///////////////////////////////////////////////////////////////////////// // $Id: tasking.cc,v 1.61 2008-08-03 19:53:09 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR // Notes: // ====== // ====================== // 286 Task State Segment // ====================== // dynamic item | hex dec offset // 0 task LDT selector | 2a 42 // 1 DS selector | 28 40 // 1 SS selector | 26 38 // 1 CS selector | 24 36 // 1 ES selector | 22 34 // 1 DI | 20 32 // 1 SI | 1e 30 // 1 BP | 1c 28 // 1 SP | 1a 26 // 1 BX | 18 24 // 1 DX | 16 22 // 1 CX | 14 20 // 1 AX | 12 18 // 1 flag word | 10 16 // 1 IP (entry point) | 0e 14 // 0 SS for CPL 2 | 0c 12 // 0 SP for CPL 2 | 0a 10 // 0 SS for CPL 1 | 08 08 // 0 SP for CPL 1 | 06 06 // 0 SS for CPL 0 | 04 04 // 0 SP for CPL 0 | 02 02 // back link selector to TSS | 00 00 // ====================== // 386 Task State Segment // ====================== // |31 16|15 0| hex dec // |I/O Map Base |000000000000000000000|T| 64 100 static // |0000000000000000| LDT | 60 96 static // |0000000000000000| GS selector | 5c 92 dynamic // |0000000000000000| FS selector | 58 88 dynamic // |0000000000000000| DS selector | 54 84 dynamic // |0000000000000000| SS selector | 50 80 dynamic // |0000000000000000| CS selector | 4c 76 dynamic // |0000000000000000| ES selector | 48 72 dynamic // | EDI | 44 68 dynamic // | ESI | 40 64 dynamic // | EBP | 3c 60 dynamic // | ESP | 38 56 dynamic // | EBX | 34 52 dynamic // | EDX | 30 48 dynamic // | ECX | 2c 44 dynamic // | EAX | 28 40 dynamic // | EFLAGS | 24 36 dynamic // | EIP (entry point) | 20 32 dynamic // | CR3 (PDPR) | 1c 28 static // |000000000000000 | SS for CPL 2 | 18 24 static // | ESP for CPL 2 | 14 20 static // |000000000000000 | SS for CPL 1 | 10 16 static // | ESP for CPL 1 | 0c 12 static // |000000000000000 | SS for CPL 0 | 08 08 static // | ESP for CPL 0 | 04 04 static // |000000000000000 | back link to prev TSS | 00 00 dynamic (updated only when return expected) // ================================================== // Effect of task switch on Busy, NT, and Link Fields // ================================================== // Field jump call/interrupt iret // ------------------------------------------------------ // new busy bit Set Set No change // old busy bit Cleared No change Cleared // new NT flag No change Set No change // old NT flag No change No change Cleared // new link No change old TSS selector No change // old link No change No change No change // CR0.TS Set Set Set // Note: I checked 386, 486, and Pentium, and they all exhibited // exactly the same behaviour as above. There seems to // be some misprints in the Intel docs. void BX_CPU_C::task_switch(bx_selector_t *tss_selector, bx_descriptor_t *tss_descriptor, unsigned source, Bit32u dword1, Bit32u dword2) { Bit32u obase32; // base address of old TSS Bit32u nbase32; // base address of new TSS Bit32u temp32, newCR3; Bit16u raw_cs_selector, raw_ss_selector, raw_ds_selector, raw_es_selector, raw_fs_selector, raw_gs_selector, raw_ldt_selector; Bit16u temp16, trap_word; bx_selector_t cs_selector, ss_selector, ds_selector, es_selector, fs_selector, gs_selector, ldt_selector; bx_descriptor_t cs_descriptor, ss_descriptor, ldt_descriptor; Bit32u old_TSS_max, new_TSS_max, old_TSS_limit, new_TSS_limit; Bit32u newEAX, newECX, newEDX, newEBX; Bit32u newESP, newEBP, newESI, newEDI; Bit32u