///////////////////////////////////////////////////////////////////////// // $Id: cpu.cc,v 1.21 2001-10-06 00:00:22 bdenney Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #define BX_INSTR_SPY 0 #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #define LOG_THIS BX_CPU_THIS_PTR #if BX_USE_CPU_SMF #define this (BX_CPU(0)) #endif //unsigned counter[2] = { 0, 0 }; #if BX_SIM_ID == 0 // only need to define once // This array defines a look-up table for the even parity-ness // of an 8bit quantity, for optimal assignment of the parity bit // in the EFLAGS register const Boolean bx_parity_lookup[256] = { 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 }; #endif #if BX_SMP_PROCESSORS==1 // single processor simulation, so there's one of everything BX_CPU_C bx_cpu; BX_MEM_C bx_mem; #else // multiprocessor simulation, we need an array of cpus and memories BX_CPU_C *bx_cpu_array[BX_SMP_PROCESSORS]; BX_MEM_C *bx_mem_array[BX_ADDRESS_SPACES]; #endif // notes: // // check limit of CS? #ifdef REGISTER_IADDR extern void REGISTER_IADDR(Bit32u addr); #endif // The CHECK_MAX_INSTRUCTIONS macro allows cpu_loop to execute a few // instructions and then return so that the other processors have a chance to // run. This is used only when simulating multiple processors. // // If maximum instructions have been executed, return. A count less // than zero means run forever. #define CHECK_MAX_INSTRUCTIONS(count) \ if (count >= 0) { \ count--; if (count == 0) return; \ } #if BX_SMP_PROCESSORS==1 # define BX_TICK1_IF_SINGLE_PROCESSOR() BX_TICK1() #else # define BX_TICK1_IF_SINGLE_PROCESSOR() #endif #if BX_DYNAMIC_TRANSLATION == 0 void BX_CPU_C::cpu_loop(Bit32s max_instr_count) { unsigned ret; BxInstruction_t i; unsigned maxisize; Bit8u *fetch_ptr; Boolean is_32; #if BX_DEBUGGER BX_CPU_THIS_PTR break_point = 0; #ifdef MAGIC_BREAKPOINT BX_CPU_THIS_PTR magic_break = 0; #endif BX_CPU_THIS_PTR stop_reason = STOP_NO_REASON; #endif (void) setjmp( BX_CPU_THIS_PTR jmp_buf_env ); // not sure if these two are used during the async handling... --bbd BX_CPU_THIS_PTR prev_eip = EIP; // commit new EIP BX_CPU_THIS_PTR prev_esp = ESP; // commit new ESP main_cpu_loop: // ??? BX_CPU_THIS_PTR EXT = 0; BX_CPU_THIS_PTR errorno = 0; // First check on events which occurred for previous instructions // (traps) and ones which are asynchronous to the CPU // (hardware interrupts). if (BX_CPU_THIS_PTR async_event) goto handle_async_event; async_events_processed: // added so that all debugging/tracing code uses the correct EIP even in the // instruction just after a trap/interrupt. If you use the prev_eip that was // set before handle_async_event, traces and breakpoints fail to show the // first instruction of int/trap handlers. BX_CPU_THIS_PTR prev_eip = EIP; // commit new EIP BX_CPU_THIS_PTR prev_esp = ESP; // commit new ESP // Now we can handle things which are synchronous to instruction // execution. if (BX_CPU_THIS_PTR eflags.rf) { BX_CPU_THIS_PTR eflags.rf = 0; } #if BX_X86_DEBUGGER else { // only bother comparing if any breakpoints enabled if ( BX_CPU_THIS_PTR dr7 & 0x000000ff ) { Bit32u iaddr = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base + BX_CPU_THIS_PTR prev_eip; Bit32u dr6_bits; if ( (dr6_bits = hwdebug_compare(iaddr, 1, BX_HWDebugInstruction, BX_HWDebugInstruction)) ) { // Add to the list of debug events thus far. BX_CPU_THIS_PTR debug_trap |= dr6_bits; BX_CPU_THIS_PTR async_event = 1; // If debug events are not inhibited on this boundary, // fire off a debug fault. Otherwise handle it on the next // boundary. (becomes a trap) if ( !(BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_DEBUG) ) { // Commit debug events to DR6 BX_CPU_THIS_PTR dr6 = BX_CPU_THIS_PTR debug_trap; exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt } } } } #endif // We have ignored processing of external interrupts and // debug events on this boundary. Reset the mask so they // will be processed on the next boundary. BX_CPU_THIS_PTR inhibit_mask = 0; #if BX_DEBUGGER { Bit32u debug_eip = BX_CPU_THIS_PTR prev_eip; if ( dbg_is_begin_instr_bpoint( BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, debug_eip, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base + debug_eip, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b) ) { return; } } #endif // #if BX_DEBUGGER #if BX_INSTR_SPY { int n=0; if ((n & 0xffffff) == 0) { Bit32u cs = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value; Bit32u eip = BX_CPU_THIS_PTR prev_eip; fprintf (stdout, "instr %d, time %lld, pc %04x:%08x, fetch_ptr=%p\n", n, bx_pc_system.time_ticks (), cs, eip, fetch_ptr); } n++; } #endif is_32 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b; if (BX_CPU_THIS_PTR bytesleft == 0) { prefetch(); } fetch_ptr = BX_CPU_THIS_PTR fetch_ptr; maxisize = 16; if (BX_CPU_THIS_PTR bytesleft < 16) maxisize = BX_CPU_THIS_PTR bytesleft; ret = FetchDecode(fetch_ptr, &i, maxisize, is_32); if (ret) { if (i.ResolveModrm) { // call method on BX_CPU_C object BX_CPU_CALL_METHOD(i.ResolveModrm, (&i)); } BX_CPU_THIS_PTR fetch_ptr += i.ilen; BX_CPU_THIS_PTR bytesleft -= i.ilen; fetch_decode_OK: if (i.rep_used && (i.attr & BxRepeatable)) { repeat_loop: if (i.attr & BxRepeatableZF) { if (i.as_32) { if (ECX != 0) { BX_CPU_CALL_METHOD(i.execute, (&i)); ECX -= 1; } if ((i.rep_used==0xf3) && (get_ZF()==0)) goto repeat_done; if ((i.rep_used==0xf2) && (get_ZF()!=0)) goto repeat_done; if (ECX == 0) goto repeat_done; goto repeat_not_done; } else { if (CX != 0) { BX_CPU_CALL_METHOD(i.execute, (&i)); CX -= 1; } if ((i.rep_used==0xf3) && (get_ZF()==0)) goto repeat_done; if ((i.rep_used==0xf2) && (get_ZF()!=0)) goto repeat_done; if (CX == 0) goto repeat_done; goto repeat_not_done; } } else { // normal repeat, no concern for ZF if (i.as_32) { if (ECX != 0) { BX_CPU_CALL_METHOD(i.execute, (&i)); ECX -= 1; } if (ECX == 0) goto repeat_done; goto repeat_not_done; } else { // 16bit addrsize if (CX != 0) { BX_CPU_CALL_METHOD(i.execute, (&i)); CX -= 1; } if (CX == 0) goto repeat_done; goto repeat_not_done; } } // shouldn't get here from above repeat_not_done: #ifdef REGISTER_IADDR REGISTER_IADDR(BX_CPU_THIS_PTR eip + BX_CPU_THIS_PTR sregs[BX_SREG_CS].cache.u.segment.base); #endif #if BX_DEBUGGER if (BX_CPU_THIS_PTR trace) { // print the instruction that was just executed. bx_dbg_disassemble_current (-1, 1); // all cpus, print time stamp } #endif