///////////////////////////////////////////////////////////////////////// // $Id: bochs.h,v 1.256 2010-09-20 20:43:16 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001-2010 The Bochs Project // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA // // bochs.h is the master header file for all C++ code. It includes all // the system header files needed by bochs, and also includes all the bochs // C++ header files. Because bochs.h and the files that it includes has // structure and class definitions, it cannot be called from C code. // #ifndef BX_BOCHS_H # define BX_BOCHS_H 1 #include "config.h" /* generated by configure script from config.h.in */ #ifndef __QNXNTO__ extern "C" { #endif #ifdef WIN32 // In a win32 compile (including cygwin), windows.h is required for several // files in gui and iodev. It is important to include it here in a header // file so that WIN32-specific data types can be used in fields of classes. #include #endif #include #include #include #if defined(__sun__) #undef EAX #undef ECX #undef EDX #undef EBX #undef ESP #undef EBP #undef ESI #undef EDI #undef EIP #undef CS #undef DS #undef ES #undef SS #undef FS #undef GS #endif #include #include #ifndef WIN32 # include #else # include #endif #include #if BX_WITH_MACOS # include # include # include # include #elif BX_WITH_CARBON # include # include # include /* for MAXPATHLEN */ # include # include #else # ifndef WIN32 # include # endif # include # include #endif #include #include #include #include #ifdef macintosh # define SuperDrive "[fd:]" #endif #ifndef __QNXNTO__ } #endif #include "osdep.h" /* platform dependent includes and defines */ #include "bx_debug/debug.h" #include "bxversion.h" #include "gui/siminterface.h" // BX_SHARE_PATH should be defined by the makefile. If not, give it // a value of NULL to avoid compile problems. #ifndef BX_SHARE_PATH #define BX_SHARE_PATH NULL #endif // prototypes int bx_begin_simulation(int argc, char *argv[]); void bx_stop_simulation(); char *bx_find_bochsrc(void); int bx_parse_cmdline(int arg, int argc, char *argv[]); int bx_read_configuration(const char *rcfile); int bx_write_configuration(const char *rcfile, int overwrite); void bx_reset_options(void); Bit32u crc32(const Bit8u *buf, int len); // for param-tree testing only void print_tree(bx_param_c *node, int level = 0); // // some macros to interface the CPU and memory to external environment // so that these functions can be redirected to the debugger when // needed. // #define BXRS_PARAM_SPECIAL(parent, name, maxvalue, save_handler, restore_handler) \ { \ bx_param_num_c *param = new bx_param_num_c(parent, #name, "", "", 0, maxvalue, 0); \ param->set_base(BASE_HEX); \ param->set_sr_handlers(this, save_handler, restore_handler); \ } #define BXRS_PARAM_SPECIAL64(parent, name, save_handler, restore_handler) \ BXRS_PARAM_SPECIAL(parent, name, BX_MAX_BIT64U, save_handler, restore_handler) #define BXRS_PARAM_SPECIAL32(parent, name, save_handler, restore_handler) \ BXRS_PARAM_SPECIAL(parent, name, BX_MAX_BIT32U, save_handler, restore_handler) #define