///////////////////////////////////////////////////////////////////////// // $Id: paging.cc,v 1.152 2008-08-14 22:26:15 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR // X86 Registers Which Affect Paging: // ================================== // // CR0: // bit 31: PG, Paging (386+) // bit 16: WP, Write Protect (486+) // 0: allow supervisor level writes into user level RO pages // 1: inhibit supervisor level writes into user level RO pages // // CR3: // bit 31..12: PDBR, Page Directory Base Register (386+) // bit 4: PCD, Page level Cache Disable (486+) // Controls caching of current page directory. Affects only the processor's // internal caches (L1 and L2). // This flag ignored if paging disabled (PG=0) or cache disabled (CD=1). // Values: // 0: Page Directory can be cached // 1: Page Directory not cached // bit 3: PWT, Page level Writes Transparent (486+) // Controls write-through or write-back caching policy of current page // directory. Affects only the processor's internal caches (L1 and L2). // This flag ignored if paging disabled (PG=0) or cache disabled (CD=1). // Values: // 0: write-back caching enabled // 1: write-through caching enabled // // CR4: // bit 4: PSE, Page Size Extension (Pentium+) // 0: 4KByte pages (typical) // 1: 4MByte or 2MByte pages // bit 5: PAE, Physical Address Extension (Pentium Pro+) // 0: 32bit physical addresses // 1: 36bit physical addresses // bit 7: PGE, Page Global Enable (Pentium Pro+) // The global page feature allows frequently used or shared pages // to be marked as global (PDE or PTE bit 8). Global pages are // not flushed from TLB on a task switch or write to CR3. // Values: // 0: disables global page feature // 1: enables global page feature // // page size extention and physical address size extention matrix (legacy mode) // ============================================================================== // CR0.PG CR4.PAE CR4.PSE PDPE.PS PDE.PS | page size physical address size // ============================================================================== // 0 X X R X | -- paging disabled // 1 0 0 R X | 4K 32bits // 1 0 1 R 0 | 4K 32bits // 1 0 1 R 1 | 4M 32bits // 1 1 X R 0 | 4K 36bits // 1 1 X R 1 | 2M 36bits // page size extention and physical address size extention matrix (long mode) // ============================================================================== // CR0.PG CR4.PAE CR4.PSE PDPE.PS PDE.PS | page size physical address size // ============================================================================== // 1 1 X 0 0 | 4K 52bits // 1 1 X 0 1 | 2M 52bits // 1 1 X 1 - | 1G 52bits // Page Directory/Table Entry format when P=0: // =========================================== // // 31.. 1: available // 0: P=0 // Page Directory Entry format when P=1 (4-Kbyte Page Table): // ========================================================== // // 31..12: page table base address // 11.. 9: available // 8: G (Pentium Pro+), 0=reserved otherwise // 7: PS (Pentium+), 0=reserved otherwise // 6: 0=reserved // 5: A (386+) // 4: PCD (486+), 0=reserved otherwise // 3: PWT (486+), 0=reserved otherwise // 2: U/S (386+) // 1: R/W (386+) // 0: P=1 (386+) // Page Table Entry format when P=1 (4-Kbyte Page): // ================================================ // // 63..63: NX | // 62..52: available | Long mode // 51..32: page base address | // 31..12: page base address // 11.. 9: available // 8: G (Pentium Pro+), 0=reserved otherwise // 7: PAT // 6: D (386+) // 5: A (386+) // 4: PCD (486+), 0=reserved otherwise // 3: PWT (486+), 0=reserved otherwise // 2: U/S (386+) // 1: R/W (386+) // 0: P=1 (386+) // Page Directory/Table Entry Fields Defined: // ========================================== // NX: No Execute // This bit controls the ability to execute code from all physical // pages mapped by the table entry. // 0: Code can be executed from the mapped physical pages // 1: Code cannot be executed // The NX bit can only be set when the no-execute page-protection // feature is enabled by setting EFER.NXE=1, If EFER.NXE=0, the // NX bit is treated as reserved. In this case, #PF occurs if the // NX bit is not cleared to zero. // // G: Global flag // Indiciates a global page when set. When a page is marked // global and the PGE flag in CR4 is set, the page table or // directory entry for the page is not invalidated in the TLB // when CR3 is loaded or a task switch occurs. Only software // clears and sets this flag. For page directory entries that // point to page tables, this flag is ignored and the global // characteristics of a page are set in the page table entries. // // PS: Page Size flag // Only used in page directory entries. When PS=0, the page // size is 4KBytes and the page directory entry points to a // page table. When PS=1, the page size is 4MBytes for // normal 32-bit addressing and 2MBytes if extended physical // addressing. // // PAT: Page-Attribute Table // This bit is only present in the lowest level of the page // translation hierarchy. The PAT bit is the high-order bit // of a 3-bit index into the PAT register. The other two // bits involved in forming the index are the PCD and PWT // bits. // // D: Dirty bit: // Processor sets the Dirty bit in the 2nd-level page table before a // write operation to an address mapped by that page table entry. // Dirty bit in directory entries is undefined. // // A: Accessed bit: // Processor sets the Accessed bits in both levels of page tables before // a read/write operation to a page. // // PCD: Page level Cache Disable // Controls caching of individual pages or page tables. // This allows a per-page based mechanism to disable caching, for // those pages which contained memory mapped IO, or otherwise // should not be cached. Processor ignores this flag if paging // is not used (CR0.PG=0) or the cache disable bit is set (CR0.CD=1). // Values: // 0: page or page table can be cached // 1: page or