BX_TICK1_IF_SINGLE_PROCESSOR(); #if BX_DEBUGGER == 0 if (BX_CPU_THIS_PTR async_event) { invalidate_prefetch_q(); goto debugger_check; } goto repeat_loop; #else /* if BX_DEBUGGER == 1 */ invalidate_prefetch_q(); goto debugger_check; #endif repeat_done: BX_CPU_THIS_PTR eip += i.ilen; } else { // non repeating instruction BX_CPU_THIS_PTR eip += i.ilen; BX_CPU_CALL_METHOD(i.execute, (&i)); } BX_CPU_THIS_PTR prev_eip = EIP; // commit new EIP BX_CPU_THIS_PTR prev_esp = ESP; // commit new ESP #ifdef REGISTER_IADDR REGISTER_IADDR(BX_CPU_THIS_PTR eip + BX_CPU_THIS_PTR sregs[BX_SREG_CS].cache.u.segment.base); #endif #if BX_DEBUGGER if (BX_CPU_THIS_PTR trace) { // print the instruction that was just executed. bx_dbg_disassemble_current (-1, 1); // all cpus, print time stamp } #endif BX_TICK1_IF_SINGLE_PROCESSOR(); debugger_check: #if (BX_SMP_PROCESSORS>1 && BX_DEBUGGER==0) // The CHECK_MAX_INSTRUCTIONS macro allows cpu_loop to execute a few // instructions and then return so that the other processors have a chance // to run. This is used only when simulating multiple processors. If only // one processor, don't waste any cycles on it! Also, it is not needed // with the debugger because its guard mechanism provides the same // functionality. CHECK_MAX_INSTRUCTIONS(max_instr_count); #endif #if BX_DEBUGGER // BW vm mode switch support is in dbg_is_begin_instr_bpoint // note instr generating exceptions never reach this point. // (mch) Read/write, time break point support if (BX_CPU_THIS_PTR break_point) { switch (BX_CPU_THIS_PTR break_point) { case BREAK_POINT_TIME: BX_INFO(("[%lld] Caught time breakpoint", bx_pc_system.time_ticks())); BX_CPU_THIS_PTR stop_reason = STOP_TIME_BREAK_POINT; return; case BREAK_POINT_READ: BX_INFO(("[%lld] Caught read watch point", bx_pc_system.time_ticks())); BX_CPU_THIS_PTR stop_reason = STOP_READ_WATCH_POINT; return; case BREAK_POINT_WRITE: BX_INFO(("[%lld] Caught write watch point", bx_pc_system.time_ticks())); BX_CPU_THIS_PTR stop_reason = STOP_WRITE_WATCH_POINT; return; default: BX_PANIC(("Weird break point condition")); } } #ifdef MAGIC_BREAKPOINT // (mch) Magic break point support if (BX_CPU_THIS_PTR magic_break) { if (bx_dbg.magic_break_enabled) { BX_DEBUG(("Stopped on MAGIC BREAKPOINT")); BX_CPU_THIS_PTR stop_reason = STOP_MAGIC_BREAK_POINT; return; } else { BX_CPU_THIS_PTR magic_break = 0; BX_CPU_THIS_PTR stop_reason = STOP_NO_REASON; BX_DEBUG(("Ignoring MAGIC BREAKPOINT")); } } #endif { // check for icount or control-C. If found, set guard reg and return. Bit32u debug_eip = BX_CPU_THIS_PTR prev_eip; if ( dbg_is_end_instr_bpoint( BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, debug_eip, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base + debug_eip, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b) ) { return; } } #endif // #if BX_DEBUGGER goto main_cpu_loop; } else { unsigned remain, j; static Bit8u FetchBuffer[16]; Bit8u *temp_ptr; // read all leftover bytes in current page for (j=0; j 15 bytes // Illegal opcode // Coprocessor not available // (handled in main decode loop etc) // Priority 8: Faults on executing an instruction // Floating point execution // Overflow // Bound error // Invalid TSS // Segment not present // Stack fault // General protection // Data page fault // Alignment check // (handled by rest of the code) if (BX_CPU_THIS_PTR eflags.tf) { // TF is set before execution of next instruction. Schedule // a debug trap (#DB) after execution. After completion of // next instruction, the code above will invoke the trap. BX_CPU_THIS_PTR debug_trap |= 0x00004000; // BS flag in DR6 } if ( !