///////////////////////////////////////////////////////////////////////// // $Id: access.cc,v 1.125 2009-10-08 18:07:50 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA // ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR bx_bool BX_CPP_AttrRegparmN(3) BX_CPU_C::write_virtual_checks(bx_segment_reg_t *seg, Bit32u offset, unsigned length) { Bit32u upper_limit; if (seg->cache.valid==0) { BX_DEBUG(("write_virtual_checks(): segment descriptor not valid")); return 0; } if (seg->cache.p == 0) { /* not present */ BX_ERROR(("write_virtual_checks(): segment not present")); return 0; } switch (seg->cache.type) { case 0: case 1: // read only case 4: case 5: // read only, expand down case 8: case 9: // execute only case 10: case 11: // execute/read case 12: case 13: // execute only, conforming case 14: case 15: // execute/read-only, conforming BX_ERROR(("write_virtual_checks(): no write access to seg")); return 0; case 2: case 3: /* read/write */ if (offset > (seg->cache.u.segment.limit_scaled - length + 1) || (length-1 > seg->cache.u.segment.limit_scaled)) { BX_ERROR(("write_virtual_checks(): write beyond limit, r/w")); return 0; } if (seg->cache.u.segment.limit_scaled >= 15) { // Mark cache as being OK type for succeeding read/writes. The limit // checks still needs to be done though, but is more simple. We // could probably also optimize that out with a flag for the case // when limit is the maximum 32bit value. Limit should accomodate // at least a dword, since we subtract from it in the simple // limit check in other functions, and we don't want the value to roll. // Only normal segments (not expand down) are handled this way. seg->cache.valid |= SegAccessROK | SegAccessWOK; } break; case 6: case 7: /* read/write, expand down */ if (seg->cache.u.segment.d_b) upper_limit = 0xffffffff; else upper_limit = 0x0000ffff; if ((offset <= seg->cache.u.segment.limit_scaled) || (offset > upper_limit) || ((upper_limit - offset) < (length - 1))) { BX_ERROR(("write_virtual_checks(): write beyond limit, r/w ED")); return 0; } break; default: BX_PANIC(("write_virtual_checks(): unknown descriptor type=%d", seg->cache.type)); } return 1; } bx_bool BX_CPP_AttrRegparmN(3) BX_CPU_C::read_virtual_checks(bx_segment_reg_t *seg, Bit32u offset, unsigned length) { Bit32u upper_limit; if (seg->cache.valid==0) { BX_DEBUG(("read_virtual_checks(): segment descriptor not valid")); return 0; } if (seg->cache.p == 0) { /* not present */ BX_ERROR(("read_virtual_checks(): segment not present")); return 0; } switch (seg->cache.type) { case 0: case 1: /* read only */ case 2: case 3: /* read/write */ case 10: case 11: /* execute/read */ case 14: case 15: /* execute/read-only, conforming */ if (offset > (seg->cache.u.segment.limit_scaled - length + 1) || (length-1 > seg->cache.u.segment.limit_scaled)) { BX_ERROR(("read_virtual_checks(): read beyond limit")); return 0; } if (seg->cache.u.segment.limit_scaled >= 15) { // Mark cache as being OK type for succeeding reads. See notes for // write checks; similar code. seg->cache.valid |= SegAccessROK; } break; case 4: case 5: /* read only, expand down */ case 6: case 7: /* read/write, expand down */ if (seg->cache.u.segment.d_b) upper_limit = 0xffffffff; else upper_limit = 0x0000ffff; if ((offset <= seg->cache.u.segment.limit_scaled) || (offset > upper_limit) || ((upper_limit - offset) < (length - 1))) { BX_ERROR(("read_virtual_checks(): read beyond limit ED")); return 0; } break; case 8: case 9: /* execute only */ case 12: case 13: /* execute only, conforming */ /* can't read or write an execute-only segment */ BX_ERROR(("read_virtual_checks(): execute only")); return 0; default: BX_PANIC(("read_virtual_checks(): unknown descriptor type=%d", seg->cache.type)); } return 1; } bx_bool BX_CPP_AttrRegparmN(3) BX_CPU_C::execute_virtual_checks(bx_segment_reg_t *seg, Bit32u offset, unsigned length) { Bit32u upper_limit; if (seg->cache.valid==0) { BX_DEBUG(("execute_virtual_checks(): segment descriptor not valid")); return 0; } if (seg->cache.p == 0) { /* not present */ BX_ERROR(("execute_virtual_checks(): segment not present")); return 0; } switch (seg->cache.type) { case 0: case 1: /* read only */ case 2: case 3: /* read/write */ case 10: case 11: /* execute/read */ case 14: case 15: /* execute/read-only, conforming */ if (offset > (seg->cache.u.segment.limit_scaled - length + 1) || (length-1 > seg->cache.u.segment.limit_scaled)) { BX_ERROR(("execute_virtual_checks(): read beyond limit")); return 0; } if (seg->cache.u.segment.limit_scaled >= 15) { // Mark cache as being OK type for succeeding reads. See notes for // write checks; similar code. seg->cache.valid |= SegAccessROK; } break; case 8: case 9: /* execute only */ case 12: case 13: /* execute only, conforming */ if (offset > (seg->cache.u.segment.limit_scaled - length + 1) || (length-1 > seg->cache.u.segment.limit_scaled)) { BX_ERROR(("execute_virtual_checks(): read beyond limit execute only")); return 0; } break; case 4: case 5: /* read only, expand down */ case 6: case 7: /* read/write, expand down */ if (seg->cache.u.segment.d_b) upper_limit = 0xffffffff; else upper_limit = 0x0000ffff; if ((offset <= seg->cache.u.segment.limit_scaled) || (offset > upper_limit) || ((upper_limit - offset) < (length - 1))) { BX_ERROR(("execute_virtual_checks(): read beyond limit ED")); return 0; } break; default: BX_PANIC(("execute_virtual_checks(): unknown descriptor type=%d", seg->cache.type)); } return 1; } const char *BX_CPU_C::strseg(bx_segment_reg_t *seg) { if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES]) return("ES"); else if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS]) return("CS"); else if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS]) return("SS"); else