///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2002-2017 The Bochs Project // PCI VGA dummy adapter Copyright (C) 2002,2003 Mike Nordell // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA // ///////////////////////////////////////////////////////////////////////// // Standard VGA emulation + Bochs VBE support + PCI VGA interface // NOTE from the original pcivga code: // This "driver" was created for the SOLE PURPOSE of getting BeOS // to boot. It currently does NOTHING more than presenting a generic VGA // device on the PCI bus. ALL gfx in/out-put is still handled by the VGA code. // Furthermore, almost all of the PCI registers are currently acting like RAM. // Define BX_PLUGGABLE in files that can be compiled into plugins. For // platforms that require a special tag on exported symbols, BX_PLUGGABLE // is used to know when we are exporting symbols and when we are importing. #define BX_PLUGGABLE #include "iodev.h" #include "vgacore.h" #include "vga.h" #include "virt_timer.h" #define LOG_THIS theVga-> // Only reference the array if the tile numbers are within the bounds // of the array. If out of bounds, do nothing. #define SET_TILE_UPDATED(xtile, ytile, value) \ do { \ if (((xtile) < BX_VGA_THIS s.num_x_tiles) && ((ytile) < BX_VGA_THIS s.num_y_tiles)) \ BX_VGA_THIS s.vga_tile_updated[(xtile)+(ytile)*BX_VGA_THIS s.num_x_tiles] = value; \ } while (0) // Only reference the array if the tile numbers are within the bounds // of the array. If out of bounds, return 0. #define GET_TILE_UPDATED(xtile,ytile) \ ((((xtile) < BX_VGA_THIS s.num_x_tiles) && ((ytile) < BX_VGA_THIS s.num_y_tiles))? \ BX_VGA_THIS s.vga_tile_updated[(xtile)+(ytile)*BX_VGA_THIS s.num_x_tiles] \ : 0) bx_vga_c *theVga = NULL; int CDECL libvga_LTX_plugin_init(plugin_t *plugin, plugintype_t type) { if (type == PLUGTYPE_CORE) { theVga = new bx_vga_c(); bx_devices.pluginVgaDevice = theVga; BX_REGISTER_DEVICE_DEVMODEL(plugin, type, theVga, BX_PLUGIN_VGA); return 0; // Success } else { return -1; } } void CDECL libvga_LTX_plugin_fini(void) { delete theVga; } bx_vga_c::bx_vga_c() : bx_vgacore_c() { put("VGA"); } bx_vga_c::~bx_vga_c() { SIM->get_bochs_root()->remove("vga"); BX_DEBUG(("Exit")); } void bx_vga_c::init_vga_extension(void) { unsigned addr; Bit16u max_xres, max_yres, max_bpp; BX_VGA_THIS init_iohandlers(read_handler, write_handler); BX_VGA_THIS init_systemtimer(timer_handler, vga_param_handler); BX_VGA_THIS pci_enabled = SIM->is_pci_device("pcivga"); // The following is for the VBE display extension BX_VGA_THIS vbe_present = 0; BX_VGA_THIS vbe.enabled = 0; BX_VGA_THIS vbe.dac_8bit = 0; BX_VGA_THIS vbe.base_address = 0x0000; if (!strcmp(SIM->get_param_string(BXPN_VGA_EXTENSION)->getptr(), "vbe")) { BX_VGA_THIS put("BXVGA"); for (addr=VBE_DISPI_IOPORT_INDEX; addr<=VBE_DISPI_IOPORT_DATA; addr++) { DEV_register_ioread_handler(this, vbe_read_handler, addr, "vga video", 7); DEV_register_iowrite_handler(this, vbe_write_handler, addr, "vga video", 7); } if (!BX_VGA_THIS pci_enabled) { BX_VGA_THIS vbe.base_address = VBE_DISPI_LFB_PHYSICAL_ADDRESS; DEV_register_memory_handlers(theVga, mem_read_handler, mem_write_handler, BX_VGA_THIS vbe.base_address, BX_VGA_THIS vbe.base_address + VBE_DISPI_TOTAL_VIDEO_MEMORY_BYTES - 1); } if (BX_VGA_THIS s.memory == NULL) BX_VGA_THIS s.memory = new Bit8u[VBE_DISPI_TOTAL_VIDEO_MEMORY_BYTES]; memset(BX_VGA_THIS s.memory, 0, VBE_DISPI_TOTAL_VIDEO_MEMORY_BYTES); BX_VGA_THIS s.memsize = VBE_DISPI_TOTAL_VIDEO_MEMORY_BYTES; BX_VGA_THIS vbe.cur_dispi=VBE_DISPI_ID0; BX_VGA_THIS vbe.xres=640; BX_VGA_THIS vbe.yres=480; BX_VGA_THIS vbe.bpp=8; BX_VGA_THIS vbe.bank=0; BX_VGA_THIS vbe.curindex=0; BX_VGA_THIS vbe.offset_x=0; BX_VGA_THIS vbe.offset_y=0; BX_VGA_THIS vbe.virtual_xres=640; BX_VGA_THIS vbe.virtual_yres=480; BX_VGA_THIS vbe.bpp_multiplier=1; BX_VGA_THIS vbe.virtual_start=0; BX_VGA_THIS vbe.lfb_enabled=0; BX_VGA_THIS vbe.get_capabilities=0; bx_gui->get_capabilities(&max_xres, &max_yres, &max_bpp); if (max_xres > VBE_DISPI_MAX_XRES) { BX_VGA_THIS vbe.max_xres=VBE_DISPI_MAX_XRES; } else { BX_VGA_THIS vbe.max_xres=max_xres; } if (max_yres > VBE_DISPI_MAX_YRES) { BX_VGA_THIS vbe.max_yres=VBE_DISPI_MAX_YRES; } else { BX_VGA_THIS