newEFLAGS, newEIP; BX_DEBUG(("TASKING: ENTER")); invalidate_prefetch_q(); // Discard any traps and inhibits for new context; traps will // resume upon return. BX_CPU_THIS_PTR debug_trap = 0; BX_CPU_THIS_PTR inhibit_mask = 0; // STEP 1: The following checks are made before calling task_switch(), // for JMP & CALL only. These checks are NOT made for exceptions, // interrupts & IRET. // // 1) TSS DPL must be >= CPL // 2) TSS DPL must be >= TSS selector RPL // 3) TSS descriptor is not busy. // TSS must be present, else #NP(TSS selector) if (tss_descriptor->p==0) { BX_ERROR(("task_switch: TSS descriptor is not present !")); exception(BX_NP_EXCEPTION, tss_selector->value & 0xfffc, 0); } // STEP 2: The processor performs limit-checking on the target TSS // to verify that the TSS limit is greater than or equal // to 67h (2Bh for 16-bit TSS). // Gather info about old TSS if (BX_CPU_THIS_PTR tr.cache.type <= 3) { old_TSS_max = 0x29; } else { old_TSS_max = 0x5F; } // Gather info about new TSS if (tss_descriptor->type <= 3) { // {1,3} new_TSS_max = 0x2B; } else { // tss_descriptor->type = {9,11} new_TSS_max = 0x67; } obase32 = (Bit32u) BX_CPU_THIS_PTR tr.cache.u.system.base; // old TSS.base old_TSS_limit = BX_CPU_THIS_PTR tr.cache.u.system.limit_scaled; nbase32 = (Bit32u) tss_descriptor->u.system.base; // new TSS.base new_TSS_limit = tss_descriptor->u.system.limit_scaled; // TSS must have valid limit, else #TS(TSS selector) if (tss_selector->ti || tss_descriptor->valid==0 || new_TSS_limit < new_TSS_max) { BX_ERROR(("task_switch(): new TSS limit < %d", new_TSS_max)); exception(BX_TS_EXCEPTION, tss_selector->value & 0xfffc, 0); } if (old_TSS_limit < old_TSS_max) { BX_ERROR(("task_switch(): old TSS limit < %d", old_TSS_max)); exception(BX_TS_EXCEPTION, BX_CPU_THIS_PTR tr.selector.value & 0xfffc, 0); } if (obase32 == nbase32) { BX_INFO(("TASK SWITCH: switching to the same TSS !")); } // Check that old TSS, new TSS, and all segment descriptors // used in the task switch are paged in. if (BX_CPU_THIS_PTR cr0.get_PG()) { dtranslate_linear(obase32, 0, BX_WRITE); // new TSS dtranslate_linear(obase32 + old_TSS_max, 0, BX_WRITE); dtranslate_linear(nbase32, 0, BX_READ); // old TSS dtranslate_linear(nbase32 + new_TSS_max, 0, BX_READ); // ??? Humm, we check the new TSS region with READ above, // but sometimes we need to write the link field in that // region. We also sometimes update other fields, perhaps // we need to WRITE check them here also, so that we keep // the written state consistent (ie, we don't encounter a // page fault in the middle). if (source == BX_TASK_FROM_CALL_OR_INT) { dtranslate_linear(nbase32, 0, BX_WRITE); dtranslate_linear(nbase32 + 2, 0, BX_WRITE); } } // Privilege and busy checks done in CALL, JUMP, INT, IRET // STEP 3: Save the current task state in the TSS. Up to this point, // any exception that occurs aborts the task switch without // changing the processor state. /* save current machine state in old task's TSS */ Bit32u oldEFLAGS = read_eflags(); /* if moving to busy task, clear NT bit */ if (tss_descriptor->type == BX_SYS_SEGMENT_BUSY_286_TSS || tss_descriptor->type == BX_SYS_SEGMENT_BUSY_386_TSS) { oldEFLAGS &= ~EFlagsNTMask; } if (BX_CPU_THIS_PTR tr.cache.type <= 3) { temp16 = IP; access_write_linear(Bit32u(obase32 + 14), 2, 0, &temp16); temp16 = oldEFLAGS; access_write_linear(Bit32u(obase32 + 16), 2, 0, &temp16); temp16 = AX; access_write_linear(Bit32u(obase32 + 18), 2, 0, &temp16); temp16 = CX; access_write_linear(Bit32u(obase32 + 20), 2, 0, &temp16); temp16 = DX; access_write_linear(Bit32u(obase32 + 22), 2, 0, &temp16); temp16 = BX; access_write_linear(Bit32u(obase32 + 24), 2, 0, &temp16); temp16 = SP; access_write_linear(Bit32u(obase32 + 26), 2, 0, &temp16); temp16 = BP; access_write_linear(Bit32u(obase32 + 28), 2, 0, &temp16); temp16 = SI; access_write_linear(Bit32u(obase32 + 30), 2, 0, &temp16); temp16 = DI; access_write_linear(Bit32u(obase32 + 32), 2, 0, &temp16); temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value; access_write_linear(Bit32u(obase32 + 34), 2, 0, &temp16); temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value; access_write_linear(Bit32u(obase32 + 36), 2, 0, &temp16); temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value; access_write_linear(Bit32u(obase32 + 38), 2, 0, &temp16); temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value; access_write_linear(Bit32u(obase32 + 40), 2, 0, &temp16); } else { temp32 = EIP; access_write_linear(Bit32u(obase32 + 0x20), 4, 0, &temp32); temp32 = oldEFLAGS; access_write_linear(Bit32u(obase32 + 0x24), 4, 0, &temp32); temp32 = EAX; access_write_linear(Bit32u(obase32 + 0x28), 4, 0, &temp32); temp32 = ECX; access_write_linear(Bit32u(obase32 + 0x2c), 4, 0, &temp32); temp32 = EDX; access_write_linear(Bit32u(obase32 + 0x30), 4, 0, &temp32); temp32 = EBX; access_write_linear(Bit32u(obase32 + 0x34), 4, 0, &temp32); temp32 = ESP; access_write_linear(Bit32u(obase32 + 0x38), 4, 0, &temp32); temp32 = EBP; access_write_linear(Bit32u(obase32 + 0x3c), 4, 0, &temp32); temp32 = ESI; access_write_linear(Bit32u(obase32 + 0x40), 4, 0, &temp32); temp32 = EDI; access_write_linear(Bit32u(obase32 + 0x44), 4, 0, &temp32); temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value; access_write_linear(Bit32u(obase32 + 0x48), 2, 0, &temp16); temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value; access_write_linear(Bit32u(obase32 + 0x4c), 2, 0, &temp16); temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value; access_write_linear(Bit32u(obase32 + 0x50), 2, 0, &temp16); temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value; access_write_linear(Bit32u(obase32 + 0x54), 2, 0, &temp16); temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value; access_write_linear(Bit32u(obase32 + 0x58), 2, 0, &temp16); temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value; access_write_linear(Bit32u(obase32 + 0x5c), 2, 0, &temp16); } // effect on link field of new task if (source == BX_TASK_FROM_CALL_OR_INT) { // set to selector of old task's TSS temp16 = BX_CPU_THIS_PTR tr.selector.value; access_write_linear(nbase32, 2, 0, &temp16); } // STEP 4: The new-task state is loaded from the TSS if (tss_descriptor->type <= 3) { access_read_linear(Bit32u(nbase32 + 14), 2, 0, BX_READ, &temp16); newEIP = temp16; // zero out upper word access_read_linear(Bit32u(nbase32 + 16), 2, 0, BX_READ, &temp16); newEFLAGS = temp16; // incoming TSS is 16bit: // - upper word of general registers is set to 0xFFFF // - upper word of eflags is zero'd // - FS, GS are zero'd // - upper word of eIP is zero'd access_read_linear(Bit32u(nbase32 + 18), 2, 0, BX_READ, &temp16); newEAX = 0xffff0000 | temp16; access_read_linear(Bit32u(nbase32 + 20), 2, 0, BX_READ, &temp16); newECX = 