///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001-2018 The Bochs Project // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP_EdR(bxInstruction_c *i) { BX_WRITE_32BIT_REGZ(i->dst(), pop_32()); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP_EdM(bxInstruction_c *i) { RSP_SPECULATIVE; Bit32u val32 = pop_32(); // Note: there is one little weirdism here. It is possible to use // ESP in the modrm addressing. If used, the value of ESP after the // pop is used to calculate the address. Bit32u eaddr = (Bit32u) BX_CPU_RESOLVE_ADDR_32(i); write_virtual_dword_32(i->seg(), eaddr, val32); RSP_COMMIT; BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_EdR(bxInstruction_c *i) { push_32(BX_READ_32BIT_REG(i->dst())); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_EdM(bxInstruction_c *i) { Bit32u eaddr = (Bit32u) BX_CPU_RESOLVE_ADDR_32(i); Bit32u op1_32 = read_virtual_dword_32(i->seg(), eaddr); push_32(op1_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH32_Sw(bxInstruction_c *i) { Bit16u val_16 = BX_CPU_THIS_PTR sregs[i->src()].selector.value; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { stack_write_word((Bit32u) (ESP-4), val_16); ESP -= 4; } else { stack_write_word((Bit16u) (SP-4), val_16); SP -= 4; } BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP32_Sw(bxInstruction_c *i) { Bit16u selector; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { selector = stack_read_word(ESP); load_seg_reg(&BX_CPU_THIS_PTR sregs[i->dst()], selector); ESP += 4; } else { selector = stack_read_word(SP); load_seg_reg(&BX_CPU_THIS_PTR sregs[i->dst()], selector); SP += 4; } if (i->dst() == BX_SEG_REG_SS) { // POP SS inhibits interrupts, debug exceptions and single-step // trap exceptions until the execution boundary following the // next instruction is reached. // Same code as MOV_SwEw() inhibit_interrupts(BX_INHIBIT_INTERRUPTS_BY_MOVSS); } BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_Id(bxInstruction_c *i) { push_32(i->Id()); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSHA32(bxInstruction_c *i) { Bit32u temp_ESP = ESP; Bit16u temp_SP = SP; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { stack_write_dword((Bit32u) (temp_ESP - 4), EAX); stack_write_dword((Bit32u) (temp_ESP - 8), ECX); stack_write_dword((Bit32u) (temp_ESP - 12), EDX); stack_write_dword((Bit32u) (temp_ESP - 16), EBX); stack_write_dword((Bit32u) (temp_ESP - 20), temp_ESP); stack_write_dword((Bit32u) (temp_ESP - 24), EBP); stack_write_dword((Bit32u) (temp_ESP - 28), ESI); stack_write_dword((Bit32u) (temp_ESP - 32), EDI); ESP -= 32; } else { stack_write_dword((Bit16u) (temp_SP - 4), EAX); stack_write_dword((Bit16u) (temp_SP - 8), ECX); stack_write_dword((Bit16u) (temp_SP - 12), EDX); stack_write_dword((Bit16u) (temp_SP - 16), EBX); stack_write_dword((Bit16u) (temp_SP - 20), temp_ESP); stack_write_dword((Bit16u) (temp_SP - 24), EBP); stack_write_dword((Bit16u) (temp_SP - 28), ESI); stack_write_dword((Bit16u) (temp_SP - 32), EDI); SP -= 32; } BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::POPA32(bxInstruction_c *i) { Bit32u edi, esi, ebp, ebx, edx, ecx, eax; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { Bit32u temp_ESP = ESP; edi = stack_read_dword((Bit32u) (temp_ESP + 0)); esi = stack_read_dword((Bit32u) (temp_ESP + 4)); ebp = stack_read_dword((Bit32u) (temp_ESP + 8)); stack_read_dword((Bit32u) (temp_ESP + 12)); ebx = stack_read_dword((Bit32u) (temp_ESP + 16)); edx = stack_read_dword((Bit32u) (temp_ESP + 20)); ecx = stack_read_dword((Bit32u) (temp_ESP + 24)); eax = stack_read_dword((Bit32u) (temp_ESP + 28)); ESP += 32; } else { Bit16u temp_SP = SP; edi = stack_read_dword((Bit16u) (temp_SP + 0)); esi = stack_read_dword((Bit16u) (temp_SP + 4)); ebp = stack_read_dword((Bit16u) (temp_SP + 8)); stack_read_dword((Bit16u) (temp_SP + 12)); ebx = stack_read_dword((Bit16u) (temp_SP + 16)); edx = stack_read_dword((Bit16u) (temp_SP + 20)); ecx = stack_read_dword((Bit16u) (temp_SP + 24)); eax = stack_read_dword((Bit16u) (temp_SP + 28)); SP += 32; } EDI = edi; ESI = esi; EBP = ebp; EBX = ebx; EDX = edx; ECX = ecx; EAX = eax; BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::ENTER32_IwIb(bxInstruction_c *i) { Bit16u imm16 = i->Iw(); Bit8u level = i->Ib2(); level &= 0x1F; RSP_SPECULATIVE; push_32(EBP); Bit32u frame_ptr32 = ESP; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { Bit32u ebp = EBP; // Use temp copy for case of exception. if (level > 0) { /* do level-1 times */ while (--level) { ebp -= 4; Bit32u temp32 = stack_read_dword(ebp); push_32(temp32); } /* push(frame pointer) */ push_32(frame_ptr32); } ESP -= imm16; // ENTER finishes with memory write check on the final stack pointer // the memory is touched but no write actually occurs // emulate it by doing RMW read access from SS:ESP read_RMW_virtual_dword_32(BX_SEG_REG_SS, ESP); // no lock, should be touch only } else { Bit16u bp = BP; if (level > 0) { /* do level-1 times */ while (--level) { bp -= 4; Bit32u temp32 = stack_read_dword(bp); push_32(temp32); } /* push(frame pointer) */ push_32(frame_ptr32); } SP -= imm16; // ENTER finishes with memory write check on the final stack pointer // the memory is touched but no write actually occurs // emulate it by doing RMW read access from SS:SP read_RMW_virtual_dword_32(BX_SEG_REG_SS, SP); // no lock, should be touch only } EBP = frame_ptr32; RSP_COMMIT; BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::LEAVE32(bxInstruction_c *i) { BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64); Bit32u value32; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { value32 = stack_read_dword(EBP); ESP = EBP + 4; } else { value32 = stack_read_dword(BP); SP = BP + 4; } EBP = value32; BX_NEXT_INSTR(i); }