vbe.max_yres=max_yres; } if (max_bpp > VBE_DISPI_MAX_BPP) { BX_VGA_THIS vbe.max_bpp=VBE_DISPI_MAX_BPP; } else { BX_VGA_THIS vbe.max_bpp=max_bpp; } BX_VGA_THIS s.max_xres = BX_VGA_THIS vbe.max_xres; BX_VGA_THIS s.max_yres = BX_VGA_THIS vbe.max_yres; BX_VGA_THIS vbe_present = 1; BX_VGA_THIS extension_init = 1; BX_INFO(("VBE Bochs Display Extension Enabled")); } #if BX_SUPPORT_PCI Bit8u devfunc = 0x00; if (BX_VGA_THIS pci_enabled) { DEV_register_pci_handlers(this, &devfunc, "pcivga", "Experimental PCI VGA"); // initialize readonly registers // Note that the values for vendor and device id are selected at random! // There might actually be "real" values for "experimental" vendor and // device that should be used! init_pci_conf(0x1234, 0x1111, 0x00, 0x030000, 0x00); if (BX_VGA_THIS vbe_present) { BX_VGA_THIS pci_conf[0x10] = 0x08; BX_VGA_THIS pci_base_address[0] = 0; } BX_VGA_THIS pci_rom_address = 0; BX_VGA_THIS load_pci_rom(SIM->get_param_string(BXPN_VGA_ROM_PATH)->getptr()); } #endif #if BX_DEBUGGER // register device for the 'info device' command (calls debug_dump()) bx_dbg_register_debug_info("vga", this); #endif } void bx_vga_c::reset(unsigned type) { #if BX_SUPPORT_PCI if (BX_VGA_THIS pci_enabled) { static const struct reset_vals_t { unsigned addr; unsigned char val; } reset_vals[] = { { 0x04, 0x03 }, { 0x05, 0x00 }, // command_io + command_mem { 0x06, 0x00 }, { 0x07, 0x02 } // status_devsel_medium }; for (unsigned i = 0; i < sizeof(reset_vals) / sizeof(*reset_vals); ++i) { BX_VGA_THIS pci_conf[reset_vals[i].addr] = reset_vals[i].val; } } #endif } void bx_vga_c::register_state(void) { bx_list_c *list = new bx_list_c(SIM->get_bochs_root(), "vga", "VGA Adapter State"); bx_vgacore_c::register_state(list); #if BX_SUPPORT_PCI if (BX_VGA_THIS pci_enabled) { register_pci_state(list); } #endif // register state for Bochs VBE if (BX_VGA_THIS vbe_present) { bx_list_c *vbe = new bx_list_c(list, "vbe"); new bx_shadow_num_c(vbe, "cur_dispi", &BX_VGA_THIS vbe.cur_dispi, BASE_HEX); new bx_shadow_num_c(vbe, "xres", &BX_VGA_THIS vbe.xres); new bx_shadow_num_c(vbe, "yres", &BX_VGA_THIS vbe.yres); new bx_shadow_num_c(vbe, "bpp", &BX_VGA_THIS vbe.bpp); new bx_shadow_num_c(vbe, "bank", &BX_VGA_THIS vbe.bank); new bx_shadow_bool_c(vbe, "enabled", &BX_VGA_THIS vbe.enabled); new bx_shadow_num_c(vbe, "curindex", &BX_VGA_THIS vbe.curindex); new bx_shadow_num_c(vbe, "visible_screen_size", &BX_VGA_THIS vbe.visible_screen_size); new bx_shadow_num_c(vbe, "offset_x", &BX_VGA_THIS vbe.offset_x); new bx_shadow_num_c(vbe, "offset_y", &BX_VGA_THIS vbe.offset_y); new bx_shadow_num_c(vbe, "virtual_xres", &BX_VGA_THIS vbe.virtual_xres); new bx_shadow_num_c(vbe, "virtual_yres", &BX_VGA_THIS vbe.virtual_yres); new bx_shadow_num_c(vbe, "virtual_start", &BX_VGA_THIS vbe.virtual_start); new bx_shadow_num_c(vbe, "bpp_multiplier", &BX_VGA_THIS vbe.bpp_multiplier); new bx_shadow_bool_c(vbe, "lfb_enabled", &BX_VGA_THIS vbe.lfb_enabled); new bx_shadow_bool_c(vbe, "get_capabilities", &BX_VGA_THIS vbe.get_capabilities); new bx_shadow_bool_c(vbe, "dac_8bit", &BX_VGA_THIS vbe.dac_8bit); } } void bx_vga_c::after_restore_state(void) { bx_vgacore_c::after_restore_state(); #if BX_SUPPORT_PCI if (BX_VGA_THIS pci_enabled) { if (BX_VGA_THIS vbe_present) { if (BX_VGA_THIS vbe_set_base_addr(&BX_VGA_THIS pci_base_address[0], &BX_VGA_THIS pci_conf[0x10])) { BX_INFO(("new base address: 0x%08x", BX_VGA_THIS pci_base_address[0])); } } if (DEV_pci_set_base_mem(this, mem_read_handler, mem_write_handler, &BX_VGA_THIS pci_rom_address, &BX_VGA_THIS pci_conf[0x30], BX_VGA_THIS pci_rom_size)) { BX_INFO(("new ROM address: 0x%08x", BX_VGA_THIS pci_rom_address)); } } #endif if (BX_VGA_THIS vbe.enabled) { bx_gui->dimension_update(BX_VGA_THIS vbe.xres, BX_VGA_THIS vbe.yres, 0, 0, BX_VGA_THIS vbe.bpp); } } // static IO port write callback handler // redirects to non-static class handler to avoid virtual functions void bx_vga_c::write_handler(void *this_ptr, Bit32u address, Bit32u value, unsigned io_len) { #if BX_USE_VGA_SMF == 0 bx_vga_c *class_ptr = (bx_vga_c *) this_ptr; class_ptr->write(address, value, io_len, 0); #else UNUSED(this_ptr); theVga->write(address, value, io_len, 0); #endif } #if BX_USE_VGA_SMF void