_virtual_tword(unsigned s, bx_address offset, floatx80 *data) { // store floating point register write_virtual_qword(s, offset+0, &data->fraction); write_virtual_word (s, offset+8, &data->exp); } #endif