0xffff0000 | temp16; access_read_linear(Bit32u(nbase32 + 22), 2, 0, BX_READ, &temp16); newEDX = 0xffff0000 | temp16; access_read_linear(Bit32u(nbase32 + 24), 2, 0, BX_READ, &temp16); newEBX = 0xffff0000 | temp16; access_read_linear(Bit32u(nbase32 + 26), 2, 0, BX_READ, &temp16); newESP = 0xffff0000 | temp16; access_read_linear(Bit32u(nbase32 + 28), 2, 0, BX_READ, &temp16); newEBP = 0xffff0000 | temp16; access_read_linear(Bit32u(nbase32 + 30), 2, 0, BX_READ, &temp16); newESI = 0xffff0000 | temp16; access_read_linear(Bit32u(nbase32 + 32), 2, 0, BX_READ, &temp16); newEDI = 0xffff0000 | temp16; access_read_linear(Bit32u(nbase32 + 34), 2, 0, BX_READ, &raw_es_selector); access_read_linear(Bit32u(nbase32 + 36), 2, 0, BX_READ, &raw_cs_selector); access_read_linear(Bit32u(nbase32 + 38), 2, 0, BX_READ, &raw_ss_selector); access_read_linear(Bit32u(nbase32 + 40), 2, 0, BX_READ, &raw_ds_selector); access_read_linear(Bit32u(nbase32 + 42), 2, 0, BX_READ, &raw_ldt_selector); raw_fs_selector = 0; // use a NULL selector raw_gs_selector = 0; // use a NULL selector // No CR3 change for 286 task switch newCR3 = 0; // keep compiler happy (not used) trap_word = 0; // keep compiler happy (not used) } else { if (BX_CPU_THIS_PTR cr0.get_PG()) access_read_linear(Bit32u(nbase32 + 0x1c), 4, 0, BX_READ, &newCR3); else newCR3 = 0; // keep compiler happy (not used) access_read_linear(Bit32u(nbase32 + 0x20), 4, 0, BX_READ, &newEIP); access_read_linear(Bit32u(nbase32 + 0x24), 4, 0, BX_READ, &newEFLAGS); access_read_linear(Bit32u(nbase32 + 0x28), 4, 0, BX_READ, &newEAX); access_read_linear(Bit32u(nbase32 + 0x2c), 4, 0, BX_READ, &newECX); access_read_linear(Bit32u(nbase32 + 0x30), 4, 0, BX_READ, &newEDX); access_read_linear(Bit32u(nbase32 + 0x34), 4, 0, BX_READ, &newEBX); access_read_linear(Bit32u(nbase32 + 0x38), 4, 0, BX_READ, &newESP); access_read_linear(Bit32u(nbase32 + 0x3c), 4, 0, BX_READ, &newEBP); access_read_linear(Bit32u(nbase32 + 0x40), 4, 0, BX_READ, &newESI); access_read_linear(Bit32u(nbase32 + 0x44), 4, 0, BX_READ, &newEDI); access_read_linear(Bit32u(nbase32 + 0x48), 2, 0, BX_READ, &raw_es_selector); access_read_linear(Bit32u(nbase32 + 0x4c), 2, 0, BX_READ, &raw_cs_selector); access_read_linear(Bit32u(nbase32 + 0x50), 2, 0, BX_READ, &raw_ss_selector); access_read_linear(Bit32u(nbase32 + 0x54), 2, 0, BX_READ, &raw_ds_selector); access_read_linear(Bit32u(nbase32 + 0x58), 2, 0, BX_READ, &raw_fs_selector); access_read_linear(Bit32u(nbase32 + 0x5c), 2, 0, BX_READ, &raw_gs_selector); access_read_linear(Bit32u(nbase32 + 0x60), 2, 0, BX_READ, &raw_ldt_selector); access_read_linear(Bit32u(nbase32 + 0x64), 2, 0, BX_READ, &trap_word); } // Step 5: If CALL, interrupt, or JMP, set busy flag in new task's // TSS descriptor. If IRET, leave set. if (source == BX_TASK_FROM_JUMP || source == BX_TASK_FROM_CALL_OR_INT) { // set the new task's busy bit Bit32u laddr = (Bit32u)(BX_CPU_THIS_PTR gdtr.base) + (tss_selector->index<<3) + 4; access_read_linear(laddr, 4, 0, BX_READ, &dword2); dword2 |= 0x200; access_write_linear(laddr, 4, 0, &dword2); } // Step 6: If JMP or IRET, clear busy bit in old task TSS descriptor, // otherwise leave set. // effect on Busy bit of old task if (source == BX_TASK_FROM_JUMP || source == BX_TASK_FROM_IRET) { // Bit is cleared Bit32u laddr = (Bit32u) BX_CPU_THIS_PTR gdtr.base + (BX_CPU_THIS_PTR tr.selector.index<<3) + 4; access_read_linear(laddr, 