bx_vga_c::write_handler_no_log(void *this_ptr, Bit32u address, Bit32u value, unsigned io_len) { UNUSED(this_ptr); theVga->write(address, value, io_len, 1); } #endif void bx_vga_c::write(Bit32u address, Bit32u value, unsigned io_len, bx_bool no_log) { if (io_len == 2) { #if BX_USE_VGA_SMF bx_vga_c::write_handler_no_log(0, address, value & 0xff, 1); bx_vga_c::write_handler_no_log(0, address+1, (value >> 8) & 0xff, 1); #else bx_vga_c::write(address, value & 0xff, 1, 1); bx_vga_c::write(address+1, (value >> 8) & 0xff, 1, 1); #endif return; } if ((address >= 0x03b0) && (address <= 0x03bf) && (BX_VGA_THIS s.misc_output.color_emulation)) return; if ((address >= 0x03d0) && (address <= 0x03df) && (BX_VGA_THIS s.misc_output.color_emulation==0)) return; switch (address) { case 0x03b5: /* CRTC Registers (monochrome emulation modes) */ case 0x03d5: /* CRTC Registers (color emulation modes) */ if (BX_VGA_THIS s.CRTC.address > 0x18) { BX_DEBUG(("write: invalid CRTC register 0x%02x ignored", (unsigned) BX_VGA_THIS s.CRTC.address)); return; } if (value != BX_VGA_THIS s.CRTC.reg[BX_VGA_THIS s.CRTC.address]) { switch (BX_VGA_THIS s.CRTC.address) { case 0x13: case 0x14: case 0x17: if (!BX_VGA_THIS vbe.enabled || (BX_VGA_THIS vbe.bpp == VBE_DISPI_BPP_4)) { // Line offset change bx_vgacore_c::write(address, value, io_len, no_log); } else { BX_VGA_THIS s.CRTC.reg[BX_VGA_THIS s.CRTC.address] = value; } break; default: bx_vgacore_c::write(address, value, io_len, no_log); } } break; default: bx_vgacore_c::write(address, value, io_len, no_log); } } Bit64s bx_vga_c::vga_param_handler(bx_param_c *param, int set, Bit64s val) { // handler for runtime parameter 'vga: update_freq' if (set) { Bit32u update_interval = (Bit32u)(1000000 / val); BX_INFO(("Changing timer interval to %d", update_interval)); BX_VGA_THIS timer_handler(theVga); bx_virt_timer.activate_timer(BX_VGA_THIS timer_id, update_interval, 1); if (update_interval < 300000) { BX_VGA_THIS s.blink_counter = 300000 / (unsigned)update_interval; } else { BX_VGA_THIS s.blink_counter = 1; } } return val; } void bx_vga_c::refresh_display(void *this_ptr, bx_bool redraw) { #if BX_SUPPORT_PCI if (BX_VGA_THIS s.vga_override && (BX_VGA_THIS s.nvgadev != NULL)) { BX_VGA_THIS s.nvgadev->refresh_display(BX_VGA_THIS s.nvgadev, redraw); return; } #endif if (redraw) { redraw_area(0, 0, BX_VGA_THIS s.last_xres, BX_VGA_THIS s.last_yres); } timer_handler(this_ptr); } void bx_vga_c::timer_handler(void *this_ptr) { #if BX_USE_VGA_SMF == 0 bx_vga_c *class_ptr = (bx_vga_c *) this_ptr; class_ptr->timer(); } void bx_vga_c::timer(void) { #else UNUSED(this_ptr); #endif update(); bx_gui->flush(); } void bx_vga_c::update(void) { unsigned iHeight, iWidth; #if BX_SUPPORT_PCI if (BX_VGA_THIS s.vga_override && (BX_VGA_THIS s.nvgadev != NULL)) { BX_VGA_THIS s.nvgadev->update(); return; } #endif if (BX_VGA_THIS vbe.enabled) { /* no screen update necessary */ if ((BX_VGA_THIS s.vga_mem_updated==0) && BX_VGA_THIS s.graphics_ctrl.graphics_alpha) return; /* skip screen update when vga/video is disabled or the sequencer is in reset mode */ if (!BX_VGA_THIS s.vga_enabled || !BX_VGA_THIS s.attribute_ctrl.video_enabled || !BX_VGA_THIS s.sequencer.reset2 || !BX_VGA_THIS s.sequencer.reset1 || (BX_VGA_THIS s.sequencer.reg1 & 0x20)) return; /* skip screen update if the vertical retrace is in progress (using 72 Hz vertical frequency) */ if ((bx_virt_timer.time_usec(BX_VGA_THIS realtime) % 13888) < 70) return; if (BX_VGA_THIS vbe.bpp != VBE_DISPI_BPP_4) { // specific VBE code display update code unsigned pitch; unsigned xc, yc, xti, yti; unsigned r, c, w, h; int i; unsigned long red, green, blue, colour; Bit8u * vid_ptr, * vid_ptr2; Bit8u * tile_ptr, * tile_ptr2; bx_svga_tileinfo_t info; Bit8u dac_size = BX_VGA_THIS vbe.dac_8bit ? 