///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001-2015 The Bochs Project // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::SHLD_EdGdM(bxInstruction_c *i) { unsigned count; unsigned of, cf; bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); if (i->getIaOpcode() == BX_IA_SHLD_EdGd) count = CL; else // BX_IA_SHLD_EdGdIb count = i->Ib(); count &= 0x1f; // use only 5 LSB's if (count) { Bit32u op2_32 = BX_READ_32BIT_REG(i->src()); Bit32u result_32 = (op1_32 << count) | (op2_32 >> (32 - count)); write_RMW_linear_dword(result_32); SET_FLAGS_OSZAPC_LOGIC_32(result_32); cf = (op1_32 >> (32 - count)) & 0x1; of = cf ^ (result_32 >> 31); // of = cf ^ result31 SET_FLAGS_OxxxxC(of, cf); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::SHLD_EdGdR(bxInstruction_c *i) { Bit32u op1_32, op2_32, result_32; unsigned count; unsigned of, cf; if (i->getIaOpcode() == BX_IA_SHLD_EdGd) count = CL; else // BX_IA_SHLD_EdGdIb count = i->Ib(); count &= 0x1f; // use only 5 LSB's if (!count) { BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register } else { op1_32 = BX_READ_32BIT_REG(i->dst()); op2_32 = BX_READ_32BIT_REG(i->src()); result_32 = (op1_32 << count) | (op2_32 >> (32 - count)); BX_WRITE_32BIT_REGZ(i->dst(), result_32); SET_FLAGS_OSZAPC_LOGIC_32(result_32); cf = (op1_32 >> (32 - count)) & 0x1; of = cf ^ (result_32 >> 31); // of = cf ^ result31 SET_FLAGS_OxxxxC(of, cf); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::SHRD_EdGdM(bxInstruction_c *i) { unsigned count; unsigned cf, of; bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); if (i->getIaOpcode() == BX_IA_SHRD_EdGd) count = CL; else // BX_IA_SHRD_EdGdIb count = i->Ib(); count &= 0x1f; // use only 5 LSB's if (count) { Bit32u op2_32 = BX_READ_32BIT_REG(i->src()); Bit32u result_32 = (op2_32 << (32 - count)) | (op1_32 >> count); write_RMW_linear_dword(result_32); SET_FLAGS_OSZAPC_LOGIC_32(result_32); cf = (op1_32 >> (count - 1)) & 0x1; of = ((result_32 << 1) ^ result_32) >> 31; // of = result30 ^ result31 SET_FLAGS_OxxxxC(of, cf); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::SHRD_EdGdR(bxInstruction_c *i) { Bit32u op1_32, op2_32, result_32; unsigned count; unsigned cf, of; if (i->getIaOpcode() == BX_IA_SHRD_EdGd) count = CL; else // BX_IA_SHRD_EdGdIb count = i->Ib(); count &= 0x1f; // use only 5 LSB's if (!count) { BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register } else { op1_32 = BX_READ_32BIT_REG(i->dst()); op2_32 = BX_READ_32BIT_REG(i->src()); result_32 = (op2_32 << (32 - count)) | (op1_32 >> count); BX_WRITE_32BIT_REGZ(i->dst(), result_32); SET_FLAGS_OSZAPC_LOGIC_32(result_32); cf = (op1_32 >> (count - 1)) & 0x1; of = ((result_32 << 1) ^ result_32) >> 31; // of = result30 ^ result31 SET_FLAGS_OxxxxC(of, cf); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::ROL_EdM(bxInstruction_c *i) { unsigned count; bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); if (i->getIaOpcode() == BX_IA_ROL_Ed) count = CL; else count = i->Ib(); count &= 0x1f; if (count) { Bit32u result_32 = (op1_32 << count) | (op1_32 >> (32 - count)); write_RMW_linear_dword(result_32); unsigned bit0 = (result_32 & 0x1); unsigned bit31 = (result_32 >> 31); // of = cf ^ result31 SET_FLAGS_OxxxxC(bit0 ^ bit31, bit0); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::ROL_EdR(bxInstruction_c *i) { Bit32u op1_32, result_32; unsigned count; unsigned bit0, bit31; if (i->getIaOpcode() == BX_IA_ROL_Ed) count = CL; else count = i->Ib(); count &= 0x1f; if (!count) { BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register } else { op1_32 = BX_READ_32BIT_REG(i->dst()); result_32 = (op1_32 << count) | (op1_32 >> (32 - count)); BX_WRITE_32BIT_REGZ(i->dst(), result_32); bit0 = (result_32 & 0x1); bit31 = (result_32 >> 31); // of = cf ^ result31 SET_FLAGS_OxxxxC(bit0 ^ bit31, bit0); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::ROR_EdM(bxInstruction_c *i) { unsigned count; unsigned bit31, bit30; bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); if (i->getIaOpcode() == BX_IA_ROR_Ed) count = CL; else count = i->Ib(); count &= 0x1f; if (count) { Bit32u result_32 = (op1_32 >> count) | (op1_32 << (32 - count)); write_RMW_linear_dword(result_32); bit31 = (result_32 >> 31) & 1; bit30 = (result_32 >> 30) & 1; // of = result30 ^ result31 SET_FLAGS_OxxxxC(bit30 ^ bit31, bit31); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::ROR_EdR(bxInstruction_c *i) { Bit32u op1_32, result_32; unsigned count; unsigned bit31, bit30; if (i->getIaOpcode() == BX_IA_ROR_Ed) count = CL; else count = i->Ib(); count &= 0x1f; if (!count) { BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register } else { op1_32 = BX_READ_32BIT_REG(i->dst()); result_32 = (op1_32 >> count) | (op1_32 << (32 - count)); BX_WRITE_32BIT_REGZ(i->dst(), result_32); bit31 = (result_32 >> 31) & 1; bit30 = (result_32 >> 30) & 1; // of = result30 ^ result31 SET_FLAGS_OxxxxC(bit30 ^ bit31, bit31); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::RCL_EdM(bxInstruction_c *i) { Bit32u result_32; unsigned count; unsigned cf, of; bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); if (i->getIaOpcode() == BX_IA_RCL_Ed) count = CL; else count = i->Ib(); count &= 0x1f; if (!count) { BX_NEXT_INSTR(i); } if (count==1) { result_32 = (op1_32 << 1) | getB_CF(); } else { result_32 = (op1_32 << count) | (getB_CF() << (count - 1)) | (op1_32 >> (33 - count)); } write_RMW_linear_dword(result_32); cf = (op1_32 >> (32 - count)) & 0x1; of = cf ^ (result_32 >> 31); // of = cf ^ result31 SET_FLAGS_OxxxxC(of, cf); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::RCL_EdR(bxInstruction_c *i) { Bit32u result_32; unsigned count; unsigned cf, of; if (i->getIaOpcode() == BX_IA_RCL_Ed) count = CL; else count = i->Ib(); count &= 0x1f; if (!count) { BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register BX_NEXT_INSTR(i); } Bit32u op1_32 = BX_READ_32BIT_REG(i->dst()); if (count==1) { result_32 = (op1_32 << 1) | getB_CF(); } else { result_32 = (op1_32 << count) | (getB_CF() << (count - 1)) | (op1_32 >> (33 - count)); } BX_WRITE_32BIT_REGZ(i->dst(), result_32); cf = (op1_32 >> (32 - count)) & 0x1; of = cf ^ (result_32 >> 31); // of = cf ^ result31 SET_FLAGS_OxxxxC(of, cf); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::RCR_EdM(bxInstruction_c *i) { Bit32u result_32; unsigned count; unsigned cf, of; bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); if (i->getIaOpcode() == BX_IA_RCR_Ed) count = CL; else count = i->Ib(); count &= 0x1f; if (!count) { BX_NEXT_INSTR(i); } if (count==1) { result_32 = (op1_32 >> 1) | (getB_CF() << 31); } else { result_32 = (op1_32 >> count) | (getB_CF() << (32 - count)) | (op1_32 << (33 - count)); } write_RMW_linear_dword(result_32); cf = (op1_32 >> (count - 1)) & 0x1; of = ((result_32 << 1) ^ result_32) >> 31; // of = result30 ^ result31 SET_FLAGS_OxxxxC(of, cf); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::RCR_EdR(bxInstruction_c *i) { Bit32u result_32; unsigned count; unsigned cf, of; if (i->getIaOpcode() == BX_IA_RCR_Ed) count = CL; else count = i->Ib(); count &= 0x1f; if (!count) { BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register BX_NEXT_INSTR(i); } Bit32u op1_32 = BX_READ_32BIT_REG(i->dst()); if (count==1) { result_32 = (op1_32 >> 1) | (getB_CF() << 31); } else { result_32 = (op1_32 >> count) | (getB_CF() << (32 - count)) | (op1_32 << (33 - count)); } BX_WRITE_32BIT_REGZ(i->dst(), result_32); cf = (op1_32 >> (count - 1)) & 0x1; of = ((result_32 << 1) ^ result_32) >> 31; // of = result30 ^ result31 SET_FLAGS_OxxxxC(of, cf); BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::SHL_EdM(bxInstruction_c *i) { unsigned count; unsigned cf, of; bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); if (i->getIaOpcode() == BX_IA_SHL_Ed) count = CL; else count = i->Ib(); count &= 0x1f; if (count) { /* count < 32, since only lower 5 bits used */ Bit32u result_32 = (op1_32 << count); write_RMW_linear_dword(result_32); cf = (op1_32 >> (32 - count)) & 0x1; of = cf ^ (result_32 >> 31); SET_FLAGS_OSZAPC_LOGIC_32(result_32); SET_FLAGS_OxxxxC(of, cf); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::SHL_EdR(bxInstruction_c *i) { unsigned count; if (i->getIaOpcode() == BX_IA_SHL_Ed) count = CL; else count = i->Ib(); count &= 0x1f; if (!count) { BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register } else { Bit32u op1_32 = BX_READ_32BIT_REG(i->dst()); /* count < 32, since only lower 5 bits used */ Bit32u result_32 = (op1_32 << count); BX_WRITE_32BIT_REGZ(i->dst(), result_32); unsigned cf = (op1_32 >> (32 - count)) & 0x1; unsigned of = cf ^ (result_32 >> 31); SET_FLAGS_OSZAPC_LOGIC_32(result_32); SET_FLAGS_OxxxxC(of, cf); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::SHR_EdM(bxInstruction_c *i) { unsigned count; bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); if (i->getIaOpcode() == BX_IA_SHR_Ed) count = CL; else count = i->Ib(); count &= 0x1f; if (count) { Bit32u result_32 = (op1_32 >> count); write_RMW_linear_dword(result_32); unsigned cf = (op1_32 >> (count - 1)) & 0x1; // note, that of == result31 if count == 1 and // of == 0 if count >= 2 unsigned of = ((result_32 << 1) ^ result_32) >> 31; SET_FLAGS_OSZAPC_LOGIC_32(result_32); SET_FLAGS_OxxxxC(of, cf); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::SHR_EdR(bxInstruction_c *i) { unsigned count; if (i->getIaOpcode() == BX_IA_SHR_Ed) count = CL; else count = i->Ib(); count &= 0x1f; if (!count) { BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register } else { Bit32u op1_32 = BX_READ_32BIT_REG(i->dst()); Bit32u result_32 = (op1_32 >> count); BX_WRITE_32BIT_REGZ(i->dst(), result_32); unsigned cf = (op1_32 >> (count - 1)) & 0x1; // note, that of == result31 if count == 1 and // of == 0 if count >= 2 unsigned of = ((result_32 << 1) ^ result_32) >> 31; SET_FLAGS_OSZAPC_LOGIC_32(result_32); SET_FLAGS_OxxxxC(of, cf); } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::SAR_EdM(bxInstruction_c *i) { unsigned count; bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); if (i->getIaOpcode() == BX_IA_SAR_Ed) count = CL; else count = i->Ib(); count &= 0x1f; if (count) { /* count < 32, since only lower 5 bits used */ Bit32u result_32 = ((Bit32s) op1_32) >> count; write_RMW_linear_dword(result_32); SET_FLAGS_OSZAPC_LOGIC_32(result_32); unsigned cf = (op1_32 >> (count - 1)) & 1; SET_FLAGS_OxxxxC(0, cf); /* signed overflow cannot happen in SAR instruction */ } BX_NEXT_INSTR(i); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::SAR_EdR(bxInstruction_c *i) { unsigned count; if (i->getIaOpcode() == BX_IA_SAR_Ed) count = CL; else count = i->Ib(); count &= 0x1f; if (!count) { BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register } else { Bit32u op1_32 = BX_READ_32BIT_REG(i->dst()); /* count < 32, since only lower 5 bits used */ Bit32u result_32 = ((Bit32s) op1_32) >> count; BX_WRITE_32BIT_REGZ(i->dst(), result_32); SET_FLAGS_OSZAPC_LOGIC_32(result_32); unsigned cf = (op1_32 >> (count - 1)) & 1; SET_FLAGS_OxxxxC(0, cf); /* signed overflow cannot happen in SAR instruction */ } BX_NEXT_INSTR(i); }