///////////////////////////////////////////////////////////////////////// // $Id: access32.cc,v 1.2 2008-06-12 20:41:48 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (c) 2008 Stanislav Shwartsman // Written by Stanislav Shwartsman [sshwarts at sourceforge net] // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR // The macro was made in order to optimize access alignment into TLB lookup - // when aligment check is enabled a misaligned access will miss the TLB. // BX_CPU_THIS_PTR alignment_check_mask must be initialized to all'ones if // alignment check exception is enabled and LPF_MASK if not. #if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK #define AlignedAccessLPFOf32(laddr, alignment_mask) \ ((laddr) & (LPF_MASK | (alignment_mask))) & (BX_CPU_THIS_PTR alignment_check_mask) #else #define AlignedAccessLPFOf32(laddr, alignment_mask) LPFOf(laddr) #endif void BX_CPP_AttrRegparmN(3) BX_CPU_C::write_virtual_byte_32(unsigned s, Bit32u offset, Bit8u data) { Bit32u laddr; bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s]; BX_INSTR_MEM_DATA_ACCESS(BX_CPU_ID, s, offset, 1, BX_WRITE); BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64); if (seg->cache.valid & SegAccessWOK4G) { accessOK: laddr = BX_CPU_THIS_PTR get_laddr32(s, offset); #if BX_SupportGuest2HostTLB unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0); Bit32u lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == lpf) { // See if the TLB entry privilege level allows us write access // from this CPL. if (tlbEntry->accessBits & (0x10 << CPL)) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 1, BX_WRITE); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 1, CPL, BX_WRITE, (Bit8u*) &data); Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset); #if BX_SUPPORT_ICACHE pageWriteStampTable.decWriteStamp(tlbEntry->ppf); #endif *hostAddr = data; return; } } #endif access_write_linear(laddr, 1, CPL, (void *) &data); return; } if (seg->cache.valid & SegAccessWOK) { if (offset <= seg->cache.u.segment.limit_scaled) goto accessOK; } write_virtual_checks(seg, offset, 1); goto accessOK; } void BX_CPP_AttrRegparmN(3) BX_CPU_C::write_virtual_word_32(unsigned s, Bit32u offset, Bit16u data) { Bit32u laddr; bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s]; BX_INSTR_MEM_DATA_ACCESS(BX_CPU_ID, s, offset, 2, BX_WRITE); BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64); if (seg->cache.valid & SegAccessWOK4G) { accessOK: laddr = BX_CPU_THIS_PTR get_laddr32(s, offset); #if BX_SupportGuest2HostTLB unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 1); Bit32u lpf = AlignedAccessLPFOf32(laddr, 1); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == lpf) { // See if the TLB entry privilege level allows us write access // from this CPL. if (tlbEntry->accessBits & (0x10 << CPL)) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 2, BX_WRITE); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 2, CPL, BX_WRITE, (Bit8u*) &data); Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset); #if BX_SUPPORT_ICACHE pageWriteStampTable.decWriteStamp(tlbEntry->ppf); #endif WriteHostWordToLittleEndian(hostAddr, data); return; } } #endif #if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK if (BX_CPU_THIS_PTR alignment_check()) { if (laddr & 1) { BX_ERROR(("write_virtual_word(): #AC misaligned access")); exception(BX_AC_EXCEPTION, 0, 0); } } #endif access_write_linear(laddr, 2, CPL, (void *) &data); return; } if (seg->cache.valid & SegAccessWOK) { if (offset < seg->cache.u.segment.limit_scaled) goto accessOK; } write_virtual_checks(seg, offset, 2); goto accessOK; } void BX_CPP_AttrRegparmN(3) BX_CPU_C::write_virtual_dword_32(unsigned s, Bit32u offset, Bit32u data) { Bit32u laddr; bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s]; BX_INSTR_MEM_DATA_ACCESS(BX_CPU_ID, s, offset, 4, BX_WRITE); BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64); if (seg->cache.valid & SegAccessWOK4G) { accessOK: laddr = BX_CPU_THIS_PTR