4, 0, BX_READ, &temp32); temp32 &= ~0x200; access_write_linear(laddr, 4, 0, &temp32); } // // Commit point. At this point, we commit to the new // context. If an unrecoverable error occurs in further // processing, we complete the task switch without performing // additional access and segment availablility checks and // generate the appropriate exception prior to beginning // execution of the new task. // // Step 7: Load the task register with the segment selector and // descriptor for the new task TSS. BX_CPU_THIS_PTR tr.selector = *tss_selector; BX_CPU_THIS_PTR tr.cache = *tss_descriptor; BX_CPU_THIS_PTR tr.cache.type |= 2; // mark TSS in TR as busy // Step 8: Set TS flag in the CR0 image stored in the new task TSS. BX_CPU_THIS_PTR cr0.set_TS(1); // Task switch clears LE/L3/L2/L1/L0 in DR7 BX_CPU_THIS_PTR dr7 &= ~0x00000155; // Step 9: If call or interrupt, set the NT flag in the eflags // image stored in new task's TSS. If IRET or JMP, // NT is restored from new TSS eflags image. (no change) // effect on NT flag of new task if (source == BX_TASK_FROM_CALL_OR_INT) { newEFLAGS |= EFlagsNTMask; // NT flag is set } // Step 10: Load the new task (dynamic) state from new TSS. // Any errors associated with loading and qualification of // segment descriptors in this step occur in the new task's // context. State loaded here includes LDTR, CR3, // EFLAGS, EIP, general purpose registers, and segment // descriptor parts of the segment registers. if ((tss_descriptor->type >= 9) && BX_CPU_THIS_PTR cr0.get_PG()) { // change CR3 only if it actually modified if (newCR3 != BX_CPU_THIS_PTR cr3) { SetCR3(newCR3); // Tell paging unit about new cr3 value BX_DEBUG (("task_switch changing CR3 to 0x" FMT_PHY_ADDRX, newCR3)); BX_INSTR_TLB_CNTRL(BX_CPU_ID, BX_INSTR_TASKSWITCH, newCR3); } } BX_CPU_THIS_PTR prev_rip = EIP = newEIP; EAX = newEAX; ECX = newECX; EDX = newEDX; EBX = newEBX; ESP = newESP; EBP = newEBP; ESI = newESI; EDI = newEDI; writeEFlags(newEFLAGS, EFlagsValidMask); // Fill in selectors for all segment registers. If errors // occur later, the selectors will at least be loaded. parse_selector(raw_cs_selector, &cs_selector); BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector = cs_selector; parse_selector(raw_ds_selector, &ds_selector); BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector = ds_selector; parse_selector(raw_es_selector, &es_selector); BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector = es_selector; parse_selector(raw_ss_selector, &ss_selector); BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector = ss_selector; parse_selector(raw_fs_selector, &fs_selector); BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector = fs_selector; parse_selector(raw_gs_selector, &gs_selector); BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector = gs_selector; parse_selector(raw_ldt_selector, &ldt_selector); BX_CPU_THIS_PTR ldtr.selector = ldt_selector; // Start out with invalid descriptor caches, fill in // with values only as they are validated. BX_CPU_THIS_PTR ldtr.cache.valid = 0; BX_CPU_THIS_PTR ldtr.cache.u.system.limit = 0; BX_CPU_THIS_PTR ldtr.cache.u.system.limit_scaled = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.valid = 0; BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.valid = 0; // LDTR if (ldt_selector.ti) { // LDT selector must be in GDT