8 : 6; iWidth=BX_VGA_THIS vbe.xres; iHeight=BX_VGA_THIS vbe.yres; pitch = BX_VGA_THIS s.line_offset; Bit8u *disp_ptr = &BX_VGA_THIS s.memory[BX_VGA_THIS vbe.virtual_start]; if (bx_gui->graphics_tile_info_common(&info)) { if (info.snapshot_mode) { vid_ptr = disp_ptr; tile_ptr = bx_gui->get_snapshot_buffer(); if (tile_ptr != NULL) { for (yc = 0; yc < iHeight; yc++) { memcpy(tile_ptr, vid_ptr, info.pitch); vid_ptr += pitch; tile_ptr += info.pitch; } } } else if (info.is_indexed) { switch (BX_VGA_THIS vbe.bpp) { case 4: case 15: case 16: case 24: case 32: BX_ERROR(("current guest pixel format is unsupported on indexed colour host displays")); break; case 8: for (yc=0, yti = 0; ycgraphics_tile_get(xc, yc, &w, &h); for (r=0; r> i); } } else { for (i=info.bpp-8; i>-8; i-=8) { *(tile_ptr2++) = (Bit8u)(colour >> i); } } } vid_ptr += pitch; tile_ptr += info.pitch; } bx_gui->graphics_tile_update_in_place(xc, yc, w, h); SET_TILE_UPDATED (xti, yti, 0); } } } break; } } else { switch (BX_VGA_THIS vbe.bpp) { case 4: BX_ERROR(("cannot draw 4bpp SVGA")); break; case 8: for (yc=0, yti = 0; ycgraphics_tile_get(xc, yc, &w, &h); for (r=0; r> i); } } else { for (i=info.bpp-8; i>-8; i-=8) { *(tile_ptr2++) = (Bit8u)(colour >> i); } } } vid_ptr += pitch; tile_ptr += info.pitch; } bx_gui->graphics_tile_update_in_place(xc, yc, w, h); SET_TILE_UPDATED (xti, yti, 0); } } } break; case 15: for (yc=0, yti = 0; ycgraphics_tile_get(xc, yc, &w, &h); for (r=0; r> i); } } else { for (i=info.bpp-8; i>-8; i-=8) { *(tile_ptr2++) = (Bit8u)(colour >> i); } } } vid_ptr += pitch; tile_ptr += info.pitch; } bx_gui->graphics_tile_update_in_place(xc, yc, w, h); SET_TILE_UPDATED (xti, yti, 0); } } } break; case 16: for (yc=0, yti = 0; ycgraphics_tile_get(xc, yc, &w, &h); for (r=0; r> i); } } else { for (i=info.bpp-8; i>-8; i-=8) { *(tile_ptr2++) = (Bit8u)(colour >> i); } } } vid_ptr += pitch; tile_ptr += info.pitch; } bx_gui->graphics_tile_update_in_place(xc, yc, w, h); SET_TILE_UPDATED (xti, yti, 0); } } } break; case 24: for (yc=0, yti = 0; ycgraphics_tile_get(xc, yc, &w, &h); for (r=0; r> i); } } else { for (i=info.bpp-8; i>-8; i-=8) { *(tile_ptr2++) = (Bit8u)(colour >> i); } } } vid_ptr += pitch; tile_ptr += info.pitch; } bx_gui->graphics_tile_update_in_place(xc, yc, w, h); SET_TILE_UPDATED (xti, yti, 0); } } } break; case 32: for (yc=0, yti = 0; ycgraphics_tile_get(xc, yc, &w, &h); for (r=0; r> i); } } else { for (i=info.bpp-8; i>-8; i-=8) { *(tile_ptr2++) = (Bit8u)(colour >> i); } } } vid_ptr += pitch; tile_ptr += info.pitch; } bx_gui->graphics_tile_update_in_place(xc, yc, w, h); SET_TILE_UPDATED (xti, yti, 0); } } } break; } } BX_VGA_THIS s.last_xres = iWidth; BX_VGA_THIS s.last_yres = iHeight; BX_VGA_THIS s.vga_mem_updated = 0; } else { BX_PANIC(("cannot get svga tile info")); } } else { unsigned r, c, x, y; unsigned xc, yc, xti, yti; Bit8u *plane[4]; BX_VGA_THIS determine_screen_dimensions(&iHeight, &iWidth); if ((iWidth != BX_VGA_THIS s.last_xres) || (iHeight != BX_VGA_THIS s.last_yres) || (BX_VGA_THIS s.last_bpp > 8)) { bx_gui->dimension_update(iWidth, iHeight); BX_VGA_THIS s.last_xres = iWidth; BX_VGA_THIS s.last_yres = iHeight; BX_VGA_THIS s.last_bpp = 8; } plane[0] = &BX_VGA_THIS s.memory[0<>= 1; for (c=0; cgraphics_tile_update_common(BX_VGA_THIS s.tile, xc, yc); } } } } } else { BX_VGA_THIS bx_vgacore_c::update(); } } bx_bool bx_vga_c::mem_read_handler(bx_phy_address addr, unsigned len, void *data, void *param) { Bit8u *data_ptr; #ifdef BX_LITTLE_ENDIAN data_ptr = (Bit8u *) data; #else // BX_BIG_ENDIAN data_ptr = (Bit8u *) data + (len - 1); #endif for (unsigned i = 0; i < len; i++) { *data_ptr = theVga->mem_read(addr); addr++; #ifdef BX_LITTLE_ENDIAN data_ptr++; #else // BX_BIG_ENDIAN data_ptr--; #endif } return 1; } Bit8u bx_vga_c::mem_read(bx_phy_address addr) { #if BX_SUPPORT_PCI if ((BX_VGA_THIS pci_enabled) && (BX_VGA_THIS pci_rom_size > 0)) { Bit32u mask = (BX_VGA_THIS pci_rom_size - 1); if ((addr & ~mask) == BX_VGA_THIS pci_rom_address) { if (BX_VGA_THIS pci_conf[0x30] & 0x01) { return BX_VGA_THIS pci_rom[addr & mask]; } else { return 0xff; } } } #endif // if in a vbe enabled mode, read from the vbe_memory if ((BX_VGA_THIS vbe.enabled) && (BX_VGA_THIS vbe.bpp != VBE_DISPI_BPP_4)) { return vbe_mem_read(addr); } else if ((BX_VGA_THIS vbe.base_address != 0) && (addr >= BX_VGA_THIS vbe.base_address)) { return 0xff; } return bx_vgacore_c::mem_read(addr); } bx_bool bx_vga_c::mem_write_handler(bx_phy_address addr, unsigned len, void *data, void *param) { Bit8u *data_ptr; #ifdef BX_LITTLE_ENDIAN data_ptr = (Bit8u *) data; #else // BX_BIG_ENDIAN data_ptr = (Bit8u *) data + (len - 1); #endif