page table is not cached (prevented) // // PWT: Page level Write Through // Controls the write-through or write-back caching policy of individual // pages or page tables. Processor ignores this flag if paging // is not used (CR0.PG=0) or the cache disable bit is set (CR0.CD=1). // Values: // 0: write-back caching // 1: write-through caching // // U/S: User/Supervisor level // 0: Supervisor level - for the OS, drivers, etc. // 1: User level - application code and data // // R/W: Read/Write access // 0: read-only access // 1: read/write access // // P: Present // 0: Not present // 1: Present // ========================================== // Combined page directory/page table protection: // ============================================== // There is one column for the combined effect on a 386 // and one column for the combined effect on a 486+ CPU. // // +----------------+-----------------+----------------+----------------+ // | Page Directory| Page Table | Combined 386 | Combined 486+ | // |Privilege Type | Privilege Type | Privilege Type| Privilege Type| // |----------------+-----------------+----------------+----------------| // |User R | User R | User R | User R | // |User R | User RW | User R | User R | // |User RW | User R | User R | User R | // |User RW | User RW | User RW | User RW | // |User R | Supervisor R | User R | Supervisor RW | // |User R | Supervisor RW | User R | Supervisor RW | // |User RW | Supervisor R | User R | Supervisor RW | // |User RW | Supervisor RW | User RW | Supervisor RW | // |Supervisor R | User R | User R | Supervisor RW | // |Supervisor R | User RW | User R | Supervisor RW | // |Supervisor RW | User R | User R | Supervisor RW | // |Supervisor RW | User RW | User RW | Supervisor RW | // |Supervisor R | Supervisor R | Supervisor RW | Supervisor RW | // |Supervisor R | Supervisor RW | Supervisor RW | Supervisor RW | // |Supervisor RW | Supervisor R | Supervisor RW | Supervisor RW | // |Supervisor RW | Supervisor RW | Supervisor RW | Supervisor RW | // +----------------+-----------------+----------------+----------------+ // Page Fault Error Code Format: // ============================= // // bits 31..4: Reserved // bit 3: RSVD (Pentium Pro+) // 0: fault caused by reserved bits set to 1 in a page directory // when the PSE or PAE flags in CR4 are set to 1 // 1: fault was not caused by reserved bit violation // bit 2: U/S (386+) // 0: fault originated when in supervior mode // 1: fault originated when in user mode // bit 1: R/W (386+) // 0: access causing the fault was a read // 1: access causing the fault was a write // bit 0: P (386+) // 0: fault caused by a nonpresent page // 1: fault caused by a page level protection violation // Some paging related notes: // ========================== // // - When the processor is running in supervisor level, all pages are both // readable and writable (write-protect ignored). When running at user // level, only pages which belong to the user level are accessible; // read/write & read-only are readable, read/write are writable. // // - If the Present bit is 0 in either level of page table, an // access which uses these entries will generate a page fault. // // - (A)ccess bit is used to report read or write access to a page // or 2nd level page table. // // - (D)irty bit is used to report write access to a page. // // - Processor running at CPL=0,1,2 maps to U/S=0 // Processor running at CPL=3 maps to U/S=1 #if BX_SUPPORT_X86_64 #define BX_INVALID_TLB_ENTRY BX_CONST64(0xffffffffffffffff) #else #define BX_INVALID_TLB_ENTRY 0xffffffff #endif #if BX_CPU_LEVEL >= 4 # define BX_PRIV_CHECK_SIZE 32 #else # define BX_PRIV_CHECK_SIZE 16 #endif static unsigned priv_check[BX_PRIV_CHECK_SIZE]; // The 'priv_check' array is used to decide if the current access // has the proper paging permissions. An index is formed, based // on parameters such as the access type and level, the write protect // flag and values cached in the TLB. The format of the index into this // array is: // // |4 |3 |2 |1 |0 | // |wp|us|us|rw|rw| // | | | | | // | | | | +---> r/w of current access // | | +--+------> u/s,r/w combined of page dir & table (cached) // | +------------> u/s of current access // +---------------> Current CR0.WP value // Each entry in the TLB cache has 3 entries: // // lpf: Linear Page Frame (page aligned linear address of page) // bits 32..12 Linear page frame // bit 11 0: TLB HostPtr access allowed, 1: not allowed // bit 10...0 Invalidate index // // ppf: Physical Page Frame (page aligned phy address of page) // // hostPageAddr: // Host Page Frame address used for direct access to // the mem.vector[] space allocated for the guest physical // memory. If this is zero, it means that a pointer // to the host space could not be generated, likely because // that page of memory is not standard memory (it might // be memory mapped IO, ROM, etc). // // accessBits: // // bit 31: Page is a global page. // // The following bits are used for a very efficient permissions // check. The goal is to be able, using only the current privilege // level and access type, to determine if the page tables allow the // access to occur or at least should rewalk the page tables. On // the first read access, permissions are set to only read, so a // rewalk is necessary when a subsequent write fails the tests. // This allows for the dirty bit to be set properly, but for the // test to be efficient. Note that the CR0.WP flag is not present. // The values in the following flags is based on the current CR0.WP // value, necessitating a TLB flush when CR0.WP changes. // // The test is: // OK = (accessBits & ((W<<1) | U)) <> 0 [W:1=Write, 0=Read, U:1=CPL3,0=CPL0-2] // // Thus for reads, it is: // OK = ( U ) // And for writes: // OK = 0x2 | ( U ) // // Note, that the TLB should have TLB_HostPtr bit set when direct // access through host pointer is NOT allowed for the page. A