// Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // This is the glue logic needed to connect the wm-FPU-emu // FPU emulator written by Bill Metzenthen to bochs. // #include "bochs.h" #include #if !BX_WITH_MACOS extern "C" { #endif #include "fpu_emu.h" #include "linux/signal.h" #if !BX_WITH_MACOS } #endif #define LOG_THIS genlog-> #if BX_USE_CPU_SMF #define this (BX_CPU(0)) #endif // Use this to hold a pointer to the instruction since // we can't pass this to the FPU emulation routines, which // will ultimately call routines here. static bxInstruction_c *fpu_iptr = NULL; static BX_CPU_C *fpu_cpu_ptr = NULL; i387_t *current_i387; extern "C" void math_emulate(fpu_addr_modes addr_modes, u_char FPU_modrm, u_char byte1, bx_address data_address, struct address data_sel_off, struct address entry_sel_off); // This is called by bochs upon reset void BX_CPU_C::fpu_init(void) { current_i387 = &(BX_CPU_THIS_PTR the_i387); finit(); } void BX_CPU_C::fpu_execute(bxInstruction_c *i) { fpu_addr_modes addr_modes; bx_address data_address; struct address data_sel_off; struct address entry_sel_off; bx_bool is_32; fpu_iptr = i; fpu_cpu_ptr = this; current_i387 = &(BX_CPU_THIS_PTR the_i387); is_32 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b; if (protected_mode()) { if (is_32) addr_modes.default_mode = SEG32; else addr_modes.default_mode = PM16; } else if (v8086_mode()) { addr_modes.default_mode = VM86; } else { // real mode, use vm86 for now addr_modes.default_mode = VM86; } // Mark if instruction used opsize or addrsize prefixes if (i->as32B() == is_32) addr_modes.override.address_size = 0; else addr_modes.override.address_size = ADDR_SIZE_PREFIX; if (i->os32B() == is_32) addr_modes.override.operand_size = 0; else addr_modes.override.operand_size = OP_SIZE_PREFIX; // fill in orig eip here in offset // fill in CS in selector entry_sel_off.offset = BX_CPU_THIS_PTR prev_eip; entry_sel_off.selector = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value; // should set these fields to 0 if mem operand not used data_address = RMAddr(i); data_sel_off.offset = RMAddr(i); data_sel_off.selector = BX_CPU_THIS_PTR sregs[i->seg()].selector.value; math_emulate(addr_modes, i->modrm(), i->b1(), data_address, data_sel_off, entry_sel_off); } void BX_CPU_C::print_state_FPU() { static double sigh_scale_factor = pow(2.0, -31.0); static double sigl_scale_factor = pow(2.0, -63.0); Bit32u reg; reg = i387.cwd; fprintf(stderr, "cwd 0x%-8x\t%d\n", (unsigned) reg, (int) reg); reg = i387.swd; fprintf(stderr, "swd 0x%-8x\t%d\n", (unsigned) reg, (int) reg); reg = i387.twd; fprintf(stderr, "twd 0x%-8x\t%d\n", (unsigned) reg, (int) reg); reg = i387.fip; fprintf(stderr, "fip 0x%-8x\t%d\n", (unsigned) reg, (int) reg); reg = i387.fcs; fprintf(stderr, "fcs 0x%-8x\t%d\n", (unsigned) reg, (int) reg); reg = i387.foo; fprintf(stderr, "foo 0x%-8x\t%d\n", (unsigned) reg, (int) reg); reg = i387.fos; fprintf(stderr, "fos 0x%-8x\t%d\n", (unsigned) reg, (int) reg); // print stack too for (int i=0; i<8; i++) { FPU_REG *fpr = &st(i); double f1 = pow(2.0, ((0x7fff&fpr->exp) - EXTENDED_Ebias)); if (fpr->exp & SIGN_Negative) f1 = -f1; double f2 = ((double)fpr->sigh * sigh_scale_factor); double f3 = ((double)fpr->sigl * sigl_scale_factor); double f = f1*(f2+f3); fprintf(stderr, "st%d %.10f (raw 0x%04x%08x%08x)\n", i, f, 0xffff&fpr->exp, fpr->sigh, fpr->sigl); } } unsigned fpu_get_ds(void) { return(fpu_cpu_ptr->sregs[BX_SEG_REG_DS].selector.value); } void fpu_set_ax(Bit16u val16) { fpu_cpu_ptr->set_AX(val16); } void fpu_set_eflags(Bit32u val32) { fpu_cpu_ptr->writeEFlags(val32, 0xFFFFFFFF); } Bit32u fpu_get_eflags(void) { return fpu_cpu_ptr->read_eflags(); } void BX_CPP_AttrRegparmN(3) fpu_verify_area(unsigned what, bx_address ptr, unsigned n) { bx_segment_reg_t *seg; seg = &fpu_cpu_ptr->sregs[fpu_iptr->seg()]; if (what == VERIFY_READ) { fpu_cpu_ptr->read_virtual_checks(seg, ptr, n); } else { // VERIFY_WRITE fpu_cpu_ptr->write_virtual_checks(seg, ptr, n); } } Bit32u BX_CPP_AttrRegparmN(2) fpu_get_user(bx_address ptr, unsigned len) { Bit32u val32; Bit16u val16; Bit8u val8; switch (len) { case 1: fpu_cpu_ptr->read_virtual_byte(fpu_iptr->seg(), ptr, &val8); val32 = val8; break; case 2: fpu_cpu_ptr->read_virtual_word(fpu_iptr->seg(), ptr, &val16); val32 = val16; break; case 4: fpu_cpu_ptr->read_virtual_dword(fpu_iptr->seg(), ptr, &val32); break; default: BX_PANIC(("fpu_get_user: len=%u", len)); } return(val32); } void BX_CPP_AttrRegparmN(3) fpu_put_user(Bit32u val, bx_address ptr, unsigned len) { Bit32u val32; Bit16u val16; Bit8u val8; switch (len) { case 1: val8 = val; fpu_cpu_ptr->write_virtual_byte(fpu_iptr->seg(), ptr, &val8); break; case 2: val16 = val; fpu_cpu_ptr->write_virtual_word(fpu_iptr->seg(), ptr, &val16); break; case 4: val32 = val; fpu_cpu_ptr->write_virtual_dword(fpu_iptr->seg(), ptr, &val32); break; default: BX_PANIC(("fpu_put_user: len=%u", len)); } } void math_abort(void *info, unsigned int signal) { UNUSED(info); // info is always passed NULL #if BX_CPU_LEVEL >= 4 // values of signal: // SIGILL : opcodes which are illegal // SIGFPE : unmasked FP exception before WAIT or non-control instruction // SIGSEGV : access data beyond segment violation switch (signal) { case SIGFPE: if (fpu_cpu_ptr->cr0.ne == 0) { // MSDOS compatibility external interrupt (IRQ13) BX_INFO (("math_abort: MSDOS compatibility FPU exception")); DEV_pic_raise_irq(13); return; } fpu_cpu_ptr->exception(BX_MF_EXCEPTION, 0, 0); // execution does not reach here case SIGILL: BX_PANIC (("math_abort: SIGILL not implemented yet.")); fpu_cpu_ptr->UndefinedOpcode(fpu_iptr); break; case SIGSEGV: BX_PANIC (("math_abort: SIGSEGV not implemented yet.")); break; } #else UNUSED(signal); BX_INFO(("math_abort: CPU<4 not supported yet")); #endif } extern "C" int printk(const char * fmt, ...) { BX_INFO(("math abort: %s", fmt)); return 0; }