///////////////////////////////////////////////////////////////////////// // $Id: soft_int.cc,v 1.49 2009-01-31 10:43:23 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR // Make code more tidy with a few macros. #if BX_SUPPORT_X86_64==0 #define RSP ESP #endif void BX_CPP_AttrRegparmN(1) BX_CPU_C::BOUND_GwMa(bxInstruction_c *i) { Bit16s bound_min, bound_max; Bit16s op1_16 = BX_READ_16BIT_REG(i->nnn()); bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); bound_min = (Bit16s) read_virtual_word(i->seg(), eaddr); bound_max = (Bit16s) read_virtual_word(i->seg(), eaddr+2); if (op1_16 < bound_min || op1_16 > bound_max) { BX_INFO(("BOUND_GdMa: fails bounds test")); exception(BX_BR_EXCEPTION, 0, 0); } } void BX_CPP_AttrRegparmN(1) BX_CPU_C::BOUND_GdMa(bxInstruction_c *i) { Bit32s bound_min, bound_max; Bit32s op1_32 = BX_READ_32BIT_REG(i->nnn()); bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); bound_min = (Bit32s) read_virtual_dword(i->seg(), eaddr); bound_max = (Bit32s) read_virtual_dword(i->seg(), eaddr+4); if (op1_32 < bound_min || op1_32 > bound_max) { BX_INFO(("BOUND_GdMa: fails bounds test")); exception(BX_BR_EXCEPTION, 0, 0); } } void BX_CPP_AttrRegparmN(1) BX_CPU_C::INT1(bxInstruction_c *i) { #if BX_SUPPORT_VMX VMexit_Event(i, BX_PRIVILEGED_SOFTWARE_INTERRUPT, 1, 0, 0); #endif // This is an undocumented instrucion (opcode 0xf1) // which is useful for an ICE system. #if BX_DEBUGGER BX_CPU_THIS_PTR show_flag |= Flag_softint; #endif BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; // interrupt is not RSP safe interrupt(1, BX_PRIVILEGED_SOFTWARE_INTERRUPT, 0, 0); BX_CPU_THIS_PTR speculative_rsp = 0; BX_INSTR_FAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_INT, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, EIP); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::INT3(bxInstruction_c *i) { // INT 3 is not IOPL sensitive #if BX_SUPPORT_VMX VMexit_Event(i, BX_SOFTWARE_EXCEPTION, 3, 0, 0); #endif #if BX_DEBUGGER BX_CPU_THIS_PTR show_flag |= Flag_softint; #endif BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; // interrupt is not RSP safe interrupt(3, BX_SOFTWARE_EXCEPTION, 0, 0); BX_CPU_THIS_PTR speculative_rsp = 0; BX_INSTR_FAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_INT, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, EIP); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::INT_Ib(bxInstruction_c *i) { #if BX_DEBUGGER BX_CPU_THIS_PTR show_flag |= Flag_softint; #endif Bit8u vector = i->Ib(); BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; if (v8086_mode()) { #if BX_SUPPORT_VME if (BX_CPU_THIS_PTR cr4.get_VME()) { bx_address tr_base = BX_CPU_THIS_PTR tr.cache.u.system.base; Bit16u io_base = system_read_word(tr_base + 102); Bit8u vme_redirection_bitmap = system_read_byte(tr_base + io_base - 32 + (vector >> 3)); if (! (vme_redirection_bitmap & (1 << (vector & 7)))) { // redirect interrupt through virtual-mode idt v86_redirect_interrupt(vector); goto done; } } #endif // interrupt is not redirected or VME is OFF if (BX_CPU_THIS_PTR get_IOPL() < 3) { BX_DEBUG(("INT_Ib(): Interrupt cannot be redirected, generate #GP(0)")); exception(BX_GP_EXCEPTION, 0, 0); } } #if BX_SUPPORT_VMX VMexit_Event(i, BX_SOFTWARE_INTERRUPT, vector, 0, 0); #endif #ifdef SHOW_EXIT_STATUS if ((vector == 0x21) && (AH == 0x4c)) { BX_INFO(("INT 21/4C called AL=0x%02x, BX=0x%04x", (unsigned) AL, (unsigned) BX)); } #endif interrupt(vector, BX_SOFTWARE_INTERRUPT, 0, 0); done: BX_CPU_THIS_PTR speculative_rsp = 0; BX_INSTR_FAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_INT, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, EIP); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::INTO(bxInstruction_c *i) { if (get_OF()) { #if BX_SUPPORT_VMX VMexit_Event(i, BX_SOFTWARE_EXCEPTION, 4, 0, 0); #endif #if BX_DEBUGGER BX_CPU_THIS_PTR show_flag |= Flag_softint; #endif BX_CPU_THIS_PTR speculative_rsp = 1; BX_CPU_THIS_PTR prev_rsp = RSP; // interrupt is not RSP safe interrupt(4, BX_SOFTWARE_EXCEPTION, 0, 0); BX_CPU_THIS_PTR speculative_rsp = 0; BX_INSTR_FAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_INT, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, EIP); } }