for (unsigned i = 0; i < len; i++) { theVga->mem_write(addr, *data_ptr); addr++; #ifdef BX_LITTLE_ENDIAN data_ptr++; #else // BX_BIG_ENDIAN data_ptr--; #endif } return 1; } void bx_vga_c::mem_write(bx_phy_address addr, Bit8u value) { // if in a vbe enabled mode, write to the vbe_memory if ((BX_VGA_THIS vbe.enabled) && (BX_VGA_THIS vbe.bpp != VBE_DISPI_BPP_4)) { vbe_mem_write(addr, value); return; } else if ((BX_VGA_THIS vbe.base_address != 0) && (addr >= BX_VGA_THIS vbe.base_address)) { return; } bx_vgacore_c::mem_write(addr, value); } void bx_vga_c::redraw_area(unsigned x0, unsigned y0, unsigned width, unsigned height) { unsigned xti, yti, xt0, xt1, yt0, yt1, xmax, ymax; if (width == 0 || height == 0) { return; } #if BX_SUPPORT_PCI if (BX_VGA_THIS s.vga_override && (BX_VGA_THIS s.nvgadev != NULL)) { BX_VGA_THIS s.nvgadev->redraw_area(x0, y0, width, height); return; } #endif if (BX_VGA_THIS vbe.enabled) { BX_VGA_THIS s.vga_mem_updated = 1; xmax = BX_VGA_THIS vbe.xres; ymax = BX_VGA_THIS vbe.yres; xt0 = x0 / X_TILESIZE; yt0 = y0 / Y_TILESIZE; if (x0 < xmax) { xt1 = (x0 + width - 1) / X_TILESIZE; } else { xt1 = (xmax - 1) / X_TILESIZE; } if (y0 < ymax) { yt1 = (y0 + height - 1) / Y_TILESIZE; } else { yt1 = (ymax - 1) / Y_TILESIZE; } for (yti=yt0; yti<=yt1; yti++) { for (xti=xt0; xti<=xt1; xti++) { SET_TILE_UPDATED(xti, yti, 1); } } } else { bx_vgacore_c::redraw_area(x0, y0, width, height); } } #if BX_SUPPORT_PCI bx_bool bx_vga_c::vbe_set_base_addr(Bit32u *addr, Bit8u *pci_conf) { if (DEV_pci_set_base_mem(BX_VGA_THIS_PTR, mem_read_handler, mem_write_handler, addr, pci_conf, VBE_DISPI_TOTAL_VIDEO_MEMORY_BYTES)) { BX_VGA_THIS vbe.base_address = *addr; return 1; } return 0; } #endif Bit8u BX_CPP_AttrRegparmN(1) bx_vga_c::vbe_mem_read(bx_phy_address addr) { Bit32u offset; if (addr >= BX_VGA_THIS vbe.base_address) { // LFB read offset = (Bit32u)(addr - BX_VGA_THIS vbe.base_address); } else { // banked mode read offset = (Bit32u)(BX_VGA_THIS vbe.bank*65536 + addr - 0xA0000); } // check for out of memory read if (offset > VBE_DISPI_TOTAL_VIDEO_MEMORY_BYTES) return 0; return (BX_VGA_THIS s.memory[offset]); } void BX_CPP_AttrRegparmN(2) bx_vga_c::vbe_mem_write(bx_phy_address addr, Bit8u value) { Bit32u offset; unsigned x_tileno, y_tileno; if (BX_VGA_THIS vbe.lfb_enabled) { if (addr >= BX_VGA_THIS vbe.base_address) { // LFB write offset = (Bit32u)(addr - BX_VGA_THIS vbe.base_address); } else { // banked mode write while in LFB mode -> ignore return; } } else { if (addr < BX_VGA_THIS vbe.base_address) { // banked mode write offset = (Bit32u)(BX_VGA_THIS vbe.bank*65536 + (addr - 0xA0000)); } else { // LFB write while in banked mode -> ignore return; } } // check for out of memory write if (offset < VBE_DISPI_TOTAL_VIDEO_MEMORY_BYTES) { BX_VGA_THIS s.memory[offset]=value; } else { // make sure we don't flood the logfile static int count=0; if (count<100) { count ++; BX_INFO(("VBE_mem_write out of video memory write at %x",offset)); } } offset-=BX_VGA_THIS vbe.virtual_start; // only update the UI when writing 'onscreen' if (offset < BX_VGA_THIS vbe.visible_screen_size) { y_tileno = ((offset / BX_VGA_THIS vbe.bpp_multiplier) / BX_VGA_THIS vbe.virtual_xres) / Y_TILESIZE; x_tileno = ((offset / BX_VGA_THIS vbe.bpp_multiplier) % BX_VGA_THIS vbe.virtual_xres) / X_TILESIZE; if ((y_tileno < BX_VGA_THIS s.num_y_tiles) && (x_tileno < BX_VGA_THIS s.num_x_tiles)) { BX_VGA_THIS s.vga_mem_updated = 1; SET_TILE_UPDATED (x_tileno, y_tileno, 1); } } } Bit32u bx_vga_c::vbe_read_handler(void *this_ptr, Bit32u address, unsigned io_len) { #if BX_USE_VGA_SMF == 0 bx_vga_c *class_ptr = (bx_vga_c *) this_ptr; return class_ptr->vbe_read(address, io_len); } Bit32u bx_vga_c::vbe_read(Bit32u address, unsigned io_len) { #else UNUSED(this_ptr); #endif // BX_USE_VGA_SMF == 0 Bit16u retval; // BX_INFO(("VBE_read %x (len %x)", address, io_len)); if (address==VBE_DISPI_IOPORT_INDEX) { // index register return (Bit32u) BX_VGA_THIS vbe.curindex; } else { // data register read switch (BX_VGA_THIS vbe.curindex) { case VBE_DISPI_INDEX_ID: // Display Interface ID check return BX_VGA_THIS vbe.cur_dispi; case VBE_DISPI_INDEX_XRES: // x resolution if (BX_VGA_THIS vbe.get_capabilities) { return