memory // operation asking for a direct access through host pointer will // set TLB_HostPtr bit in its lpf field and thus get TLB miss result // when the direct access is not allowed. // #define TLB_SysOnly (0x1) #define TLB_ReadOnly (0x2) #define TLB_HostPtr (0x800) /* set this bit when direct access is NOT allowed */ #define TLB_GlobalPage (0x80000000) // === TLB Instrumentation section ============================== // Note: this is an approximation of what Peter Tattam had. #define InstrumentTLB 0 #if InstrumentTLB static unsigned tlbLookups=0; static unsigned tlbMisses=0; static unsigned tlbGlobalFlushes=0; static unsigned tlbNonGlobalFlushes=0; #define InstrTLB_StatsMask 0xfffff #define InstrTLB_Stats() {\ if ((tlbLookups & InstrTLB_StatsMask) == 0) { \ BX_INFO(("TLB lookup:%8d miss:%8d %6.2f%% flush:%8d %6.2f%%", \ tlbLookups, \ tlbMisses, \ tlbMisses * 100.0 / tlbLookups, \ (tlbGlobalFlushes+tlbNonGlobalFlushes), \ (tlbGlobalFlushes+tlbNonGlobalFlushes) * 100.0 / tlbLookups \ )); \ tlbLookups = tlbMisses = tlbGlobalFlushes = tlbNonGlobalFlushes = 0; \ } \ } #define InstrTLB_Increment(v) (v)++ #else #define InstrTLB_Stats() #define InstrTLB_Increment(v) #endif #define BX_PHY_ADDRESS_MASK ((((Bit64u)(1)) << BX_PHY_ADDRESS_WIDTH) - 1) #define BX_PHY_ADDRESS_RESERVED_BITS \ (~BX_PHY_ADDRESS_MASK & BX_CONST64(0xfffffffffffff)) // ============================================================== void BX_CPP_AttrRegparmN(2) BX_CPU_C::pagingCR0Changed(Bit32u oldCR0, Bit32u newCR0) { // Modification of PG,PE flushes TLB cache according to docs. // Additionally, the TLB strategy is based on the current value of // WP, so if that changes we must also flush the TLB. if ((oldCR0 & 0x80010001) != (newCR0 & 0x80010001)) TLB_flush(); // Flush Global entries also. } void BX_CPP_AttrRegparmN(2) BX_CPU_C::pagingCR4Changed(Bit32u oldCR4, Bit32u newCR4) { // Modification of PGE,PAE,PSE flushes TLB cache according to docs. if ((oldCR4 & 0x000000b0) != (newCR4 & 0x000000b0)) TLB_flush(); // Flush Global entries also. #if BX_SUPPORT_PAE if ((oldCR4 & 0x00000020) != (newCR4 & 0x00000020)) { if (BX_CPU_THIS_PTR cr4.get_PAE() && !long_mode()) BX_CPU_THIS_PTR cr3_masked = BX_CPU_THIS_PTR cr3 & 0xffffffe0; else BX_CPU_THIS_PTR cr3_masked = BX_CPU_THIS_PTR cr3 & BX_CONST64(0x000ffffffffff000); } #endif } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SetCR3(bx_address val) { // flush TLB even if value does not change TLB_flushNonGlobal(); // Don't flush Global entries. #if BX_SUPPORT_PAE if (BX_CPU_THIS_PTR cr4.get_PAE() && !long_mode()) { // when not in long mode cr3 could be only 32-bit BX_CPU_THIS_PTR cr3_masked = val & 0xffffffe0; } else #endif { #if BX_PHY_ADDRESS_WIDTH == 32 if (val & BX_CONST64(0x000fffff00000000)) { BX_PANIC(("SetCR3() 0x%08x%08x: Only 32 bit physical address space is emulated !", GET32H(val), GET32L(val))); } #endif if (val & BX_PHY_ADDRESS_RESERVED_BITS) { BX_ERROR(("SetCR3(): Attempt to write to reserved bits of CR3")); exception(BX_GP_EXCEPTION, 0, 0); } BX_CPU_THIS_PTR cr3_masked = val & BX_CONST64(0x000ffffffffff000); } BX_CPU_THIS_PTR cr3 = val; } // Called to initialize the TLB upon startup. // Unconditional initialization of all TLB entries. void BX_CPU_C::TLB_init(void) { unsigned n, wp, us_combined, rw_combined, us_current, rw_current; // // Setup privilege check matrix. // for (n=0; n> 4; us_current = (n & 0x08) >> 3; us_combined = (n & 0x04) >> 2; rw_combined = (n & 0x02) >> 1; rw_current = (n & 0x01) >> 0; if (wp) { // when write protect on if (us_current > us_combined) // user access, supervisor page priv_check[n] = 0; else if (rw_current > rw_combined) // RW access, RO page priv_check[n] = 0; else priv_check[n] = 1; } else { // when write protect off if (us_current == 0) // Supervisor mode access, anything goes priv_check[n] = 1; else { // user mode access if (us_combined == 0) // user access, supervisor Page priv_check[n] = 0; else if (rw_current > rw_combined) // RW access, RO page priv_check[n] = 0; else priv_check[n] = 1; } } } TLB_flush(); } void BX_CPU_C::TLB_flush(void) { #if InstrumentTLB InstrTLB_Increment(tlbGlobalFlushes); #endif for (unsigned n=0; naccessBits & TLB_GlobalPage)) tlbEntry->lpf = BX_INVALID_TLB_ENTRY; } #if BX_SUPPORT_PAE BX_CPU_THIS_PTR PDPE_CACHE.valid = 0; #endif #if BX_SUPPORT_MONITOR_MWAIT // invalidating of the TLB might change translation for monitored page // and cause subsequent MWAIT instruction to wait forever BX_CPU_THIS_PTR monitor.reset_monitor(); #endif } #endif void BX_CPU_C::TLB_invlpg(bx_address laddr) { BX_DEBUG(("TLB_invlpg(0x"FMT_ADDRX"): invalidate TLB entry", laddr)); unsigned TLB_index = BX_TLB_INDEX_OF(laddr, 0); bx_address lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[TLB_index]; if (LPFOf(tlbEntry->lpf) == lpf) { tlbEntry->lpf = BX_INVALID_TLB_ENTRY; } #if BX_SUPPORT_PAE BX_CPU_THIS_PTR PDPE_CACHE.valid = 0; #endif #if BX_SUPPORT_MONITOR_MWAIT // invalidating of the TLB entry might change translation for monitored // page and cause subsequent MWAIT instruction to wait forever BX_CPU_THIS_PTR monitor.reset_monitor(); #endif } void BX_CPP_AttrRegparmN(1) BX_CPU_C::INVLPG(bxInstruction_c* i) { #if BX_CPU_LEVEL >= 4 invalidate_prefetch_q(); if (!real_mode() && CPL!