BX_INFO(("task_switch(exception after commit point): bad LDT selector TI=1")); exception(BX_TS_EXCEPTION, raw_ldt_selector & 0xfffc, 0); } if ((raw_ldt_selector & 0xfffc) != 0) { bx_bool good = fetch_raw_descriptor2(&ldt_selector, &dword1, &dword2); if (!good) { BX_ERROR(("task_switch(exception after commit point): bad LDT fetch")); exception(BX_TS_EXCEPTION, raw_ldt_selector & 0xfffc, 0); } parse_descriptor(dword1, dword2, &ldt_descriptor); // LDT selector of new task is valid, else #TS(new task's LDT) if (ldt_descriptor.valid==0 || ldt_descriptor.type!=BX_SYS_SEGMENT_LDT || ldt_descriptor.segment) { BX_ERROR(("task_switch(exception after commit point): bad LDT segment")); exception(BX_TS_EXCEPTION, raw_ldt_selector & 0xfffc, 0); } // LDT of new task is present in memory, else #TS(new tasks's LDT) if (! IS_PRESENT(ldt_descriptor)) { BX_ERROR(("task_switch(exception after commit point): LDT not present")); exception(BX_TS_EXCEPTION, raw_ldt_selector & 0xfffc, 0); } // All checks pass, fill in LDTR shadow cache BX_CPU_THIS_PTR ldtr.cache = ldt_descriptor; } else { // NULL LDT selector is OK, leave cache invalid } if (v8086_mode()) { // load seg regs as 8086 registers load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], raw_cs_selector); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], raw_ss_selector); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS], raw_ds_selector); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES], raw_es_selector); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS], raw_fs_selector); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS], raw_gs_selector); } else { // SS if ((raw_ss_selector & 0xfffc) != 0) { bx_bool good = fetch_raw_descriptor2(&ss_selector, &dword1, &dword2); if (!good) { BX_ERROR(("task_switch(exception after commit point): bad SS fetch")); exception(BX_TS_EXCEPTION, raw_ss_selector & 0xfffc, 0); } parse_descriptor(dword1, dword2, &ss_descriptor); // SS selector must be within its descriptor table limits else #TS(SS) // SS descriptor AR byte must must indicate writable data segment, // else #TS(SS) if (ss_descriptor.valid==0 || ss_descriptor.segment==0 || IS_CODE_SEGMENT(ss_descriptor.type) || !IS_DATA_SEGMENT_WRITEABLE(ss_descriptor.type)) { BX_ERROR(("task_switch(exception after commit point): SS not valid or writeable segment")); exception(BX_TS_EXCEPTION, raw_ss_selector & 0xfffc, 0); } // // Stack segment is present in memory, else #SS(new stack segment) // if (! IS_PRESENT(ss_descriptor)) { BX_ERROR(("task_switch(exception after commit point): SS not present")); exception(BX_SS_EXCEPTION, raw_ss_selector & 0xfffc, 0); } // Stack segment DPL matches CS.RPL, else #TS(new stack segment) if (ss_descriptor.dpl != cs_selector.rpl) { BX_ERROR(("task_switch(exception after commit point): SS.rpl != CS.RPL")); exception(BX_TS_EXCEPTION, raw_ss_selector & 0xfffc, 0); } // Stack segment DPL matches selector RPL, else #TS(new stack segment) if (ss_descriptor.dpl != ss_selector.rpl) { BX_ERROR(("task_switch(exception after commit point): SS.dpl != SS.rpl")); exception(BX_TS_EXCEPTION, raw_ss_selector & 0xfffc, 0); } // All checks pass, fill in shadow cache BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache = ss_descriptor; } else { // SS selector is valid, else #TS(new stack segment) BX_ERROR(("task_switch(exception after commit point): SS