BX_VGA_THIS vbe.max_xres; } else { return BX_VGA_THIS vbe.xres; } case VBE_DISPI_INDEX_YRES: // y resolution if (BX_VGA_THIS vbe.get_capabilities) { return BX_VGA_THIS vbe.max_yres; } else { return BX_VGA_THIS vbe.yres; } case VBE_DISPI_INDEX_BPP: // bpp if (BX_VGA_THIS vbe.get_capabilities) { return BX_VGA_THIS vbe.max_bpp; } else { return BX_VGA_THIS vbe.bpp; } case VBE_DISPI_INDEX_ENABLE: // vbe enabled retval = BX_VGA_THIS vbe.enabled; if (BX_VGA_THIS vbe.get_capabilities) retval |= VBE_DISPI_GETCAPS; if (BX_VGA_THIS vbe.dac_8bit) retval |= VBE_DISPI_8BIT_DAC; return retval; case VBE_DISPI_INDEX_BANK: // current bank return BX_VGA_THIS vbe.bank; case VBE_DISPI_INDEX_X_OFFSET: return BX_VGA_THIS vbe.offset_x; case VBE_DISPI_INDEX_Y_OFFSET: return BX_VGA_THIS vbe.offset_y; case VBE_DISPI_INDEX_VIRT_WIDTH: return BX_VGA_THIS vbe.virtual_xres; case VBE_DISPI_INDEX_VIRT_HEIGHT: return BX_VGA_THIS vbe.virtual_yres; case VBE_DISPI_INDEX_VIDEO_MEMORY_64K: return (VBE_DISPI_TOTAL_VIDEO_MEMORY_KB >> 6); default: BX_PANIC(("VBE unknown data read index 0x%x",BX_VGA_THIS vbe.curindex)); break; } } BX_PANIC(("VBE_read shouldn't reach this")); return 0; /* keep compiler happy */ } void bx_vga_c::vbe_write_handler(void *this_ptr, Bit32u address, Bit32u value, unsigned io_len) { #if BX_USE_VGA_SMF == 0 bx_vga_c *class_ptr = (bx_vga_c *) this_ptr; class_ptr->vbe_write(address, value, io_len); } Bit32u bx_vga_c::vbe_write(Bit32u address, Bit32u value, unsigned io_len) { #else UNUSED(this_ptr); #endif bx_bool new_vbe_8bit_dac; bx_bool needs_update = 0; unsigned i; // BX_INFO(("VBE_write %x = %x (len %x)", address, value, io_len)); switch(address) { // index register case VBE_DISPI_IOPORT_INDEX: BX_VGA_THIS vbe.curindex = (Bit16u) value; break; // data register // FIXME: maybe do some 'sanity' checks on received data? case VBE_DISPI_IOPORT_DATA: switch (BX_VGA_THIS vbe.curindex) { case VBE_DISPI_INDEX_ID: // Display Interface ID check { if ((value == VBE_DISPI_ID0) || (value == VBE_DISPI_ID1) || (value == VBE_DISPI_ID2) || (value == VBE_DISPI_ID3) || (value == VBE_DISPI_ID4) || (value == VBE_DISPI_ID5)) { // allow backwards compatible with previous dispi bioses BX_VGA_THIS vbe.cur_dispi=value; } else { BX_PANIC(("VBE unknown Display Interface %x", value)); } // make sure we don't flood the logfile static int count=0; if (count < 100) { count++; BX_INFO(("VBE known Display Interface %x", value)); } } break; case VBE_DISPI_INDEX_XRES: // set xres { // check that we don't set xres during vbe enabled if (!BX_VGA_THIS vbe.enabled) { // check for within max xres range if (value <= VBE_DISPI_MAX_XRES) { BX_VGA_THIS vbe.xres=(Bit16u) value; BX_INFO(("VBE set xres (%d)", value)); } else { BX_INFO(("VBE set xres more then max xres (%d)", value)); } } else { BX_ERROR(("VBE set xres during vbe enabled!")); } } break; case VBE_DISPI_INDEX_YRES: // set yres { // check that we don't set yres during vbe enabled if (!BX_VGA_THIS vbe.enabled) { // check for within max yres range if (value <= VBE_DISPI_MAX_YRES) { BX_VGA_THIS vbe.yres=(Bit16u) value; BX_INFO(("VBE set yres (%d)", value)); } else { BX_INFO(("VBE set yres more then max yres (%d)", value)); } } else { BX_ERROR(("VBE set yres during vbe enabled!")); } } break; case VBE_DISPI_INDEX_BPP: // set bpp { // check that we don't set bpp during vbe enabled if (!BX_VGA_THIS vbe.enabled) { // for backward compatiblity if (value == 0) value = VBE_DISPI_BPP_8; // check for correct bpp range if ((value == VBE_DISPI_BPP_4) || (value == VBE_DISPI_BPP_8) || (value == VBE_DISPI_BPP_15) || (value == VBE_DISPI_BPP_16) || (value == VBE_DISPI_BPP_24) || (value == VBE_DISPI_BPP_32)) { BX_VGA_THIS vbe.bpp=(Bit16u) value; BX_INFO(("VBE set bpp (%d)", value)); } else { BX_ERROR(("VBE set bpp with unknown bpp (%d)", value)); } } else { BX_ERROR(("VBE set bpp during vbe enabled!")); } } break; case VBE_DISPI_INDEX_BANK: // set bank { value=value & 0xff; // FIXME lobyte = vbe bank A? unsigned divider = (BX_VGA_THIS vbe.bpp!