BXRS_PARAM_SPECIAL16(parent, name, save_handler, restore_handler) \ BXRS_PARAM_SPECIAL(parent, name, BX_MAX_BIT16U, save_handler, restore_handler) #define BXRS_PARAM_SPECIAL8(parent, name, save_handler, restore_handler) \ BXRS_PARAM_SPECIAL(parent, name, BX_MAX_BIT8U, save_handler, restore_handler) #define BXRS_HEX_PARAM_SIMPLE32(parent, name) \ new bx_shadow_num_c(parent, #name, (Bit32u*)&(name), BASE_HEX) #define BXRS_HEX_PARAM_SIMPLE64(parent, name) \ new bx_shadow_num_c(parent, #name, (Bit64u*)&(name), BASE_HEX) #define BXRS_HEX_PARAM_SIMPLE(parent, name) \ new bx_shadow_num_c(parent, #name, &(name), BASE_HEX) #define BXRS_HEX_PARAM_FIELD(parent, name, field) \ new bx_shadow_num_c(parent, #name, &(field), BASE_HEX) #define BXRS_DEC_PARAM_SIMPLE(parent, name) \ new bx_shadow_num_c(parent, #name, &(name), BASE_DEC) #define BXRS_DEC_PARAM_FIELD(parent, name, field) \ new bx_shadow_num_c(parent, #name, &(field), BASE_DEC) #define BXRS_PARAM_BOOL(parent, name, field) \ new bx_shadow_bool_c(parent, #name, (bx_bool*)(&(field))) // =-=-=-=-=-=-=- Normal optimized use -=-=-=-=-=-=-=-=-=-=-=-=-=-= // some pc_systems functions just redirect to the IO devices so optimize // by eliminating call here // // #define BX_INP(addr, len) bx_pc_system.inp(addr, len) // #define BX_OUTP(addr, val, len) bx_pc_system.outp(addr, val, len) #define BX_INP(addr, len) bx_devices.inp(addr, len) #define BX_OUTP(addr, val, len) bx_devices.outp(addr, val, len) #define BX_TICK1() bx_pc_system.tick1() #define BX_TICKN(n) bx_pc_system.tickn(n) #define BX_INTR bx_pc_system.INTR #define BX_SET_INTR(b) bx_pc_system.set_INTR(b) #define BX_CPU_C bx_cpu_c #define BX_MEM_C bx_mem_c #define BX_HRQ (bx_pc_system.HRQ) #if BX_SUPPORT_SMP #define BX_CPU(x) (bx_cpu_array[x]) #else #define BX_CPU(x) (&bx_cpu) #endif #define BX_MEM(x) (&bx_mem) #define BX_SET_ENABLE_A20(enabled) bx_pc_system.set_enable_a20(enabled) #define BX_GET_ENABLE_A20() bx_pc_system.get_enable_a20() #if BX_SUPPORT_A20 # define A20ADDR(x) ((bx_phy_address)(x) & bx_pc_system.a20_mask) #else # define A20ADDR(x) ((bx_phy_address)(x)) #endif #if BX_SUPPORT_SMP # define BX_TICK1_IF_SINGLE_PROCESSOR() \ if (BX_SMP_PROCESSORS == 1) BX_TICK1() # define BX_TICKN_IF_SINGLE_PROCESSOR(n) \ if (BX_SMP_PROCESSORS == 1) BX_TICKN(n) #else # define BX_TICK1_IF_SINGLE_PROCESSOR() BX_TICK1() # define BX_TICKN_IF_SINGLE_PROCESSOR(n) BX_TICKN(n) #endif // you can't use static member functions on the CPU, if there are going // to be 2 cpus. Check this early on. #if BX_SUPPORT_SMP # if BX_USE_CPU_SMF # error For SMP simulation, BX_USE_CPU_SMF must be 0. # endif #endif // // Ways for the the external environment to report back information // to the debugger. // #if BX_DEBUGGER # define BX_DBG_ASYNC_INTR bx_guard.async.irq # define BX_DBG_ASYNC_DMA bx_guard.async.dma # define BX_DBG_DMA_REPORT(addr, len, what, val) \ if (bx_guard.report.dma) bx_dbg_dma_report(addr, len, what, val) # define BX_DBG_IAC_REPORT(vector, irq) \ if (bx_guard.report.irq) bx_dbg_iac_report(vector, irq) # define BX_DBG_A20_REPORT(val) \ if (bx_guard.report.a20) bx_dbg_a20_report(val) # define BX_DBG_IO_REPORT(port, size, op, val) \ if (bx_guard.report.io) bx_dbg_io_report(port, size, op, val) # define BX_DBG_LIN_MEMORY_ACCESS(cpu, lin, phy, len, pl, rw, data) \ bx_dbg_lin_memory_access(cpu, lin, phy, len, pl, rw, data) # define BX_DBG_PHY_MEMORY_ACCESS(cpu, phy, len, rw, data) \ bx_dbg_phy_memory_access(cpu, phy, len, rw, data) #else // #if BX_DEBUGGER // debugger not compiled in, use empty stubs # define BX_DBG_ASYNC_INTR 1 # define BX_DBG_ASYNC_DMA 1 # define BX_DBG_DMA_REPORT(addr, len, what, val) /* empty */ # define BX_DBG_IAC_REPORT(vector, irq) /* empty */ # define BX_DBG_A20_REPORT(val) /* empty */ # define BX_DBG_IO_REPORT(port, size, op, val) /* empty */ # define BX_DBG_LIN_MEMORY_ACCESS(cpu, lin, phy, len, pl, rw, data) /* empty */ # define BX_DBG_PHY_MEMORY_ACCESS(cpu, phy, len, rw, data) /* empty */ #endif // #if BX_DEBUGGER #define MAGIC_LOGNUM 0x12345678 typedef class BOCHSAPI logfunctions { char *prefix; // values of onoff: 0=ignore, 1=report, 2=ask, 3=fatal #define ACT_IGNORE 0 #define ACT_REPORT 1 #define ACT_ASK 2 #define ACT_FATAL 3 #define N_ACT 4 int onoff[N_LOGLEV]; class iofunctions *logio; // default log actions for all devices, declared and initialized // in logio.cc. BOCHSAPI_CYGONLY static int default_onoff[N_LOGLEV]; public: logfunctions(void); logfunctions(class iofunctions *); ~logfunctions(void); void info(const char *fmt, ...) BX_CPP_AttrPrintf(2, 3); void error(const char *fmt, ...) BX_CPP_AttrPrintf(2, 3); void panic(const char *fmt, ...) BX_CPP_AttrPrintf(2, 3); void pass(const char *fmt, ...) BX_CPP_AttrPrintf(2, 3); void ldebug(const char *fmt, ...) BX_CPP_AttrPrintf(2, 3); void fatal (const char *prefix, const char *fmt, va_list ap, int exit_status); void ask (int level, const char *prefix, const char *fmt, va_list ap); void put(const char *); void setio(class iofunctions *); void setonoff(int loglev, int value) { assert (loglev >= 0 && loglev < N_LOGLEV); onoff[loglev] = value; } char *getprefix () { return prefix; } int getonoff(int level) { assert (level>=0 && level= 0 && loglev < N_LOGLEV); assert (action >= 0 && action < N_ACT); default_onoff[loglev] = action; } static int get_default_action (int loglev) { assert (loglev >= 0 && loglev < N_LOGLEV); return default_onoff[loglev]; } } logfunc_t; #define BX_LOGPREFIX_SIZE 51 class BOCHSAPI iofunctions { int magic; char logprefix[BX_LOGPREFIX_SIZE]; FILE *logfd; class logfunctions *log; void init(void); void flush(void); // Log Class types public: iofunctions(void); iofunctions(FILE *); iofunctions(int); iofunctions(const char *); ~iofunctions(void); void out(int level, const char *pre, const char *fmt, va_list ap); void init_log(const char *fn); void init_log(int fd); void init_log(FILE *fs); void exit_log(); void set_log_prefix(const char *prefix); int get_n_logfns() { return n_logfn; } logfunc_t *get_logfn(int index) { return logfn_list[index]; } void add_logfn(logfunc_t *fn); void remove_logfn(logfunc_t *fn); void set_log_action(int loglevel, int action); const char *getlevel(int i); char *getaction(int i); protected: int n_logfn; #define MAX_LOGFNS 512 logfunc_t *logfn_list[MAX_LOGFNS]; const char *logfn; }; typedef class BOCHSAPI iofunctions iofunc_t; #define SAFE_GET_IOFUNC() \ ((io==NULL)? (io=new iofunc_t("/dev/stderr")) : io) #define SAFE_GET_GENLOG() \ ((genlog==NULL)? (genlog=new logfunc_t(SAFE_GET_IOFUNC())) : genlog) #if BX_NO_LOGGING #define BX_INFO(x) #define BX_DEBUG(x) #define BX_ERROR(x) #define BX_PANIC(x) (LOG_THIS panic) x #define BX_PASS(x) (LOG_THIS pass) x #define BX_ASSERT(x) #else #define BX_INFO(x) (LOG_THIS info) x #define BX_DEBUG(x) (LOG_THIS ldebug) x #define BX_ERROR(x) (LOG_THIS error) x #define BX_PANIC(x) (LOG_THIS panic) x #define BX_PASS(x) (LOG_THIS pass) x #if BX_ASSERT_ENABLE #define BX_ASSERT(x) do {if (!(x)) BX_PANIC(("failed assertion \"%s\" at %s:%d\n", #x, __FILE__, __LINE__));} while (0) #else #define BX_ASSERT(x) #endif #endif BOCHSAPI extern iofunc_t *io; BOCHSAPI extern logfunc_t *genlog; #ifndef UNUSED # define UNUSED(x) ((void)x) #endif #if BX_SUPPORT_X86_64 #define FMT_ADDRX FMT_ADDRX64 #else #define FMT_ADDRX FMT_ADDRX32 #endif #if BX_PHY_ADDRESS_LONG #define FMT_PHY_ADDRX FMT_ADDRX64 #else #define FMT_PHY_ADDRX FMT_ADDRX32 #endif #define FMT_LIN_ADDRX FMT_ADDRX #if BX_GDBSTUB // defines for GDB stub void bx_gdbstub_init(void); void bx_gdbstub_break(void); int bx_gdbstub_check(unsigned int eip); #define GDBSTUB_STOP_NO_REASON (0xac0) #if BX_SUPPORT_SMP #error GDB stub was written for single processor support. If multiprocessor support is added, then we can remove this check. // The big problem is knowing which CPU gdb is referring to. In other words, // what should we put for "n" in BX_CPU(n)->dbg_xlate_linear2phy() and // BX_CPU(n)->dword.eip, etc. #endif #endif typedef struct { bx_bool interrupts; bx_bool exceptions; bx_bool debugger; bx_bool print_timestamps; #if BX_DEBUGGER bx_bool magic_break_enabled; #endif #if BX_GDBSTUB bx_bool gdbstub_enabled; #endif #if BX_SUPPORT_APIC bx_bool apic; #endif #if BX_DEBUG_LINUX bx_bool linux_syscall; #endif void* record_io; } bx_debug_t; void CDECL bx_signal_handler(int signum); int bx_atexit(void); BOCHSAPI extern bx_debug_t bx_dbg; // determinted by XAPIC option BOCHSAPI extern Bit32u apic_id_mask; // memory access type (read/write/execute/rw) #define BX_READ 0 #define BX_WRITE 1 #define BX_EXECUTE 2 #define BX_RW 3 // to be used in concatenation with BX_READ/BX_WRITE/BX_EXECUTE/BX_RW #define BX_PDPTR0_ACCESS 0x010 #define BX_PDPTR1_ACCESS 0x020 #define BX_PDPTR2_ACCESS 0x030 #define BX_PDPTR3_ACCESS 0x040 #define BX_PTE_ACCESS 0x050 #define BX_PDE_ACCESS 0x060 #define BX_PDPTE_ACCESS 0x070 #define BX_PML4E_ACCESS 0x080 #define BX_EPT_PTE_ACCESS 0x090 #define BX_EPT_PDE_ACCESS 0x0a0 #define BX_EPT_PDPTE_ACCESS 0x0b0 #define BX_EPT_PML4E_ACCESS 0x0c0 #define BX_VMCS_ACCESS 0x0d0 #define BX_VMX_MSR_BITMAP_ACCESS 0x0e0 #define BX_VMX_IO_BITMAP_ACCESS 0x0f0 #define BX_VMX_LOAD_MSR_ACCESS 0x100 #define BX_VMX_STORE_MSR_ACCESS 0x110 #define BX_VMX_VTPR_ACCESS 0x120 #define BX_SMRAM_ACCESS 0x130 // types of reset #define BX_RESET_SOFTWARE 10 #define BX_RESET_HARDWARE 11 #include "memory/memory.h" #include "pc_system.h" #include "plugin.h" #include "gui/gui.h" /* --- EXTERNS --- */ #if BX_GUI_SIGHANDLER extern bx_bool bx_gui_sighandler; #endif // This value controls how often each I/O device's periodic() method // gets called. The timer is set up in iodev/devices.cc. #define BX_IODEV_HANDLER_PERIOD 100 // microseconds //#define BX_IODEV_HANDLER_PERIOD 10 // microseconds #define BX_PATHNAME_LEN 512 #define BX_KBD_XT_TYPE 0 #define BX_KBD_AT_TYPE 1 #define BX_KBD_MF_TYPE 2 #define BX_N_OPTROM_IMAGES 4 #define BX_N_OPTRAM_IMAGES 4 #define BX_N_SERIAL_PORTS 4 #define BX_N_PARALLEL_PORTS 2 #define BX_N_USB_UHCI_PORTS 2 #define BX_N_USB_OHCI_PORTS 2 #define BX_N_USB_HUB_PORTS 8 #define BX_N_PCI_SLOTS 5 #define BX_N_USER_PLUGINS 8 void bx_center_print(FILE *file, const char *line, unsigned maxwidth); #include "instrument.h" // These are some convenience macros which abstract out accesses between // a variable in native byte ordering to/from guest (x86) memory, which is // always in little endian format. You must deal with alignment (if your // system cares) and endian rearranging. Don't assume anything. You could // put some platform specific asm() statements here, to make use of native // instructions to help perform these operations more efficiently than C++. #ifdef BX_LITTLE_ENDIAN #define WriteHostWordToLittleEndian(hostPtr, nativeVar16) \ *((Bit16u*)(hostPtr)) = (nativeVar16) #define WriteHostDWordToLittleEndian(hostPtr, nativeVar32) \ *((Bit32u*)(hostPtr)) = (nativeVar32) #define WriteHostQWordToLittleEndian(hostPtr, nativeVar64) \ *((Bit64u*)(hostPtr)) = (nativeVar64) #define ReadHostWordFromLittleEndian(hostPtr, nativeVar16) \ (nativeVar16) = *((Bit16u*)(hostPtr)) #define ReadHostDWordFromLittleEndian(hostPtr, nativeVar32) \ (nativeVar32) = *((Bit32u*)(hostPtr)) #define ReadHostQWordFromLittleEndian(hostPtr, nativeVar64) \ (nativeVar64) = *((Bit64u*)(hostPtr)) #define CopyHostWordLittleEndian(hostAddrDst, hostAddrSrc) \ (* (Bit16u *)(hostAddrDst)) = (* (Bit16u *)(hostAddrSrc)); #define CopyHostDWordLittleEndian(hostAddrDst, hostAddrSrc) \ (* (Bit32u *)(hostAddrDst)) = (* (Bit32u *)(hostAddrSrc)); #define CopyHostQWordLittleEndian(hostAddrDst, hostAddrSrc) \ (* (Bit64u *)(hostAddrDst)) = (* (Bit64u *)(hostAddrSrc)); #else #define WriteHostWordToLittleEndian(hostPtr, nativeVar16) { \ ((Bit8u *)(hostPtr))[0] = (Bit8u) (nativeVar16); \ ((Bit8u *)(hostPtr))[1] = (Bit8u) ((nativeVar16)>>8); \ } #define WriteHostDWordToLittleEndian(hostPtr, nativeVar32) { \ ((Bit8u *)(hostPtr))[0] = (Bit8u) (nativeVar32); \ ((Bit8u *)(hostPtr))[1] = (Bit8u) ((nativeVar32)>>8); \ ((Bit8u *)(hostPtr))[2] = (Bit8u) ((nativeVar32)>>16); \ ((Bit8u *)(hostPtr))[3] = (Bit8u) ((nativeVar32)>>24); \ } #define WriteHostQWordToLittleEndian(hostPtr, nativeVar64) { \ ((Bit8u *)(hostPtr))[0] = (Bit8u) (nativeVar64); \ ((Bit8u *)(hostPtr))[1] = (Bit8u) ((nativeVar64)>>8); \ ((Bit8u *)(hostPtr))[2] = (Bit8u) ((nativeVar64)>>16); \ ((Bit8u *)(hostPtr))[3] = (Bit8u) ((nativeVar64)>>24); \ ((Bit8u *)(hostPtr))[4] = (Bit8u) ((nativeVar64)>>32); \ ((Bit8u *)(hostPtr))[5] = (Bit8u) ((nativeVar64)>>40); \ ((Bit8u *)(hostPtr))[6] = (Bit8u) ((nativeVar64)>>48); \ ((Bit8u *)(hostPtr))[7] = (Bit8u) ((nativeVar64)>>56); \ } #define ReadHostWordFromLittleEndian(hostPtr, nativeVar16) { \ (nativeVar16) = ((Bit16u) ((Bit8u *)(hostPtr))[0]) | \ (((Bit16u) ((Bit8u *)(hostPtr))[1])<<8) ; \ } #define ReadHostDWordFromLittleEndian(hostPtr, nativeVar32) { \ (nativeVar32) = ((Bit32u) ((Bit8u *)(hostPtr))[0]) | \ (((Bit32u) ((Bit8u *)(hostPtr))[1])<<8) | \ (((Bit32u) ((Bit8u *)(hostPtr))[2])<<16) | \ (((Bit32u) ((Bit8u *)(hostPtr))[3])<<24); \ } #define ReadHostQWordFromLittleEndian(hostPtr, nativeVar64) { \ (nativeVar64) = ((Bit64u) ((Bit8u *)(hostPtr))[0]) | \ (((Bit64u) ((Bit8u *)(hostPtr))[1])<<8) | \ (((Bit64u) ((Bit8u *)(hostPtr))[2])<<16) | \ (((Bit64u) ((Bit8u *)(hostPtr))[3])<<24) | \ (((Bit64u) ((Bit8u *)(hostPtr))[4])<<32) | \ (((Bit64u) ((Bit8u *)(hostPtr))[5])<<40) | \ (((Bit64u) ((Bit8u *)(hostPtr))[6])<<48) | \ (((Bit64u) ((Bit8u *)(hostPtr))[7])<<56); \ } #define CopyHostWordLittleEndian(hostAddrDst, hostAddrSrc) { \ ((Bit8u *)(hostAddrDst))[0] = ((Bit8u *)(hostAddrSrc))[0]; \ ((Bit8u *)(hostAddrDst))[1] = ((Bit8u *)(hostAddrSrc))[1]; \ } #define CopyHostDWordLittleEndian(hostAddrDst, hostAddrSrc) { \ ((Bit8u *)(hostAddrDst))[0] = ((Bit8u *)(hostAddrSrc))[0]; \ ((Bit8u *)(hostAddrDst))[1] = ((Bit8u *)(hostAddrSrc))[1]; \ ((Bit8u *)(hostAddrDst))[2] = ((Bit8u *)(hostAddrSrc))[2]; \ ((Bit8u *)(hostAddrDst))[3] = ((Bit8u *)(hostAddrSrc))[3]; \ } #define CopyHostQWordLittleEndian(hostAddrDst, hostAddrSrc) { \ ((Bit8u *)(hostAddrDst))[0] = ((Bit8u *)(hostAddrSrc))[0]; \ ((Bit8u *)(hostAddrDst))[1] = ((Bit8u *)(hostAddrSrc))[1]; \ ((Bit8u *)(hostAddrDst))[2] = ((Bit8u *)(hostAddrSrc))[2]; \ ((Bit8u *)(hostAddrDst))[3] = ((Bit8u *)(hostAddrSrc))[3]; \ ((Bit8u *)(hostAddrDst))[4] = ((Bit8u *)(hostAddrSrc))[4]; \ ((Bit8u *)(hostAddrDst))[5] = ((Bit8u *)(hostAddrSrc))[5]; \ ((Bit8u *)(hostAddrDst))[6] = ((Bit8u *)(hostAddrSrc))[6]; \ ((Bit8u *)(hostAddrDst))[7] = ((Bit8u *)(hostAddrSrc))[7]; \ } #endif BX_CPP_INLINE Bit32u bx_bswap32(Bit32u val32) { Bit32u b0 = val32 & 0xff; val32 >>= 8; Bit32u b1 = val32 & 0xff; val32 >>= 8; Bit32u b2 = val32 & 0xff; val32 >>= 8; Bit32u b3 = val32; return (b0<<24) | (b1<<16) | (b2<<8) | b3; } BX_CPP_INLINE Bit64u bx_bswap64(Bit64u val64) { Bit64u b0 = val64 & 0xff; val64 >>= 8; Bit64u b1 = val64 & 0xff; val64 >>= 8; Bit64u b2 = val64 & 0xff; val64 >>= 8; Bit64u b3 = val64 & 0xff; val64 >>= 8; Bit64u b4 = val64 & 0xff; val64 >>= 8; Bit64u b5 = val64 & 0xff; val64 >>= 8; Bit64u b6 = val64 & 0xff; val64 >>= 8; Bit64u b7 = val64; return (b0<<56) | (b1<<48) | (b2<<40) | (b3<<32) | (b4<<24) | (b5<<16) | (b6<<8) | b7; } #endif /* BX_BOCHS_H */