///////////////////////////////////////////////////////////////////////// // $Id: memory.cc,v 1.57 2006-06-01 20:05:15 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #include "bochs.h" #include "cpu/cpu.h" #include "iodev/iodev.h" #define LOG_THIS BX_MEM_THIS #if BX_PROVIDE_CPU_MEMORY // // Memory map inside the 1st megabyte: // // 0x00000 - 0x7ffff DOS area (512K) // 0x80000 - 0x9ffff Optional fixed memory hole (128K) // 0xa0000 - 0xbffff Standard PCI/ISA Video Mem / SMMRAM (128K) // 0xc0000 - 0xdffff Expansion Card BIOS and Buffer Area (128K) // 0xe0000 - 0xeffff Lower BIOS Area (64K) // 0xf0000 - 0xfffff Upper BIOS Area (64K) // void BX_CPP_AttrRegparmN(3) BX_MEM_C::writePhysicalPage(BX_CPU_C *cpu, bx_phy_address addr, unsigned len, void *data) { Bit8u *data_ptr; bx_phy_address a20addr = A20ADDR(addr); struct memory_handler_struct *memory_handler = NULL; // Note: accesses should always be contained within a single page now if (cpu != NULL) { #if BX_SUPPORT_IODEBUG bx_iodebug_c::mem_write(cpu, a20addr, len, data); #endif BX_INSTR_PHY_WRITE(cpu->which_cpu(), a20addr, len); #if BX_DEBUGGER // (mch) Check for physical write break points, TODO // (bbd) Each breakpoint should have an associated CPU#, TODO for (int i = 0; i < num_write_watchpoints; i++) { if (write_watchpoint[i] == a20addr) { BX_CPU(0)->watchpoint = a20addr; BX_CPU(0)->break_point = BREAK_POINT_WRITE; break; } } #endif #if BX_SUPPORT_APIC bx_generic_apic_c *local_apic = &cpu->local_apic; if (local_apic->is_selected(a20addr, len)) { local_apic->write(a20addr, (Bit32u *)data, len); return; } #endif if ((a20addr & 0xfffe0000) == 0x000a0000 && (BX_MEM_THIS smram_available)) { // SMRAM memory space if (BX_MEM_THIS smram_enable || (cpu->smm_mode() && !BX_MEM_THIS smram_restricted)) goto mem_write; } } memory_handler = memory_handlers[a20addr >> 20]; while (memory_handler) { if (memory_handler->begin <= a20addr && memory_handler->end >= a20addr && memory_handler->write_handler(a20addr, len, data, memory_handler->param)) { return; } memory_handler = memory_handler->next; } mem_write: // all memory access feets in single 4K page if (a20addr < BX_MEM_THIS len) { #if BX_SUPPORT_ICACHE pageWriteStampTable.decWriteStamp(a20addr); #endif // all of data is within limits of physical memory if ((a20addr & 0xfff80000) != 0x00080000 || (a20addr <= 0x0009ffff)) { if (len == 8) { WriteHostQWordToLittleEndian(&vector[a20addr], *(Bit64u*)data); BX_DBG_DIRTY_PAGE(a20addr >> 12); return; } if (len == 4) { WriteHostDWordToLittleEndian(&vector[a20addr], *(Bit32u*)data); BX_DBG_DIRTY_PAGE(a20addr >> 12); return; } if (len == 2) { WriteHostWordToLittleEndian(&vector[a20addr], *(Bit16u*)data); BX_DBG_DIRTY_PAGE(a20addr >> 12); return; } if (len == 1) { * ((Bit8u *) (&vector[a20addr])) = * (Bit8u *) data; BX_DBG_DIRTY_PAGE(a20addr >> 12); return; } // len == other, just fall thru to special cases handling } #ifdef BX_LITTLE_ENDIAN data_ptr = (Bit8u *) data; #else // BX_BIG_ENDIAN data_ptr = (Bit8u *) data + (len - 1); #endif write_one: if ((a20addr & 0xfff80000) != 0x00080000 || (a20addr <= 0x0009ffff)) { // addr *not* in range 000A0000 .. 000FFFFF vector[a20addr] = *data_ptr; BX_DBG_DIRTY_PAGE(a20addr >> 12); inc_one: if (len == 1) return; len--; a20addr++; #ifdef BX_LITTLE_ENDIAN data_ptr++; #else // BX_BIG_ENDIAN data_ptr--; #endif goto write_one; } // addr must be in range 000A0000 .. 000FFFFF // SMMRAM if (a20addr <= 0x000bffff) { // devices are not allowed to access SMMRAM under VGA memory if (cpu) { vector[a20addr] = *data_ptr; BX_DBG_DIRTY_PAGE(a20addr >> 12); } goto inc_one; } // adapter ROM C0000 .. DFFFF // ROM BIOS memory E0000 .. FFFFF #if BX_SUPPORT_PCI == 0 // ignore write to ROM #else // Write Based on 440fx Programming if (pci_enabled && ((a20addr & 0xfffc0000) == 0x000c0000)) { switch (DEV_pci_wr_memtype(a20addr)) { case 0x1: // Writes to ShadowRAM BX_DEBUG(("Writing to ShadowRAM: address %08x, data %02x", (unsigned) a20addr, *data_ptr)); vector[a20addr] = *data_ptr; BX_DBG_DIRTY_PAGE(a20addr >> 12); goto inc_one; case 0x0: // Writes to ROM, Inhibit BX_DEBUG(("Write to ROM ignored: address %08x, data %02x", (unsigned) a20addr, *data_ptr)); goto inc_one; default: BX_PANIC(("writePhysicalPage: default case")); goto inc_one; } } #endif goto inc_one; } else { // access outside limits of physical memory, ignore BX_DEBUG(("Write outside the limits of physical memory (ignore)")); } } void BX_CPP_AttrRegparmN(3) BX_MEM_C::readPhysicalPage(BX_CPU_C *cpu, bx_phy_address addr, unsigned len, void *data) { Bit8u *data_ptr; bx_phy_address a20addr = A20ADDR(addr); struct memory_handler_struct *memory_handler = NULL; // Note: accesses should always be contained within a single page now if (cpu != NULL) { #if BX_SUPPORT_IODEBUG bx_iodebug_c::mem_read(cpu, a20addr, len, data); #endif BX_INSTR_PHY_READ(cpu->which_cpu(), a20addr, len); #if BX_DEBUGGER // (mch) Check for physical read break points, TODO // (bbd) Each breakpoint should have an associated CPU#, TODO for (int i = 0; i < num_read_watchpoints; i++) { if (read_watchpoint[i] == a20addr) { BX_CPU(0)->watchpoint = a20addr; BX_CPU(0)->break_point = BREAK_POINT_READ; break; } } #endif #if BX_SUPPORT_APIC bx_generic_apic_c *local_apic = &cpu->local_apic; if (local_apic->is_selected (a20addr, len)) { local_apic->read(a20addr, data, len); return; } #endif if ((a20addr & 0xfffe0000) == 0x000a0000 && (BX_MEM_THIS smram_available)) { // SMRAM memory space if (BX_MEM_THIS smram_enable || (cpu->smm_mode() && !BX_MEM_THIS smram_restricted)) goto mem_read; } } memory_handler = memory_handlers[a20addr >> 20]; while (memory_handler) { if (memory_handler->begin <= a20addr && memory_handler->end >= a20addr && memory_handler->read_handler(a20addr, len, data, memory_handler->param)) { return; } memory_handler = memory_handler->next; } mem_read: if (a20addr <= BX_MEM_THIS len) { // all of data is within limits of physical memory if ((a20addr & 0xfff80000) != 0x00080000 || (a20addr <= 0x0009ffff)) { if (len == 8) { ReadHostQWordFromLittleEndian(&vector[a20addr], * (Bit64u*) data); return; } if (len == 4) { ReadHostDWordFromLittleEndian(&vector[a20addr], * (Bit32u*) data); return; } if (len == 2) { ReadHostWordFromLittleEndian(&vector[a20addr], * (Bit16u*) data); return; } if (len == 1) { * (Bit8u *) data = * ((Bit8u *) (&vector[a20addr])); return; } // len == other case can just fall thru to special cases handling } #ifdef BX_LITTLE_ENDIAN data_ptr = (Bit8u *) data; #else // BX_BIG_ENDIAN data_ptr = (Bit8u *) data + (len - 1); #endif read_one: if ((a20addr & 0xfff80000) != 0x00080000 || (a20addr <= 0x0009ffff)) { // addr *not* in range 00080000 .. 000FFFFF *data_ptr = vector[a20addr]; inc_one: if (len == 1) return; len--; a20addr++; #ifdef BX_LITTLE_ENDIAN data_ptr++; #else // BX_BIG_ENDIAN data_ptr--; #endif goto read_one; } // addr must be in range 000A0000 .. 000FFFFF // SMMRAM if (a20addr <= 0x000bffff) { // devices are not allowed to access SMMRAM under VGA memory if (cpu) *data_ptr = vector[a20addr]; goto inc_one; } #if BX_SUPPORT_PCI if (pci_enabled && ((a20addr & 0xfffc0000) == 0x000c0000)) { switch (DEV_pci_rd_memtype(a20addr)) { case 0x0: // Read from ROM if ((a20addr & 0xfffe0000) == 0x000e0000) { *data_ptr = rom[a20addr & BIOS_MASK]; } else { *data_ptr = rom[(a20addr & EXROM_MASK) + BIOSROMSZ]; } goto inc_one; case 0x1: // Read from ShadowRAM *data_ptr = vector[a20addr]; goto inc_one; default: BX_PANIC(("readPhysicalPage: default case")); } goto inc_one; } else #endif // #if BX_SUPPORT_PCI { if ((a20addr & 0xfffc0000) != 0x000c0000) { *data_ptr = vector[a20addr]; } else if ((a20addr & 0xfffe0000) == 0x000e0000) { *data_ptr = rom[a20addr & BIOS_MASK]; } else { *data_ptr = rom[(a20addr & EXROM_MASK) + BIOSROMSZ]; } goto inc_one; } } else { // access outside limits of physical memory #ifdef BX_LITTLE_ENDIAN data_ptr = (Bit8u *) data; #else // BX_BIG_ENDIAN data_ptr = (Bit8u *) data + (len - 1); #endif for (unsigned i = 0; i < len; i++) { if (a20addr >= (bx_phy_address)~BIOS_MASK) *data_ptr = rom[a20addr & BIOS_MASK]; else *data_ptr = 0xff; addr++; a20addr = (addr); #ifdef BX_LITTLE_ENDIAN data_ptr++; #else // BX_BIG_ENDIAN data_ptr--; #endif } } } #endif // #if BX_PROVIDE_CPU_MEMORY