NULL")); exception(BX_TS_EXCEPTION, raw_ss_selector & 0xfffc, 0); } // if new selector is not null then perform following checks: // index must be within its descriptor table limits else #TS(selector) // AR byte must indicate data or readable code else #TS(selector) // if data or non-conforming code then: // DPL must be >= CPL else #TS(selector) // DPL must be >= RPL else #TS(selector) // AR byte must indicate PRESENT else #NP(selector) // load cache with new segment descriptor and set valid bit // CS if ((raw_cs_selector & 0xfffc) != 0) { bx_bool good = fetch_raw_descriptor2(&cs_selector, &dword1, &dword2); if (!good) { BX_ERROR(("task_switch(exception after commit point): bad CS fetch")); exception(BX_TS_EXCEPTION, raw_cs_selector & 0xfffc, 0); } parse_descriptor(dword1, dword2, &cs_descriptor); // CS descriptor AR byte must indicate code segment else #TS(CS) if (cs_descriptor.valid==0 || cs_descriptor.segment==0 || IS_DATA_SEGMENT(cs_descriptor.type)) { BX_ERROR(("task_switch(exception after commit point): CS not valid executable seg")); exception(BX_TS_EXCEPTION, raw_cs_selector & 0xfffc, 0); } // if non-conforming then DPL must equal selector RPL else #TS(CS) if (IS_CODE_SEGMENT_NON_CONFORMING(cs_descriptor.type) && cs_descriptor.dpl != cs_selector.rpl) { BX_ERROR(("task_switch(exception after commit point): non-conforming: CS.dpl!=CS.RPL")); exception(BX_TS_EXCEPTION, raw_cs_selector & 0xfffc, 0); } // if conforming then DPL must be <= selector RPL else #TS(CS) if (IS_CODE_SEGMENT_CONFORMING(cs_descriptor.type) && cs_descriptor.dpl > cs_selector.rpl) { BX_ERROR(("task_switch(exception after commit point): conforming: CS.dpl>RPL")); exception(BX_TS_EXCEPTION, raw_cs_selector & 0xfffc, 0); } // Code segment is present in memory, else #NP(new code segment) if (! IS_PRESENT(cs_descriptor)) { BX_ERROR(("task_switch(exception after commit point): CS.p==0")); exception(BX_NP_EXCEPTION, raw_cs_selector & 0xfffc, 0); } // All checks pass, fill in shadow cache BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache = cs_descriptor; } else { // If new cs selector is null #TS(CS) BX_ERROR(("task_switch(exception after commit point): CS NULL")); exception(BX_TS_EXCEPTION, raw_cs_selector & 0xfffc, 0); } updateFetchModeMask(); #if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK handleAlignmentCheck(); // task switch, CPL was modified #endif task_switch_load_selector(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS], &ds_selector, raw_ds_selector, cs_selector.rpl); task_switch_load_selector(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES], &es_selector, raw_es_selector, cs_selector.rpl); task_switch_load_selector(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS], &fs_selector, raw_fs_selector, cs_selector.rpl); task_switch_load_selector(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS], &gs_selector, raw_gs_selector, cs_selector.rpl); } if ((tss_descriptor->type>=9) && (trap_word & 0x1)) { BX_CPU_THIS_PTR debug_trap |= 0x00008000; // BT flag in DR6 BX_CPU_THIS_PTR async_event = 1; // so processor knows to check BX_INFO(("task_switch: T bit set in new TSS")); } // // Step 14: Begin execution of new task. // BX_DEBUG(("TASKING: LEAVE")); } void BX_CPU_C::task_switch_load_selector(bx_segment_reg_t *seg, bx_selector_t *selector, Bit16u raw_selector, Bit8u cs_rpl) { bx_descriptor_t descriptor; Bit32u