=0) { BX_ERROR(("INVLPG: priveledge check failed, generate #GP(0)")); exception(BX_GP_EXCEPTION, 0, 0); } bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); bx_address laddr = get_laddr(i->seg(), eaddr); BX_INSTR_TLB_CNTRL(BX_CPU_ID, BX_INSTR_INVLPG, laddr); TLB_invlpg(laddr); #else BX_INFO(("INVLPG: required i486, use --enable-cpu=4 option")); exception(BX_UD_EXCEPTION, 0, 0); #endif } // error checking order - page not present, reserved bits, protection #define ERROR_NOT_PRESENT 0x00 #define ERROR_PROTECTION 0x01 #define ERROR_RESERVED 0x08 #define ERROR_CODE_ACCESS 0x10 void BX_CPU_C::page_fault(unsigned fault, bx_address laddr, unsigned user, unsigned rw, unsigned access_type) { unsigned error_code = fault; error_code |= (user << 2) | (rw << 1); #if BX_SUPPORT_X86_64 if (BX_CPU_THIS_PTR efer.get_NXE() && (access_type == CODE_ACCESS)) error_code |= ERROR_CODE_ACCESS; // I/D = 1 #endif BX_CPU_THIS_PTR cr2 = laddr; #if BX_SUPPORT_X86_64 BX_DEBUG(("page fault for address %08x%08x @ %08x%08x", GET32H(laddr), GET32L(laddr), GET32H(RIP), GET32L(RIP))); #else BX_DEBUG(("page fault for address %08x @ %08x", laddr, EIP)); #endif exception(BX_PF_EXCEPTION, error_code, 0); } /* PAE PML4: bits [51 .. physical address width], [7] - support 1G paging */ #define PAGING_PAE_PML4_RESERVED_BITS \ (BX_PHY_ADDRESS_RESERVED_BITS/* | BX_CONST64(0x80)*/) /* PAE PDPE: bits [51 .. physical address width], [7] - support 1G paging */ #define PAGING_PAE_PDPE_RESERVED_BITS \ (BX_PHY_ADDRESS_RESERVED_BITS/* | BX_CONST64(0x80)*/) /* PAE PDE: bits [51 .. physical address width] */ #define PAGING_PAE_PDE_RESERVED_BITS (BX_PHY_ADDRESS_RESERVED_BITS) /* PAE PDE4M: bits [51 .. physical address width], [20:13] */ #define PAGING_PAE_PDE4M_RESERVED_BITS \ (PAGING_PAE_PDE_RESERVED_BITS | BX_CONST64(0x001FE000)) /* PAE PTE: bits [51 .. physical address width] */ #define PAGING_PAE_PTE_RESERVED_BITS (BX_PHY_ADDRESS_RESERVED_BITS) #define PAGE_DIRECTORY_NX_BIT (BX_CONST64(0x8000000000000000)) #if BX_SUPPORT_PAE // Translate a linear address to a physical address in PAE paging mode bx_phy_address BX_CPU_C::translate_linear_PAE(bx_address laddr, Bit32u &combined_access, unsigned curr_pl, unsigned rw, unsigned access_type) { bx_phy_address pdpe_addr, ppf; Bit64u pdpe, pde, pte; #if BX_SUPPORT_X86_64 Bit64u pml4, pml4_addr = 0; #endif unsigned priv_index, nx_fault = 0; bx_bool isWrite = (rw >= BX_WRITE); // write or r-m-w unsigned pl = (curr_pl == 3); combined_access = 0; #if BX_SUPPORT_X86_64 if (long_mode()) { // Get PML4 entry pml4_addr = (bx_phy_address)(BX_CPU_THIS_PTR cr3_masked | ((laddr & BX_CONST64(0x0000ff8000000000)) >> 36)); BX_MEM(0)->readPhysicalPage(BX_CPU_THIS, pml4_addr, 8, &pml4); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pml4_addr, 8, BX_READ, (Bit8u*)(&pml4)); if (!(pml4 & 0x1)) { BX_DEBUG(("PML4: entry not present")); page_fault(ERROR_NOT_PRESENT, laddr, pl, isWrite, access_type); } #if BX_PHY_ADDRESS_WIDTH == 32 if (pml4 & BX_CONST64(0x000fffff00000000)) { BX_PANIC(("PML4 0x%08x%08x: Only 32 bit physical address space is emulated !", GET32H(pml4), GET32L(pml4))); } #endif if (pml4 & PAGING_PAE_PML4_RESERVED_BITS) { BX_DEBUG(("PML4: reserved bit is set PML4=%08x:%08x", GET32H(pml4), GET32L(pml4))); page_fault(ERROR_RESERVED | ERROR_PROTECTION, laddr, pl, isWrite, access_type); } if (pml4 & PAGE_DIRECTORY_NX_BIT) { if (! BX_CPU_THIS_PTR efer.get_NXE()) { BX_DEBUG(("PML4: NX bit set when EFER.NXE is disabled")); page_fault(ERROR_RESERVED | ERROR_PROTECTION, laddr, pl, isWrite, access_type); } if (access_type == CODE_ACCESS) { BX_DEBUG(("PML4: non-executable page fault occured")); nx_fault = 1; } } pdpe_addr = (bx_phy_address)((pml4 & BX_CONST64(0x000ffffffffff000)) | ((laddr & BX_CONST64(0x0000007fc0000000)) >> 27)); BX_MEM(0)->readPhysicalPage(BX_CPU_THIS, pdpe_addr, 8, &pdpe); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pdpe_addr, 8, BX_READ, (Bit8u*)(&pdpe)); } else #endif { pdpe_addr = (bx_phy_address) (BX_CPU_THIS_PTR cr3_masked | ((laddr & 0xc0000000) >> 27)); if (! BX_CPU_THIS_PTR PDPE_CACHE.valid) { for (int n=0; n<4; n++) { // read PDPE cache entry bx_phy_address entry_pdpe_addr = (bx_phy_address) (BX_CPU_THIS_PTR cr3_masked | (n << 3)); BX_MEM(0)->readPhysicalPage(BX_CPU_THIS, entry_pdpe_addr, 8, &(BX_CPU_THIS_PTR PDPE_CACHE.entry[n])); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, entry_pdpe_addr, 8, BX_READ, (Bit8u*)(&BX_CPU_THIS_PTR PDPE_CACHE.entry[n])); } BX_CPU_THIS_PTR PDPE_CACHE.valid = 1; } pdpe = BX_CPU_THIS_PTR PDPE_CACHE.entry[(laddr >> 30) & 3]; } if (!(pdpe & 0x1)) { BX_DEBUG(("PAE PDPE: entry not present")); page_fault(ERROR_NOT_PRESENT, laddr, pl, isWrite, access_type); } #if BX_PHY_ADDRESS_WIDTH == 32 if (pdpe & BX_CONST64(0x000fffff00000000)) { BX_PANIC(("PAE PDPE 0x%08x%08x: Only 32 bit physical address space is emulated !", GET32H(pdpe), GET32L(pdpe))); } #endif if (pdpe & PAGING_PAE_PDPE_RESERVED_BITS) { BX_DEBUG(("PAE PDPE: reserved bit is set: PDPE=%08x:%08x", GET32H(pdpe), GET32L(pdpe))); page_fault(ERROR_RESERVED | ERROR_PROTECTION, laddr, pl, isWrite, access_type); } #if BX_SUPPORT_X86_64 if (pdpe & PAGE_DIRECTORY_NX_BIT) { if (! BX_CPU_THIS_PTR efer.get_NXE()) { BX_DEBUG(("PDPE: NX bit set when EFER.NXE is disabled")); page_fault(ERROR_RESERVED | ERROR_PROTECTION, laddr, pl, isWrite, access_type); } if (access_type == CODE_ACCESS) { BX_DEBUG(("PDPE: non-executable page fault occured")); nx_fault = 1; } } #endif bx_phy_address pde_addr = (bx_phy_address)((pdpe & BX_CONST64(0x000ffffffffff000)) | ((laddr & 0x3fe00000) >> 18)); BX_MEM(0)->readPhysicalPage(BX_CPU_THIS, pde_addr, 8, &pde); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pde_addr, 8, BX_READ, (Bit8u*)(&pde)); if (!