///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001-2012 The Bochs Project // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR #if BX_SUPPORT_X86_64 BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BSF_GqEqR(bxInstruction_c *i) { Bit64u op2_64 = BX_READ_64BIT_REG(i->src()); if (op2_64 == 0) { assert_ZF(); /* op1_64 undefined */ } else { Bit64u op1_64 = 0; while ((op2_64 & 0x01) == 0) { op1_64++; op2_64 >>= 1; } SET_FLAGS_OSZAPC_LOGIC_64(op1_64); clear_ZF(); BX_WRITE_64BIT_REG(i->dst(), op1_64); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BSR_GqEqR(bxInstruction_c *i) { Bit64u op2_64 = BX_READ_64BIT_REG(i->src()); if (op2_64 == 0) { assert_ZF(); /* op1_64 undefined */ } else { Bit64u op1_64 = 63; while ((op2_64 & BX_CONST64(0x8000000000000000)) == 0) { op1_64--; op2_64 <<= 1; } SET_FLAGS_OSZAPC_LOGIC_64(op1_64); clear_ZF(); BX_WRITE_64BIT_REG(i->dst(), op1_64); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BT_EqGqM(bxInstruction_c *i) { bx_address op1_addr; Bit64u op1_64, op2_64; Bit64s displacement64; Bit64u index; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); op2_64 = BX_READ_64BIT_REG(i->src()); index = op2_64 & 0x3f; displacement64 = ((Bit64s) (op2_64 & BX_CONST64(0xffffffffffffffc0))) / 64; op1_addr = eaddr + 8 * displacement64; if (! i->as64L()) op1_addr = (Bit32u) op1_addr; /* pointer, segment address pair */ op1_64 = read_virtual_qword_64(i->seg(), op1_addr); set_CF((op1_64 >> index) & 0x01); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BT_EqGqR(bxInstruction_c *i) { Bit64u op1_64, op2_64; op1_64 = BX_READ_64BIT_REG(i->dst()); op2_64 = BX_READ_64BIT_REG(i->src()); op2_64 &= 0x3f; set_CF((op1_64 >> op2_64) & 0x01); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTS_EqGqM(bxInstruction_c *i) { bx_address op1_addr; Bit64u op1_64, op2_64, index; Bit64s displacement64; bx_bool bit_i; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); op2_64 = BX_READ_64BIT_REG(i->src()); index = op2_64 & 0x3f; displacement64 = ((Bit64s) (op2_64 & BX_CONST64(0xffffffffffffffc0))) / 64; op1_addr = eaddr + 8 * displacement64; if (! i->as64L()) op1_addr = (Bit32u) op1_addr; /* pointer, segment address pair */ op1_64 = read_RMW_virtual_qword_64(i->seg(), op1_addr); bit_i = (op1_64 >> index) & 0x01; op1_64 |= (((Bit64u) 1) << index); write_RMW_virtual_qword(op1_64); set_CF(bit_i); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTS_EqGqR(bxInstruction_c *i) { Bit64u op1_64, op2_64; op1_64 = BX_READ_64BIT_REG(i->dst()); op2_64 = BX_READ_64BIT_REG(i->src()); op2_64 &= 0x3f; set_CF((op1_64 >> op2_64) & 0x01); op1_64 |= (((Bit64u) 1) << op2_64); /* now write result back to the destination */ BX_WRITE_64BIT_REG(i->dst(), op1_64); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTR_EqGqM(bxInstruction_c *i) { bx_address op1_addr; Bit64u op1_64, op2_64, index; Bit64s displacement64; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); op2_64 = BX_READ_64BIT_REG(i->src()); index = op2_64 & 0x3f; displacement64 = ((Bit64s) (op2_64 & BX_CONST64(0xffffffffffffffc0))) / 64; op1_addr = eaddr + 8 * displacement64; if (! i->as64L()) op1_addr = (Bit32u) op1_addr; /* pointer, segment address pair */ op1_64 = read_RMW_virtual_qword_64(i->seg(), op1_addr); bx_bool temp_cf = (op1_64 >> index) & 0x01; op1_64 &= ~(((Bit64u) 1) << index); /* now write back to destination */ write_RMW_virtual_qword(op1_64); set_CF(temp_cf); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTR_EqGqR(bxInstruction_c *i) { Bit64u op1_64, op2_64; op1_64 = BX_READ_64BIT_REG(i->dst()); op2_64 = BX_READ_64BIT_REG(i->src()); op2_64 &= 0x3f; set_CF((op1_64 >> op2_64) & 0x01); op1_64 &= ~(((Bit64u) 1) << op2_64); /* now write result back to the destination */ BX_WRITE_64BIT_REG(i->dst(), op1_64); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTC_EqGqM(bxInstruction_c *i) { bx_address op1_addr; Bit64u op1_64, op2_64; Bit64s displacement64; Bit64u index; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); op2_64 = BX_READ_64BIT_REG(i->src()); index = op2_64 & 0x3f; displacement64 = ((Bit64s) (op2_64 & BX_CONST64(0xffffffffffffffc0))) / 64; op1_addr = eaddr + 8 * displacement64; if (! i->as64L()) op1_addr = (Bit32u) op1_addr; op1_64 = read_RMW_virtual_qword_64(i->seg(), op1_addr); bx_bool temp_CF = (op1_64 >> index) & 0x01; op1_64 ^= (((Bit64u) 1) << index); /* toggle bit */ set_CF(temp_CF); write_RMW_virtual_qword(op1_64); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTC_EqGqR(bxInstruction_c *i) { Bit64u op1_64, op2_64; op1_64 = BX_READ_64BIT_REG(i->dst()); op2_64 = BX_READ_64BIT_REG(i->src()); op2_64 &= 0x3f; bx_bool temp_CF = (op1_64 >> op2_64) & 0x01; op1_64 ^= (((Bit64u) 1) << op2_64); /* toggle bit */ set_CF(temp_CF); BX_WRITE_64BIT_REG(i->dst(), op1_64); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BT_EqIbM(bxInstruction_c *i) { bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit64u op1_64 = read_virtual_qword_64(i->seg(), eaddr); Bit8u op2_8 = i->Ib() & 0x3f; set_CF((op1_64 >> op2_8) & 0x01); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BT_EqIbR(bxInstruction_c *i) { Bit64u op1_64 = BX_READ_64BIT_REG(i->dst()); Bit8u op2_8 = i->Ib() & 0x3f; set_CF((op1_64 >> op2_8) & 0x01); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTS_EqIbM(bxInstruction_c *i) { Bit8u op2_8 = i->Ib() & 0x3f; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit64u op1_64 = read_RMW_virtual_qword_64(i->seg(), eaddr); bx_bool temp_CF = (op1_64 >> op2_8) & 0x01; op1_64 |= (((Bit64u) 1) << op2_8); write_RMW_virtual_qword(op1_64); set_CF(temp_CF); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTS_EqIbR(bxInstruction_c *i) { Bit8u op2_8 = i->Ib() & 0x3f; Bit64u op1_64 = BX_READ_64BIT_REG(i->dst()); bx_bool temp_CF = (op1_64 >> op2_8) & 0x01; op1_64 |= (((Bit64u) 1) << op2_8); BX_WRITE_64BIT_REG(i->dst(), op1_64); set_CF(temp_CF); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTC_EqIbM(bxInstruction_c *i) { Bit8u op2_8 = i->Ib() & 0x3f; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit64u op1_64 = read_RMW_virtual_qword_64(i->seg(), eaddr); bx_bool temp_CF = (op1_64 >> op2_8) & 0x01; op1_64 ^= (((Bit64u) 1) << op2_8); /* toggle bit */ write_RMW_virtual_qword(op1_64); set_CF(temp_CF); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTC_EqIbR(bxInstruction_c *i) { Bit8u op2_8 = i->Ib() & 0x3f; Bit64u op1_64 = BX_READ_64BIT_REG(i->dst()); bx_bool temp_CF = (op1_64 >> op2_8) & 0x01; op1_64 ^= (((Bit64u) 1) << op2_8); /* toggle bit */ BX_WRITE_64BIT_REG(i->dst(), op1_64); set_CF(temp_CF); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTR_EqIbM(bxInstruction_c *i) { Bit8u op2_8 = i->Ib() & 0x3f; bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit64u op1_64 = read_RMW_virtual_qword_64(i->seg(), eaddr); bx_bool temp_CF = (op1_64 >> op2_8) & 0x01; op1_64 &= ~(((Bit64u) 1) << op2_8); write_RMW_virtual_qword(op1_64); set_CF(temp_CF); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTR_EqIbR(bxInstruction_c *i) { Bit8u op2_8 = i->Ib() & 0x3f; Bit64u op1_64 = BX_READ_64BIT_REG(i->dst()); bx_bool temp_CF = (op1_64 >> op2_8) & 0x01; op1_64 &= ~(((Bit64u) 1) << op2_8); BX_WRITE_64BIT_REG(i->dst(), op1_64); set_CF(temp_CF); BX_NEXT_INSTR(i); } /* F3 0F B8 */ BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::POPCNT_GqEqR(bxInstruction_c *i) { Bit64u op2_64 = BX_READ_64BIT_REG(i->src()); Bit64u op1_64 = 0; while (op2_64 != 0) { if (op2_64 & 1) op1_64++; op2_64 >>= 1; } Bit32u flags = op1_64 ? 0 : EFlagsZFMask; setEFlagsOSZAPC(flags); BX_WRITE_64BIT_REG(i->dst(), op1_64); BX_NEXT_INSTR(i); } /* F3 0F BC */ BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::TZCNT_GqEqR(bxInstruction_c *i) { Bit64u op1_64 = BX_READ_64BIT_REG(i->src()); Bit64u mask = 0x1, result_64 = 0; while ((op1_64 & mask) == 0 && mask) { mask <<= 1; result_64++; } set_CF(! op1_64); set_ZF(! result_64); BX_WRITE_64BIT_REG(i->dst(), result_64); BX_NEXT_INSTR(i); } /* F3 0F BD */ BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::LZCNT_GqEqR(bxInstruction_c *i) { Bit64u op1_64 = BX_READ_64BIT_REG(i->src()), result_64 = 0; Bit64u mask = BX_CONST64(0x8000000000000000); while ((op1_64 & mask) == 0 && mask) { mask >>= 1; result_64++; } set_CF(! op1_64); set_ZF(! result_64); BX_WRITE_64BIT_REG(i->dst(), result_64); BX_NEXT_INSTR(i); } #endif // BX_SUPPORT_X86_64