dword1, dword2; // NULL selector is OK, will leave cache invalid if ((raw_selector & 0xfffc) != 0) { bx_bool good = fetch_raw_descriptor2(selector, &dword1, &dword2); if (!good) { BX_ERROR(("task_switch(%s): bad selector fetch !", strseg(seg))); exception(BX_TS_EXCEPTION, raw_selector & 0xfffc, 0); } parse_descriptor(dword1, dword2, &descriptor); /* AR byte must indicate data or readable code segment else #TS(selector) */ if (descriptor.segment==0 || (IS_CODE_SEGMENT(descriptor.type) && IS_CODE_SEGMENT_READABLE(descriptor.type) == 0)) { BX_ERROR(("task_switch(%s): not data or readable code !", strseg(seg))); exception(BX_TS_EXCEPTION, raw_selector & 0xfffc, 0); } /* If data or non-conforming code, then both the RPL and the CPL * must be less than or equal to DPL in AR byte else #GP(selector) */ if (IS_DATA_SEGMENT(descriptor.type) || IS_CODE_SEGMENT_NON_CONFORMING(descriptor.type)) { if ((selector->rpl > descriptor.dpl) || (cs_rpl > descriptor.dpl)) { BX_ERROR(("load_seg_reg(%s): RPL & CPL must be <= DPL", strseg(seg))); exception(BX_TS_EXCEPTION, raw_selector & 0xfffc, 0); } } if (! IS_PRESENT(descriptor)) { BX_ERROR(("task_switch(%s): descriptor not present !", strseg(seg))); exception(BX_NP_EXCEPTION, raw_selector & 0xfffc, 0); } // All checks pass, fill in shadow cache seg->cache = descriptor; } } void BX_CPU_C::get_SS_ESP_from_TSS(unsigned pl, Bit16u *ss, Bit32u *esp) { if (BX_CPU_THIS_PTR tr.cache.valid==0) BX_PANIC(("get_SS_ESP_from_TSS: TR.cache invalid")); if (BX_CPU_THIS_PTR tr.cache.type==BX_SYS_SEGMENT_AVAIL_386_TSS || BX_CPU_THIS_PTR tr.cache.type==BX_SYS_SEGMENT_BUSY_386_TSS) { // 32-bit TSS Bit32u TSSstackaddr = 8*pl + 4; if ((TSSstackaddr+7) > BX_CPU_THIS_PTR tr.cache.u.system.limit_scaled) { BX_DEBUG(("get_SS_ESP_from_TSS(386): TSSstackaddr > TSS.LIMIT")); exception(BX_TS_EXCEPTION, BX_CPU_THIS_PTR tr.selector.value & 0xfffc, 0); } access_read_linear(BX_CPU_THIS_PTR tr.cache.u.system.base + TSSstackaddr+4, 2, 0, BX_READ, ss); access_read_linear(BX_CPU_THIS_PTR tr.cache.u.system.base + TSSstackaddr, 4, 0, BX_READ, esp); } else if (BX_CPU_THIS_PTR tr.cache.type==BX_SYS_SEGMENT_AVAIL_286_TSS || BX_CPU_THIS_PTR tr.cache.type==BX_SYS_SEGMENT_BUSY_286_TSS) { // 16-bit TSS Bit16u temp16; Bit32u TSSstackaddr = 4*pl + 2; if ((TSSstackaddr+4) > BX_CPU_THIS_PTR tr.cache.u.system.limit_scaled) { BX_DEBUG(("get_SS_ESP_from_TSS(286): TSSstackaddr > TSS.LIMIT")); exception(BX_TS_EXCEPTION, BX_CPU_THIS_PTR tr.selector.value & 0xfffc, 0); } access_read_linear(BX_CPU_THIS_PTR tr.cache.u.system.base + TSSstackaddr+2, 2, 0, BX_READ, ss); access_read_linear(BX_CPU_THIS_PTR tr.cache.u.system.base + TSSstackaddr, 2, 0, BX_READ, &temp16); *esp = temp16; // truncate } else { BX_PANIC(("get_SS_ESP_from_TSS: TR is bogus type (%u)", (unsigned) BX_CPU_THIS_PTR tr.cache.type)); } } #if BX_SUPPORT_X86_64 void BX_CPU_C::get_RSP_from_TSS(unsigned pl, Bit64u *rsp) { if (BX_CPU_THIS_PTR tr.cache.valid==0) BX_PANIC(("get_RSP_from_TSS: TR.cache invalid")); // 32-bit TSS Bit32u TSSstackaddr = 8*pl + 4; if ((TSSstackaddr+7) > BX_CPU_THIS_PTR tr.cache.u.system.limit_scaled) { BX_DEBUG(("get_RSP_from_TSS(): TSSstackaddr > TSS.LIMIT")); exception(BX_TS_EXCEPTION, BX_CPU_THIS_PTR tr.selector.value & 0xfffc, 0); } access_read_linear(BX_CPU_THIS_PTR tr.cache.u.system.base + TSSstackaddr, 8, 0, BX_READ, rsp); } #endif // #if BX_SUPPORT_X86_64