=VBE_DISPI_BPP_4)?64:256; // check for max bank nr if (value < (VBE_DISPI_TOTAL_VIDEO_MEMORY_KB / divider)) { if (!BX_VGA_THIS vbe.lfb_enabled) { BX_DEBUG(("VBE set bank to %d", value)); BX_VGA_THIS vbe.bank = value; BX_VGA_THIS s.plane_offset = (BX_VGA_THIS vbe.bank << 16); } else { BX_ERROR(("VBE set bank in LFB mode ignored")); } } else { BX_ERROR(("VBE set invalid bank (%d)", value)); } } break; case VBE_DISPI_INDEX_ENABLE: // enable video { if ((value & VBE_DISPI_ENABLED) && !BX_VGA_THIS vbe.enabled) { unsigned depth=0; // setup virtual resolution to be the same as current reso BX_VGA_THIS vbe.virtual_yres=BX_VGA_THIS vbe.yres; BX_VGA_THIS vbe.virtual_xres=BX_VGA_THIS vbe.xres; // reset offset BX_VGA_THIS vbe.offset_x=0; BX_VGA_THIS vbe.offset_y=0; BX_VGA_THIS vbe.virtual_start=0; switch((BX_VGA_THIS vbe.bpp)) { // Default pixel sizes case VBE_DISPI_BPP_8: BX_VGA_THIS vbe.bpp_multiplier = 1; BX_VGA_THIS s.line_offset = BX_VGA_THIS vbe.virtual_xres; depth=8; break; case VBE_DISPI_BPP_4: BX_VGA_THIS vbe.bpp_multiplier = 1; BX_VGA_THIS s.line_offset = (BX_VGA_THIS vbe.virtual_xres >> 3); depth=4; break; case VBE_DISPI_BPP_15: BX_VGA_THIS vbe.bpp_multiplier = 2; BX_VGA_THIS s.line_offset = BX_VGA_THIS vbe.virtual_xres * 2; depth=15; break; case VBE_DISPI_BPP_16: BX_VGA_THIS vbe.bpp_multiplier = 2; BX_VGA_THIS s.line_offset = BX_VGA_THIS vbe.virtual_xres * 2; depth=16; break; case VBE_DISPI_BPP_24: BX_VGA_THIS vbe.bpp_multiplier = 3; BX_VGA_THIS s.line_offset = BX_VGA_THIS vbe.virtual_xres * 3; depth=24; break; case VBE_DISPI_BPP_32: BX_VGA_THIS vbe.bpp_multiplier = 4; BX_VGA_THIS s.line_offset = BX_VGA_THIS vbe.virtual_xres << 2; depth=32; break; } BX_VGA_THIS vbe.visible_screen_size = BX_VGA_THIS s.line_offset * BX_VGA_THIS vbe.yres; BX_INFO(("VBE enabling x %d, y %d, bpp %d, %u bytes visible", BX_VGA_THIS vbe.xres, BX_VGA_THIS vbe.yres, BX_VGA_THIS vbe.bpp, BX_VGA_THIS vbe.visible_screen_size)); if (depth > 4) { BX_VGA_THIS vbe.lfb_enabled = (bx_bool)((value & VBE_DISPI_LFB_ENABLED) != 0); if ((value & VBE_DISPI_NOCLEARMEM) == 0) { memset(BX_VGA_THIS s.memory, 0, BX_VGA_THIS vbe.visible_screen_size); } bx_gui->dimension_update(BX_VGA_THIS vbe.xres, BX_VGA_THIS vbe.yres, 0, 0, depth); BX_VGA_THIS s.last_bpp = depth; } else { BX_VGA_THIS s.plane_shift = VBE_DISPI_4BPP_PLANE_SHIFT; BX_VGA_THIS s.plane_offset = (BX_VGA_THIS vbe.bank << 16); } } else if (((value & VBE_DISPI_ENABLED) == 0) && BX_VGA_THIS vbe.enabled) { BX_INFO(("VBE disabling")); BX_VGA_THIS vbe.lfb_enabled = 0; BX_VGA_THIS s.plane_shift = 16; BX_VGA_THIS s.plane_offset = 0; } BX_VGA_THIS vbe.enabled = (bx_bool)((value & VBE_DISPI_ENABLED) != 0); BX_VGA_THIS vbe.get_capabilities = (bx_bool)((value & VBE_DISPI_GETCAPS) != 0); new_vbe_8bit_dac = (bx_bool)((value & VBE_DISPI_8BIT_DAC) != 0); if (new_vbe_8bit_dac != BX_VGA_THIS vbe.dac_8bit) { if (new_vbe_8bit_dac) { for (i=0; i<256; i++) { BX_VGA_THIS s.pel.data[i].red <<= 2; BX_VGA_THIS s.pel.data[i].green <<= 2; BX_VGA_THIS s.pel.data[i].blue <<= 2; } BX_INFO(("DAC in 8 bit mode")); } else { for (i=0; i<256; i++) { BX_VGA_THIS s.pel.data[i].red >>= 2; BX_VGA_THIS s.pel.data[i].green >>= 2; BX_VGA_THIS s.pel.data[i].blue >>= 2; } BX_INFO(("DAC in standard mode")); } BX_VGA_THIS vbe.dac_8bit = new_vbe_8bit_dac; BX_VGA_THIS s.dac_shift = new_vbe_8bit_dac ? 0 : 2; needs_update = 1; } } break; case VBE_DISPI_INDEX_X_OFFSET: { BX_DEBUG(("VBE offset x %d", value)); BX_VGA_THIS vbe.offset_x=(Bit16u)value; BX_VGA_THIS vbe.virtual_start = BX_VGA_THIS vbe.offset_y * BX_VGA_THIS s.line_offset; if (BX_VGA_THIS vbe.bpp != VBE_DISPI_BPP_4) { BX_VGA_THIS vbe.virtual_start += (BX_VGA_THIS vbe.offset_x * BX_VGA_THIS vbe.bpp_multiplier); } else { BX_VGA_THIS vbe.virtual_start += (BX_VGA_THIS vbe.offset_x >> 3); } needs_update = 1; } break; case VBE_DISPI_INDEX_Y_OFFSET: { BX_DEBUG(("VBE offset y %d", value)); Bit32u new_screen_start = value * BX_VGA_THIS s.line_offset; if (BX_VGA_THIS vbe.bpp != VBE_DISPI_BPP_4) { if ((new_screen_start + BX_VGA_THIS vbe.visible_screen_size) > VBE_DISPI_TOTAL_VIDEO_MEMORY_BYTES) { BX_PANIC(("VBE offset y %d out of bounds", value)); break; } new_screen_start += (BX_VGA_THIS vbe.offset_x * BX_VGA_THIS vbe.bpp_multiplier); } else { if ((new_screen_start + BX_VGA_THIS vbe.visible_screen_size) > (VBE_DISPI_TOTAL_VIDEO_MEMORY_BYTES / 4)) { BX_PANIC(("VBE offset y %d out of bounds", value)); break; } new_screen_start += (BX_VGA_THIS vbe.offset_x >> 3); } BX_VGA_THIS vbe.virtual_start = new_screen_start; BX_VGA_THIS vbe.offset_y = (Bit16u)value; needs_update = 1; } break; case VBE_DISPI_INDEX_VIRT_WIDTH: { BX_INFO(("VBE requested virtual width %d", value)); // calculate virtual width & height dimensions // req: // virt_width > xres // virt_height >=yres // virt_width*virt_height < MAX_VIDEO_MEMORY // basicly 2 situations // situation 1: // MAX_VIDEO_MEMORY / virt_width >= yres // adjust result height // else // adjust result width based upon virt_height=yres Bit16u new_width=value; Bit16u new_height; if (BX_VGA_THIS vbe.bpp != VBE_DISPI_BPP_4) { new_height=(VBE_DISPI_TOTAL_VIDEO_MEMORY_BYTES / BX_VGA_THIS vbe.bpp_multiplier) / new_width; } else { new_height=(VBE_DISPI_TOTAL_VIDEO_MEMORY_BYTES * 2) / new_width; } if (new_height >=BX_VGA_THIS vbe.yres) { // we have a decent virtual width & new_height BX_INFO(("VBE decent virtual height %d",new_height)); } else { // no decent virtual height: adjust width & height new_height=BX_VGA_THIS vbe.yres; if (BX_VGA_THIS vbe.bpp != VBE_DISPI_BPP_4) { new_width=(VBE_DISPI_TOTAL_VIDEO_MEMORY_BYTES / BX_VGA_THIS vbe.bpp_multiplier) / new_height; } else { new_width=(VBE_DISPI_TOTAL_VIDEO_MEMORY_BYTES * 2) / new_height; } BX_INFO(("VBE recalc virtual width %d height %d",new_width, new_height)); } BX_VGA_THIS vbe.virtual_xres=new_width; BX_VGA_THIS vbe.virtual_yres=new_height; if (BX_VGA_THIS vbe.bpp != VBE_DISPI_BPP_4) { BX_VGA_THIS s.line_offset = BX_VGA_THIS vbe.virtual_xres * BX_VGA_THIS vbe.bpp_multiplier; } else { BX_VGA_THIS s.line_offset = BX_VGA_THIS vbe.virtual_xres >> 3; } BX_VGA_THIS vbe.visible_screen_size = BX_VGA_THIS s.line_offset * BX_VGA_THIS vbe.yres; } break; case VBE_DISPI_INDEX_VIRT_HEIGHT: BX_ERROR(("VBE: write to virtual height register ignored")); break; default: BX_ERROR(("VBE: write unsupported register at index 0x%x",BX_VGA_THIS vbe.curindex)); break; } if (needs_update) { BX_VGA_THIS s.vga_mem_updated = 1; for (unsigned xti = 0; xti < BX_VGA_THIS s.num_x_tiles; xti++) { for (unsigned yti = 0; yti < BX_VGA_THIS s.num_y_tiles; yti++) { SET_TILE_UPDATED (xti, yti, 1); } } } break; } // end switch address } #if BX_SUPPORT_PCI // static pci configuration space write callback handler void bx_vga_c::pci_write_handler(Bit8u address, Bit32u value, unsigned io_len) { bx_bool baseaddr_change = 0, romaddr_change = 0; if (io_len == 1) BX_DEBUG(("write PCI register 0x%02x value 0x%02x", address, value)); else if (io_len == 2) BX_DEBUG(("write PCI register 0x%02x value 0x%04x", address, value)); else if (io_len == 4) BX_DEBUG(("write PCI register 0x%02x value 0x%08x", address, value)); if ((address >= 0x14) && (address < 0x30)) return; if (address == 0x30) { value = value & 0xfffffc01; romaddr_change = 1; } for (unsigned i = 0; i < io_len; i++) { unsigned write_addr = address + i; Bit8u old_value = BX_VGA_THIS pci_conf[write_addr]; Bit8u new_value = (Bit8u)(value & 0xff); switch (write_addr) { case 0x04: // disallowing write to command case 0x06: // disallowing write to status lo-byte (is that expected?) break; case 0x10: // base address #0 new_value = (new_value & 0xf0) | (old_value & 0x0f); case 0x11: case 0x12: case 0x13: if (BX_VGA_THIS vbe_present) { baseaddr_change |= (old_value != new_value); } else { break; } default: BX_VGA_THIS pci_conf[write_addr] = new_value; } value >>= 8; } if (baseaddr_change) { if (BX_VGA_THIS vbe_set_base_addr(&BX_VGA_THIS pci_base_address[0], &BX_VGA_THIS pci_conf[0x10])) { BX_INFO(("new base address: 0x%08x", BX_VGA_THIS pci_base_address[0])); } } if (romaddr_change) { if (DEV_pci_set_base_mem(this, mem_read_handler, mem_write_handler, &BX_VGA_THIS pci_rom_address, &BX_VGA_THIS pci_conf[0x30], BX_VGA_THIS pci_rom_size)) { BX_INFO(("new ROM address: 0x%08x", BX_VGA_THIS pci_rom_address)); } } } #endif #if BX_DEBUGGER void bx_vga_c::debug_dump(int argc, char **argv) { if (BX_VGA_THIS vbe.enabled) { dbg_printf("Bochs VGA/VBE adapter\n\n"); dbg_printf("current mode : %u x %u x %u\n", BX_VGA_THIS vbe.xres, BX_VGA_THIS vbe.yres, BX_VGA_THIS vbe.bpp); } else { bx_vgacore_c::debug_dump(); } if (argc > 0) { dbg_printf("\nAdditional options not supported\n"); } } #endif