(pde & 0x1)) { BX_DEBUG(("PAE PDE: entry not present")); page_fault(ERROR_NOT_PRESENT, laddr, pl, isWrite, access_type); } #if BX_PHY_ADDRESS_WIDTH == 32 if (pde & BX_CONST64(0x000fffff00000000)) { BX_PANIC(("PAE PDE 0x%08x%08x: Only 32 bit physical address space is emulated !", GET32H(pde), GET32L(pde))); } #endif if (pde & PAGING_PAE_PDE_RESERVED_BITS) { BX_DEBUG(("PAE PDE: reserved bit is set PDE=%08x:%08x", GET32H(pde), GET32L(pde))); page_fault(ERROR_RESERVED | ERROR_PROTECTION, laddr, pl, isWrite, access_type); } #if BX_SUPPORT_X86_64 if (pde & PAGE_DIRECTORY_NX_BIT) { if (! BX_CPU_THIS_PTR efer.get_NXE()) { BX_DEBUG(("PDE: NX bit set when EFER.NXE is disabled")); page_fault(ERROR_RESERVED | ERROR_PROTECTION, laddr, pl, isWrite, access_type); } if (access_type == CODE_ACCESS) { BX_DEBUG(("PDE: non-executable page fault occured")); nx_fault = 1; } } #endif // Ignore CR4.PSE in PAE mode if (pde & 0x80) { if (pde & PAGING_PAE_PDE4M_RESERVED_BITS) { BX_DEBUG(("PAE PDE4M: reserved bit is set PDE=%08x:%08x", GET32H(pde), GET32L(pde))); page_fault(ERROR_RESERVED | ERROR_PROTECTION, laddr, pl, isWrite, access_type); } // Combined access is just access from the pde (no pte involved). combined_access = (pde) & 0x06; // U/S and R/W #if BX_SUPPORT_X86_64 if (long_mode()) { combined_access &= (pml4 & pdpe) & 0x06; } #endif #if BX_SUPPORT_GLOBAL_PAGES if (BX_CPU_THIS_PTR cr4.get_PGE()) combined_access |= (pde & 0x100); // G #endif priv_index = #if BX_CPU_LEVEL >= 4 (BX_CPU_THIS_PTR cr0.get_WP() << 4) | // bit 4 #endif (pl<<3) | // bit 3 (combined_access & 0x06) | // bit 2,1 (isWrite); // bit 0 if (!priv_check[priv_index] || nx_fault) page_fault(ERROR_PROTECTION, laddr, pl, isWrite, access_type); #if BX_SUPPORT_X86_64 if (long_mode()) { // Update PML4 A bit if needed. if (!(pml4 & 0x20)) { pml4 |= 0x20; BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, pml4_addr, 8, &pml4); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pml4_addr, 8, BX_WRITE, (Bit8u*)(&pml4)); } } #endif // Update PDPE A bit if needed. if (!(pdpe & 0x20)) { pdpe |= 0x20; BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, pdpe_addr, 8, &pdpe); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pdpe_addr, 8, BX_WRITE, (Bit8u*)(&pdpe)); } // Update PDE A/D bits if needed. if (((pde & 0x20)==0) || (isWrite && ((pde & 0x40)==0))) { pde |= (0x20 | (isWrite<<6)); // Update A and possibly D bits BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, pde_addr, 8, &pde); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pde_addr, 8, BX_WRITE, (Bit8u*)(&pde)); } // Make up the physical page frame address. ppf = (bx_phy_address)((pde & BX_CONST64(0x000fffffffe00000)) | (laddr & 0x001ff000)); return ppf; } // 4k pages, Get page table entry bx_phy_address pte_addr = (bx_phy_address)((pde & BX_CONST64(0x000ffffffffff000)) | ((laddr & 0x001ff000) >> 9)); BX_MEM(0)->readPhysicalPage(BX_CPU_THIS, pte_addr, 8, &pte); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pte_addr, 8, BX_READ, (Bit8u*)(&pte)); if (!(pte & 0x1)) { BX_DEBUG(("PAE PTE: entry not present")); page_fault(ERROR_NOT_PRESENT, laddr, pl, isWrite, access_type); } #if BX_PHY_ADDRESS_WIDTH == 32 if (pte & BX_CONST64(0x000fffff00000000)) { BX_PANIC(("PAE PTE 0x%08x%08x: Only 32 bit physical address space is emulated !", GET32H(pte), GET32L(pte))); } #endif if (pte & PAGING_PAE_PTE_RESERVED_BITS) { BX_DEBUG(("PAE PTE: reserved bit is set PTE=%08x:%08x", GET32H(pte), GET32L(pte))); page_fault(ERROR_RESERVED | ERROR_PROTECTION, laddr, pl, isWrite, access_type); } #if BX_SUPPORT_X86_64 if (pte & PAGE_DIRECTORY_NX_BIT) { if (! BX_CPU_THIS_PTR efer.get_NXE()) { BX_DEBUG(("PTE: NX bit set when EFER.NXE is disabled")); page_fault(ERROR_RESERVED | ERROR_PROTECTION, laddr, pl, isWrite, access_type); } if (access_type == CODE_ACCESS) { BX_DEBUG(("PTE: non-executable page fault occured")); nx_fault = 1; } } #endif combined_access = (pde & pte) & 0x06; // U/S and R/W #if BX_SUPPORT_X86_64 if (long_mode()) { combined_access &= (pml4 & pdpe) & 0x06; } #endif #if BX_SUPPORT_GLOBAL_PAGES if (BX_CPU_THIS_PTR cr4.get_PGE()) combined_access |= (pte & 0x100); // G #endif priv_index = #if BX_CPU_LEVEL >= 4 (BX_CPU_THIS_PTR cr0.get_WP() << 4) | // bit 4 #endif (pl<<3) | // bit 3 (combined_access & 0x06) | // bit 2,1 (isWrite); // bit 0 if (!priv_check[priv_index] || nx_fault) page_fault(ERROR_PROTECTION, laddr, pl, isWrite, access_type); #if BX_SUPPORT_X86_64 if (long_mode()) { // Update PML4 A bit if needed. if (!(pml4 & 0x20)) { pml4 |= 0x20; BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, pml4_addr, 8, &pml4); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pml4_addr, 8, BX_WRITE, (Bit8u*)(&pml4)); } } #endif // Update PDPE A bit if needed. if (!(pdpe & 0x20)) { pdpe |= 0x20; BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, pdpe_addr, 8, &pdpe); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pdpe_addr, 8, BX_WRITE, (Bit8u*)(&pdpe)); } // Update PDE A bit if needed. if (!(pde & 0x20)) { pde |= 0x20; BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, pde_addr, 8, &pde); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pde_addr, 8, BX_WRITE, (Bit8u*)(&pde)); } // Update PTE A/D bits if needed. if (((pte & 0x20)==0) || (isWrite && ((pte & 0x40)==0))) { pte |= (0x20 | (isWrite<<6)); // Update A and possibly D bits BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, pte_addr, 8, &pte); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pte_addr, 8, BX_WRITE, (Bit8u*)(&pte)); } // Make up the physical page frame address. ppf = (bx_phy_address)(pte & BX_CONST64(0x000ffffffffff000)); return ppf; } #endif // BX_SUPPORT_PAE /* PSE PDE4M: bits [21:17] */ #define PAGING_PSE_PDE4M_RESERVED_BITS \ (BX_PHY_ADDRESS_RESERVED_BITS | BX_CONST64(0x003E0000)) // Translate a linear address to a physical address bx_phy_address BX_CPU_C::translate_linear(bx_address laddr, unsigned curr_pl, unsigned rw, unsigned access_type) { Bit32u combined_access = 0; unsigned priv_index; // note - we assume physical memory < 4gig so for brevity & speed, we'll use // 32 bit entries although cr3 is expanded to 64 bits. bx_phy_address paddress, ppf, poffset = PAGE_OFFSET(laddr); bx_bool isWrite = (rw >= BX_WRITE); // write or r-m-w unsigned pl = (curr_pl == 3); InstrTLB_Increment(tlbLookups); InstrTLB_Stats(); bx_address lpf = LPFOf(laddr); unsigned TLB_index = BX_TLB_INDEX_OF(lpf, 0); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[TLB_index]; // already looked up TLB for code access if (LPFOf(tlbEntry->lpf) == lpf) { paddress = tlbEntry->ppf | poffset; if (! (tlbEntry->accessBits & ((isWrite<<1) | pl))) return paddress; // The current access does not have permission according to the info // in our TLB cache entry. Re-walk the page tables, in case there is // updated information in the memory image, and let the long path code // generate an exception if one is warranted. } BX_DEBUG(("page walk for address 0x" FMT_LIN_ADDRX, laddr)); InstrTLB_Increment(tlbMisses); #if BX_SUPPORT_PAE if (BX_CPU_THIS_PTR cr4.get_PAE()) { ppf = translate_linear_PAE(laddr, combined_access, curr_pl, rw, access_type); } else #endif // #if BX_SUPPORT_PAE { // CR4.PAE==0 (and EFER.LMA==0) Bit32u pde, pte; bx_phy_address pde_addr = (bx_phy_address) (BX_CPU_THIS_PTR cr3_masked | ((laddr & 0xffc00000) >> 20)); BX_MEM(0)->readPhysicalPage(BX_CPU_THIS, pde_addr, 4, &pde); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pde_addr, 4, BX_READ, (Bit8u*)(&pde)); if (!