(BX_CPU_THIS_PTR INTR || BX_CPU_THIS_PTR debug_trap || BX_HRQ || BX_CPU_THIS_PTR eflags.tf) ) BX_CPU_THIS_PTR async_event = 0; goto async_events_processed; } #endif // #if BX_DYNAMIC_TRANSLATION == 0 // boundaries of consideration: // // * physical memory boundary: 1024k (1Megabyte) (increments of...) // * A20 boundary: 1024k (1Megabyte) // * page boundary: 4k // * ROM boundary: 2k (dont care since we are only reading) // * segment boundary: any void BX_CPU_C::prefetch(void) { // cs:eIP // prefetch QSIZE byte quantity aligned on corresponding boundary Bit32u new_linear_addr; Bit32u new_phy_addr; Bit32u temp_eip, temp_limit; temp_eip = BX_CPU_THIS_PTR eip; temp_limit = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled; new_linear_addr = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base + temp_eip; BX_CPU_THIS_PTR prev_linear_page = new_linear_addr & 0xfffff000; if (temp_eip > temp_limit) { BX_PANIC(("prefetch: EIP > CS.limit")); } #if BX_SUPPORT_PAGING if (BX_CPU_THIS_PTR cr0.pg) { // aligned block guaranteed to be all in one page, same A20 address new_phy_addr = itranslate_linear(new_linear_addr, CPL==3); new_phy_addr = A20ADDR(new_phy_addr); } else #endif // BX_SUPPORT_PAGING { new_phy_addr = A20ADDR(new_linear_addr); } if ( new_phy_addr >= BX_CPU_THIS_PTR mem->len ) { // don't take this out if dynamic translation enabled, // otherwise you must make a check to see if bytesleft is 0 after // a call to prefetch() in the dynamic code. BX_ERROR(("prefetch: running in bogus memory")); } // max physical address as confined by page boundary BX_CPU_THIS_PTR prev_phy_page = new_phy_addr & 0xfffff000; BX_CPU_THIS_PTR max_phy_addr = BX_CPU_THIS_PTR prev_phy_page | 0x00000fff; // check if segment boundary comes into play //if ((temp_limit - temp_eip) < 4096) { // } BX_CPU_THIS_PTR bytesleft = (BX_CPU_THIS_PTR max_phy_addr - new_phy_addr) + 1; BX_CPU_THIS_PTR fetch_ptr = &BX_CPU_THIS_PTR mem->vector[new_phy_addr]; } // If control has transfered locally, it is possible the prefetch Q is // still valid. This would happen for repeat instructions, and small // branches. void BX_CPU_C::revalidate_prefetch_q(void) { Bit32u new_linear_addr, new_linear_page, new_linear_offset; Bit32u new_phy_addr; new_linear_addr = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base + BX_CPU_THIS_PTR eip; new_linear_page = new_linear_addr & 0xfffff000; if (new_linear_page == BX_CPU_THIS_PTR prev_linear_page) { // same linear address, old linear->physical translation valid new_linear_offset = new_linear_addr & 0x00000fff; new_phy_addr = BX_CPU_THIS_PTR prev_phy_page | new_linear_offset; BX_CPU_THIS_PTR bytesleft = (BX_CPU_THIS_PTR max_phy_addr - new_phy_addr) + 1; BX_CPU_THIS_PTR fetch_ptr = &BX_CPU_THIS_PTR mem->vector[new_phy_addr]; } else { BX_CPU_THIS_PTR bytesleft = 0; // invalidate prefetch Q } } void BX_CPU_C::invalidate_prefetch_q(void) { BX_CPU_THIS_PTR bytesleft = 0; } #if BX_DEBUGGER extern unsigned int dbg_show_mask; Boolean BX_CPU_C::dbg_is_begin_instr_bpoint(Bit32u cs, Bit32u eip, Bit32u laddr, Bit32u is_32) { //fprintf (stderr, "begin_instr_bp: checking cs:eip %04x:%08x\n", cs, eip); BX_CPU_THIS_PTR guard_found.cs = cs; BX_CPU_THIS_PTR guard_found.eip = eip; BX_CPU_THIS_PTR guard_found.laddr = laddr; BX_CPU_THIS_PTR guard_found.is_32bit_code = is_32; // BW mode switch breakpoint // instruction which generate exceptions never reach the end of the // loop due to a long jump. Thats why we check at start of instr. // Downside is that we show the instruction about to be executed // (not the one generating the mode switch). if (BX_CPU_THIS_PTR mode_break && (BX_CPU_THIS_PTR debug_vm != BX_CPU_THIS_PTR eflags.vm)) { BX_INFO(("Caught vm mode switch breakpoint")); BX_CPU_THIS_PTR debug_vm = BX_CPU_THIS_PTR eflags.vm; BX_CPU_THIS_PTR stop_reason = STOP_MODE_BREAK_POINT; return 1; } if( (BX_CPU_THIS_PTR show_flag) & (dbg_show_mask)) { int rv; if((rv = bx_dbg_symbolic_output())) return rv; } // see if debugger is looking for iaddr breakpoint of any type if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_ALL) { #if BX_DBG_SUPPORT_VIR_BPOINT if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_VIR) { if (BX_CPU_THIS_PTR guard_found.icount!=0) { for (unsigned i=0; i= bx_guard.icount) { BX_CPU_THIS_PTR guard_found.cs = cs; BX_CPU_THIS_PTR guard_found.eip = eip; BX_CPU_THIS_PTR guard_found.laddr = laddr; BX_CPU_THIS_PTR guard_found.is_32bit_code = is_32; BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_ICOUNT; return(1); } } #if (BX_NUM_SIMULATORS >= 2) // if async event pending, acknowlege them if (bx_guard.async_changes_pending.which) { if (bx_guard.async_changes_pending.which & BX_DBG_ASYNC_PENDING_A20) bx_dbg_async_pin_ack(BX_DBG_ASYNC_PENDING_A20, bx_guard.async_changes_pending.a20); if (bx_guard.async_changes_pending.which) { BX_PANIC(("decode: async pending unrecognized.")); } } #endif return(0); // no breakpoint } void BX_CPU_C::dbg_take_irq(void) { unsigned vector; // NOTE: similar code in ::cpu_loop() if ( BX_CPU_THIS_PTR INTR && BX_CPU_THIS_PTR eflags.if_ ) { if ( setjmp(BX_CPU_THIS_PTR jmp_buf_env) == 0 ) { // normal return from setjmp setup vector = BX_IAC(); // may set INTR with next interrupt BX_CPU_THIS_PTR errorno = 0; BX_CPU_THIS_PTR EXT = 1; // external event BX_CPU_THIS_PTR async_event = 1; // set in case INTR is triggered interrupt(vector, 0, 0, 0); } } } void BX_CPU_C::dbg_force_interrupt(unsigned vector) { // Used to force slave simulator to take an interrupt, without // regard to IF if ( setjmp(BX_CPU_THIS_PTR jmp_buf_env) == 0 ) { // normal return from setjmp setup BX_CPU_THIS_PTR errorno = 0; BX_CPU_THIS_PTR EXT = 1; // external event BX_CPU_THIS_PTR async_event = 1; // probably don't need this interrupt(vector, 0, 0, 0); } } void BX_CPU_C::dbg_take_dma(void) { // NOTE: similar code in ::cpu_loop() if ( BX_HRQ ) { BX_CPU_THIS_PTR async_event = 1; // set in case INTR is triggered BX_RAISE_HLDA(); } } #endif // #if BX_DEBUGGER