if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS]) return("DS"); else if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS]) return("FS"); else if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS]) return("GS"); else { BX_PANIC(("undefined segment passed to strseg()!")); return("??"); } } int BX_CPU_C::int_number(unsigned s) { if (s == BX_SEG_REG_SS) return BX_SS_EXCEPTION; else return BX_GP_EXCEPTION; } Bit8u BX_CPP_AttrRegparmN(1) BX_CPU_C::system_read_byte(bx_address laddr) { Bit8u data; unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0); bx_address lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == lpf) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 1, BX_READ); Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset); data = *hostAddr; BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 1, 0, BX_READ, (Bit8u*) &data); return data; } access_read_linear(laddr, 1, 0, BX_READ, (void *) &data); return data; } Bit16u BX_CPP_AttrRegparmN(1) BX_CPU_C::system_read_word(bx_address laddr) { Bit16u data; unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 1); bx_address lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == lpf) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 2, BX_READ); Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset); ReadHostWordFromLittleEndian(hostAddr, data); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 2, 0, BX_READ, (Bit8u*) &data); return data; } access_read_linear(laddr, 2, 0, BX_READ, (void *) &data); return data; } Bit32u BX_CPP_AttrRegparmN(1) BX_CPU_C::system_read_dword(bx_address laddr) { Bit32u data; unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 3); bx_address lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == lpf) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 4, BX_READ); Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset); ReadHostDWordFromLittleEndian(hostAddr, data); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 4, 0, BX_READ, (Bit8u*) &data); return data; } access_read_linear(laddr, 4, 0, BX_READ, (void *) &data); return data; } Bit64u BX_CPP_AttrRegparmN(1) BX_CPU_C::system_read_qword(bx_address laddr) { Bit64u data; unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 7); bx_address lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == lpf) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 8, BX_READ); Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset); ReadHostQWordFromLittleEndian(hostAddr, data); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 8, 0, BX_READ, (Bit8u*) &data); return data; } access_read_linear(laddr, 8, 0, BX_READ, (void *) &data); return data; } void BX_CPP_AttrRegparmN(2) BX_CPU_C::system_write_byte(bx_address laddr, Bit8u data) { unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0); Bit32u lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == lpf) { // See if the TLB entry privilege level allows us write access // from this CPL. if (! (tlbEntry->accessBits & 0x2)) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 1, BX_WRITE); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 1, 0, BX_WRITE, (Bit8u*) &data); Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset); pageWriteStampTable.decWriteStamp(tlbEntry->ppf); *hostAddr = data; return; } } access_write_linear(laddr, 1, 0, (void *) &data); } void BX_CPP_AttrRegparmN(2) BX_CPU_C::system_write_word(bx_address laddr, Bit16u data) { unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 1); Bit32u lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == lpf) { // See if the TLB entry privilege level allows us write access // from this CPL. if (! (tlbEntry->accessBits & 0x2)) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 2, BX_WRITE); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 2, 0, BX_WRITE, (Bit8u*) &data); Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset); pageWriteStampTable.decWriteStamp(tlbEntry->ppf); WriteHostWordToLittleEndian(hostAddr, data); return; } } access_write_linear(laddr, 2, 0, (void *) &data); } void BX_CPP_AttrRegparmN(2) BX_CPU_C::system_write_dword(bx_address laddr, Bit32u data) { unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 3); Bit32u lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == lpf) { // See if the TLB entry privilege level allows us write access // from this CPL. if (! (tlbEntry->accessBits & 0x2)) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 4, BX_WRITE); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 4, 0, BX_WRITE, (Bit8u*) &data); Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset); pageWriteStampTable.decWriteStamp(tlbEntry->ppf); WriteHostDWordToLittleEndian(hostAddr, data); return; } } access_write_linear(laddr, 4, 0, (void *) &data); } Bit8u* BX_CPP_AttrRegparmN(2) BX_CPU_C::v2h_read_byte(bx_address laddr, bx_bool user) { unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0); bx_address lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == lpf) { // See if the TLB entry privilege level allows us read access // from this CPL. if (! (tlbEntry->accessBits & user)) { // Read this pl OK. bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset); return hostAddr; } } return 0; } Bit8u* BX_CPP_AttrRegparmN(2) BX_CPU_C::v2h_write_byte(bx_address laddr, bx_bool user) { unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0); bx_address lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == lpf) { // See if the TLB entry privilege level allows us write access // from this CPL. if (! (tlbEntry->accessBits & (0x2 | user))) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset); pageWriteStampTable.decWriteStamp(tlbEntry->ppf); return hostAddr; } } return 0; }