(pde & 0x1)) { BX_DEBUG(("PDE: entry not present")); page_fault(ERROR_NOT_PRESENT, laddr, pl, isWrite, access_type); } #if BX_SUPPORT_LARGE_PAGES if ((pde & 0x80) && BX_CPU_THIS_PTR cr4.get_PSE()) { // Note: when the PSE and PAE flags in CR4 are set, the // processor generates a PF if the reserved bits are not zero. if (pde & PAGING_PSE_PDE4M_RESERVED_BITS) { BX_DEBUG(("PSE PDE4M: reserved bit is set: PDE=0x%08x", pde)); page_fault(ERROR_RESERVED | ERROR_PROTECTION, laddr, pl, isWrite, access_type); } #if BX_PHY_ADDRESS_WIDTH == 32 if (pde & 0x0001e000) { BX_PANIC(("PSE PDE4M 0x%08x: Only 32 bit physical address space is emulated !", pde)); } #endif // Combined access is just access from the pde (no pte involved). combined_access = pde & 0x06; // U/S and R/W #if BX_SUPPORT_GLOBAL_PAGES if (BX_CPU_THIS_PTR cr4.get_PGE()) combined_access |= pde & 0x100; // {G} #endif priv_index = #if BX_CPU_LEVEL >= 4 (BX_CPU_THIS_PTR cr0.get_WP() << 4) | // bit 4 #endif (pl<<3) | // bit 3 (combined_access & 0x06) | // bit 2,1 (isWrite); // bit 0 if (!priv_check[priv_index]) page_fault(ERROR_PROTECTION, laddr, pl, isWrite, access_type); // Update PDE A/D bits if needed. if (((pde & 0x20)==0) || (isWrite && ((pde & 0x40)==0))) { pde |= (0x20 | (isWrite<<6)); // Update A and possibly D bits BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, pde_addr, 4, &pde); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pde_addr, 4, BX_WRITE, (Bit8u*)(&pde)); } // make up the physical frame number ppf = (pde & 0xffc00000) | (laddr & 0x003ff000); } else // else normal 4K page... #endif { // Get page table entry bx_phy_address pte_addr = (bx_phy_address)((pde & 0xfffff000) | ((laddr & 0x003ff000) >> 10)); BX_MEM(0)->readPhysicalPage(BX_CPU_THIS, pte_addr, 4, &pte); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pte_addr, 4, BX_READ, (Bit8u*)(&pte)); if (!(pte & 0x1)) { BX_DEBUG(("PTE: entry not present")); page_fault(ERROR_NOT_PRESENT, laddr, pl, isWrite, access_type); } // 386 and 486+ have different behaviour for combining // privilege from PDE and PTE. #if BX_CPU_LEVEL == 3 combined_access = (pde | pte) & 0x04; // U/S combined_access |= (pde & pte) & 0x02; // R/W #else // 486+ combined_access = (pde & pte) & 0x06; // U/S and R/W #endif #if BX_SUPPORT_GLOBAL_PAGES if (BX_CPU_THIS_PTR cr4.get_PGE()) combined_access |= (pte & 0x100); // G #endif priv_index = #if BX_CPU_LEVEL >= 4 (BX_CPU_THIS_PTR cr0.get_WP() << 4) | // bit 4 #endif (pl<<3) | // bit 3 (combined_access & 0x06) | // bit 2,1 (isWrite); // bit 0 if (!priv_check[priv_index]) page_fault(ERROR_PROTECTION, laddr, pl, isWrite, access_type); // Update PDE A bit if needed. if (!(pde & 0x20)) { pde |= 0x20; BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, pde_addr, 4, &pde); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pde_addr, 4, BX_WRITE, (Bit8u*)(&pde)); } // Update PTE A/D bits if needed. if (((pte & 0x20)==0) || (isWrite && ((pte & 0x40)==0))) { pte |= (0x20 | (isWrite<<6)); // Update A and possibly D bits BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, pte_addr, 4, &pte); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pte_addr, 4, BX_WRITE, (Bit8u*)(&pte)); } // Make up the physical page frame address. ppf = pte & 0xfffff000; } } // Calculate physical memory address and fill in TLB cache entry paddress = ppf | poffset; // direct memory access is NOT allowed by default tlbEntry->lpf = lpf | TLB_HostPtr; tlbEntry->ppf = ppf; tlbEntry->accessBits = 0; if ((combined_access & 4) == 0) { // System tlbEntry->accessBits |= TLB_SysOnly; if (! isWrite) tlbEntry->accessBits |= TLB_ReadOnly; } else { // Current operation is a read or a page is read only // Not efficient handling of system write to user read only page: // hopefully it is very rare case, optimize later if (! isWrite || (combined_access & 2) == 0) { tlbEntry->accessBits |= TLB_ReadOnly; } } #if BX_SUPPORT_GLOBAL_PAGES if (combined_access & 0x100) // Global bit tlbEntry->accessBits |= TLB_GlobalPage; #endif #if BX_SupportGuest2HostTLB // Attempt to get a host pointer to this physical page. Put that // pointer in the TLB cache. Note if the request is vetoed, NULL // will be returned, and it's OK to OR zero in anyways. tlbEntry->hostPageAddr = (bx_hostpageaddr_t) BX_MEM(0)->getHostMemAddr(BX_CPU_THIS, A20ADDR(ppf), rw, access_type); if (tlbEntry->hostPageAddr) { // All access allowed also via direct pointer #if BX_X86_DEBUGGER if (! hwbreakpoint_check(laddr)) #endif tlbEntry->lpf = LPFOf(tlbEntry->lpf); // allow direct access with HostPtr } #endif return paddress; } #if BX_DEBUGGER || BX_DISASM || BX_INSTRUMENTATION || BX_GDBSTUB bx_bool BX_CPU_C::dbg_xlate_linear2phy(bx_address laddr, bx_phy_address *phy) { if (BX_CPU_THIS_PTR cr0.get_PG() == 0) { *phy = (bx_phy_address) laddr; return 1; } bx_phy_address paddress; // see if page is in the TLB first bx_address lpf = LPFOf(laddr); unsigned TLB_index = BX_TLB_INDEX_OF(lpf, 0); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[TLB_index]; if (LPFOf(tlbEntry->lpf) == lpf) { paddress = tlbEntry->ppf | PAGE_OFFSET(laddr); *phy = paddress; return 1; } bx_phy_address pt_address = BX_CPU_THIS_PTR cr3_masked; bx_address offset_mask = 0xfff; #if BX_SUPPORT_PAE if (BX_CPU_THIS_PTR cr4.get_PAE()) { int levels = 3; #if BX_SUPPORT_X86_64 if (long_mode()) levels = 4; #endif for (int level = levels - 1; level >= 0; --level) { Bit64u pte; pt_address += 8 * ((laddr >> (12 + 9*level)) & 511); BX_MEM(0)->readPhysicalPage(BX_CPU_THIS, pt_address, 8, &pte); if(!(pte & 1)) goto page_fault; if (pte & BX_PHY_ADDRESS_RESERVED_BITS) goto page_fault; pt_address = bx_phy_address(pte & BX_CONST64(0x000ffffffffff000)); if (level == 1 && (pte & 0x80)) { // PSE page offset_mask = 0x1fffff; break; } } paddress = pt_address + (bx_phy_address)(laddr & offset_mask); } else // not PAE #endif { for (int level = 1; level >= 0; --level) { Bit32u pte; pt_address += 4 * ((laddr >> (12 + 10*level)) & 1023); BX_MEM(0)->readPhysicalPage(BX_CPU_THIS, pt_address, 4, &pte); if (!(pte & 1)) goto page_fault; pt_address = pte & 0xfffff000; if (level == 1 && (pte & 0x80)) { // PSE page offset_mask = 0x3fffff; break; } } paddress = pt_address + (bx_phy_address)(laddr & offset_mask); } *phy = paddress; return 1; page_fault: *phy = 0; return 0; } #endif void BX_CPU_C::access_write_linear(bx_address laddr, unsigned len, unsigned curr_pl, void *data) { #if BX_X86_DEBUGGER hwbreakpoint_match(laddr, len, BX_WRITE); #endif Bit32u pageOffset = PAGE_OFFSET(laddr); if (BX_CPU_THIS_PTR cr0.get_PG()) { /* check for reference across multiple pages */ if ((pageOffset + len) <= 4096) { // Access within single page. BX_CPU_THIS_PTR address_xlation.paddress1 = dtranslate_linear(laddr, curr_pl, BX_WRITE); BX_CPU_THIS_PTR address_xlation.pages = 1; BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, BX_CPU_THIS_PTR address_xlation.paddress1, len, BX_WRITE); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, BX_CPU_THIS_PTR address_xlation.paddress1, len, curr_pl, BX_WRITE, (Bit8u*) data); BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1, len, data); } else { // access across 2 pages BX_CPU_THIS_PTR address_xlation.paddress1 = dtranslate_linear(laddr, curr_pl, BX_WRITE); BX_CPU_THIS_PTR address_xlation.len1 = 4096 - pageOffset; BX_CPU_THIS_PTR address_xlation.len2 = len - BX_CPU_THIS_PTR address_xlation.len1; BX_CPU_THIS_PTR address_xlation.pages = 2; bx_address laddr2 = laddr + BX_CPU_THIS_PTR address_xlation.len1; BX_CPU_THIS_PTR address_xlation.paddress2 = dtranslate_linear(laddr2, curr_pl, BX_WRITE); #ifdef BX_LITTLE_ENDIAN BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, BX_WRITE); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, curr_pl, BX_WRITE, (Bit8u*) data); BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, data); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, BX_WRITE); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, curr_pl, BX_WRITE, ((Bit8u*)data) + BX_CPU_THIS_PTR address_xlation.len1); BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, ((Bit8u*)data) + BX_CPU_THIS_PTR address_xlation.len1); #else // BX_BIG_ENDIAN BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, BX_WRITE); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, curr_pl, BX_WRITE, ((Bit8u*)data) + (len - BX_CPU_THIS_PTR address_xlation.len1)); BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, ((Bit8u*)data) + (len - BX_CPU_THIS_PTR address_xlation.len1)); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, BX_WRITE); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, curr_pl, BX_WRITE, (Bit8u*) data); BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, data); #endif } } else { // Paging off. if ((pageOffset + len) <= 4096) { // Access within single page. BX_CPU_THIS_PTR address_xlation.paddress1 = (bx_phy_address) laddr; BX_CPU_THIS_PTR address_xlation.pages = 1; BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, (bx_phy_address) laddr, len, BX_WRITE); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, (bx_phy_address) laddr, len, curr_pl, BX_WRITE, (Bit8u*) data); #if BX_SupportGuest2HostTLB // do not replace to the TLB if there is a breakpoint defined // in the same page #if BX_X86_DEBUGGER if (! hwbreakpoint_check(laddr)) #endif { unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; bx_address lpf = LPFOf(laddr); if (LPFOf(tlbEntry->lpf) != lpf) { // We haven't seen this page, or it's been bumped before. // Request a direct write pointer so we can do either R or W. bx_hostpageaddr_t hostPageAddr = (bx_hostpageaddr_t) BX_MEM(0)->getHostMemAddr(BX_CPU_THIS, A20ADDR(lpf), BX_WRITE, DATA_ACCESS); if (hostPageAddr) { tlbEntry->lpf = lpf; // Got direct write pointer OK tlbEntry->ppf = (bx_phy_address) lpf; tlbEntry->hostPageAddr = hostPageAddr; // Mark for any operation to succeed. tlbEntry->accessBits = 0; } } } #endif BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, (bx_phy_address) laddr, len, data); } else { // Access spans two pages. BX_CPU_THIS_PTR address_xlation.paddress1 = (bx_phy_address) laddr; BX_CPU_THIS_PTR address_xlation.len1 = 4096 - pageOffset; BX_CPU_THIS_PTR address_xlation.len2 = len - BX_CPU_THIS_PTR address_xlation.len1; BX_CPU_THIS_PTR address_xlation.pages = 2; bx_address laddr2 = laddr + BX_CPU_THIS_PTR address_xlation.len1; BX_CPU_THIS_PTR address_xlation.paddress2 = (bx_phy_address) laddr2; #ifdef BX_LITTLE_ENDIAN BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, BX_WRITE); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, curr_pl, BX_WRITE, (Bit8u*) data); BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, data); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, BX_WRITE); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, curr_pl, BX_WRITE, ((Bit8u*)data) + BX_CPU_THIS_PTR address_xlation.len1); BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, ((Bit8u*)data) + BX_CPU_THIS_PTR address_xlation.len1); #else // BX_BIG_ENDIAN BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, BX_WRITE); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, curr_pl, BX_WRITE, ((Bit8u*)data) + (len - BX_CPU_THIS_PTR address_xlation.len1)); BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, ((Bit8u*)data) + (len - BX_CPU_THIS_PTR address_xlation.len1)); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, BX_WRITE); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, curr_pl, BX_WRITE, (Bit8u*) data); BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, data); #endif } } } void BX_CPU_C::access_read_linear(bx_address laddr, unsigned len, unsigned curr_pl, unsigned xlate_rw, void *data) { BX_ASSERT(xlate_rw == BX_READ || xlate_rw == BX_RW); #if BX_X86_DEBUGGER hwbreakpoint_match(laddr, len, xlate_rw); #endif Bit32u pageOffset = PAGE_OFFSET(laddr); if (BX_CPU_THIS_PTR cr0.get_PG()) { /* check for reference across multiple pages */ if ((pageOffset + len) <= 4096) { // Access within single page. BX_CPU_THIS_PTR address_xlation.paddress1 = dtranslate_linear(laddr, curr_pl, xlate_rw); BX_CPU_THIS_PTR address_xlation.pages = 1; BX_MEM(0)->readPhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1, len, data); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, BX_CPU_THIS_PTR address_xlation.paddress1, len, xlate_rw); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, BX_CPU_THIS_PTR address_xlation.paddress1, len, curr_pl, BX_READ, (Bit8u*) data); } else { // access across 2 pages BX_CPU_THIS_PTR address_xlation.paddress1 = dtranslate_linear(laddr, curr_pl, xlate_rw); BX_CPU_THIS_PTR address_xlation.len1 = 4096 - pageOffset; BX_CPU_THIS_PTR address_xlation.len2 = len - BX_CPU_THIS_PTR address_xlation.len1; BX_CPU_THIS_PTR address_xlation.pages = 2; bx_address laddr2 = laddr + BX_CPU_THIS_PTR address_xlation.len1; BX_CPU_THIS_PTR address_xlation.paddress2 = dtranslate_linear(laddr2, curr_pl, xlate_rw); #ifdef BX_LITTLE_ENDIAN BX_MEM(0)->readPhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, data); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, xlate_rw); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, curr_pl, BX_READ, (Bit8u*) data); BX_MEM(0)->readPhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, ((Bit8u*)data) + BX_CPU_THIS_PTR address_xlation.len1); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, xlate_rw); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, curr_pl, BX_READ, ((Bit8u*)data) + BX_CPU_THIS_PTR address_xlation.len1); #else // BX_BIG_ENDIAN BX_MEM(0)->readPhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, ((Bit8u*)data) + (len - BX_CPU_THIS_PTR address_xlation.len1)); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, xlate_rw); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, curr_pl, BX_READ, ((Bit8u*)data) + (len - BX_CPU_THIS_PTR address_xlation.len1)); BX_MEM(0)->readPhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, data); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, xlate_rw); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, curr_pl, BX_READ, (Bit8u*) data); #endif } } else { // Paging off. if ((pageOffset + len) <= 4096) { // Access within single page. BX_CPU_THIS_PTR address_xlation.paddress1 = (bx_phy_address) laddr; BX_CPU_THIS_PTR address_xlation.pages = 1; BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, (bx_phy_address) laddr, len, xlate_rw); #if BX_SupportGuest2HostTLB // do not replace to the TLB if there is a breakpoint defined // in the same page #if BX_X86_DEBUGGER if (! hwbreakpoint_check(laddr)) #endif { unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; bx_address lpf = LPFOf(laddr); if (LPFOf(tlbEntry->lpf) != lpf) { // We haven't seen this page, or it's been bumped before. // Request a direct write pointer so we can do either R or W. bx_hostpageaddr_t hostPageAddr = (bx_hostpageaddr_t) BX_MEM(0)->getHostMemAddr(BX_CPU_THIS, A20ADDR(lpf), BX_READ, DATA_ACCESS); if (hostPageAddr) { tlbEntry->lpf = lpf; // Got direct read pointer OK. tlbEntry->ppf = (bx_phy_address) lpf; tlbEntry->hostPageAddr = hostPageAddr; // Mark for any following read to succeed. tlbEntry->accessBits = TLB_ReadOnly; } } } #endif BX_MEM(0)->readPhysicalPage(BX_CPU_THIS, (bx_phy_address) laddr, len, data); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, (bx_phy_address) laddr, len, curr_pl, BX_READ, (Bit8u*) data); } else { // Access spans two pages. BX_CPU_THIS_PTR address_xlation.paddress1 = (bx_phy_address) laddr; BX_CPU_THIS_PTR address_xlation.len1 = 4096 - pageOffset; BX_CPU_THIS_PTR address_xlation.len2 = len - BX_CPU_THIS_PTR address_xlation.len1; BX_CPU_THIS_PTR address_xlation.pages = 2; bx_address laddr2 = laddr + BX_CPU_THIS_PTR address_xlation.len1; BX_CPU_THIS_PTR address_xlation.paddress2 = (bx_phy_address) laddr2; #ifdef BX_LITTLE_ENDIAN BX_MEM(0)->readPhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, data); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, xlate_rw); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, curr_pl, BX_READ, (Bit8u*) data); BX_MEM(0)->readPhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, ((Bit8u*)data) + BX_CPU_THIS_PTR address_xlation.len1); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, xlate_rw); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, curr_pl, BX_READ, ((Bit8u*)data) + BX_CPU_THIS_PTR address_xlation.len1); #else // BX_BIG_ENDIAN BX_MEM(0)->readPhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, ((Bit8u*)data) + (len - BX_CPU_THIS_PTR address_xlation.len1)); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, xlate_rw); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, curr_pl, BX_READ, ((Bit8u*)data) + (len - BX_CPU_THIS_PTR address_xlation.len1)); BX_MEM(0)->readPhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, data); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, xlate_rw); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, curr_pl, BX_READ, (Bit8u*) data); #endif } } }