get_laddr32(s, offset); #if BX_SupportGuest2HostTLB unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 3); Bit32u lpf = AlignedAccessLPFOf32(laddr, 3); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == lpf) { // See if the TLB entry privilege level allows us write access // from this CPL. if (tlbEntry->accessBits & (0x10 << CPL)) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 4, BX_WRITE); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 4, CPL, BX_WRITE, (Bit8u*) &data); Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset); #if BX_SUPPORT_ICACHE pageWriteStampTable.decWriteStamp(tlbEntry->ppf); #endif WriteHostDWordToLittleEndian(hostAddr, data); return; } } #endif #if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK if (BX_CPU_THIS_PTR alignment_check()) { if (laddr & 3) { BX_ERROR(("write_virtual_dword(): #AC misaligned access")); exception(BX_AC_EXCEPTION, 0, 0); } } #endif access_write_linear(laddr, 4, CPL, (void *) &data); return; } if (seg->cache.valid & SegAccessWOK) { if (offset < (seg->cache.u.segment.limit_scaled-2)) goto accessOK; } write_virtual_checks(seg, offset, 4); goto accessOK; } void BX_CPP_AttrRegparmN(3) BX_CPU_C::write_virtual_qword_32(unsigned s, Bit32u offset, Bit64u data) { Bit32u laddr; bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s]; BX_INSTR_MEM_DATA_ACCESS(BX_CPU_ID, s, offset, 8, BX_WRITE); BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64); if (seg->cache.valid & SegAccessWOK4G) { accessOK: laddr = BX_CPU_THIS_PTR get_laddr32(s, offset); #if BX_SupportGuest2HostTLB unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 7); Bit32u lpf = AlignedAccessLPFOf32(laddr, 7); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == lpf) { // See if the TLB entry privilege level allows us write access // from this CPL. if (tlbEntry->accessBits & (0x10 << CPL)) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 8, BX_WRITE); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 8, CPL, BX_WRITE, (Bit8u*) &data); Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset); #if BX_SUPPORT_ICACHE pageWriteStampTable.decWriteStamp(tlbEntry->ppf); #endif WriteHostQWordToLittleEndian(hostAddr, data); return; } } #endif #if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK if (BX_CPU_THIS_PTR alignment_check()) { if (laddr & 7) { BX_ERROR(("write_virtual_qword(): #AC misaligned access")); exception(BX_AC_EXCEPTION, 0, 0); } } #endif access_write_linear(laddr, 8, CPL, (void *) &data); return; } if (seg->cache.valid & SegAccessWOK) { if (offset <= (seg->cache.u.segment.limit_scaled-7)) goto accessOK; } write_virtual_checks(seg, offset, 8); goto accessOK; } Bit8u BX_CPP_AttrRegparmN(2) BX_CPU_C::read_virtual_byte_32(unsigned s, Bit32u offset) { Bit32u laddr; bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s]; Bit8u data; BX_INSTR_MEM_DATA_ACCESS(BX_CPU_ID, s, offset, 1, BX_READ); BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64); if (seg->cache.valid & SegAccessROK4G) { accessOK: laddr = BX_CPU_THIS_PTR get_laddr32(s, offset); #if BX_SupportGuest2HostTLB unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0); Bit32u lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == lpf) { // See if the TLB entry privilege level allows us read access // from this CPL. if (tlbEntry->accessBits & (1<hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 1, BX_READ); Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset); data = *hostAddr; BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 1, CPL, BX_READ, (Bit8u*) &data); return data; } } #endif access_read_linear(laddr, 1, CPL, BX_READ, (void *) &data); return data; } if (seg->cache.valid & SegAccessROK) { if (offset <= seg->cache.u.segment.limit_scaled) goto accessOK; } read_virtual_checks(seg, offset, 1); goto accessOK; } Bit16u BX_CPP_AttrRegparmN(2) BX_CPU_C::read_virtual_word_32(unsigned s, Bit32u offset) { Bit32u laddr; bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s]; Bit16u data; BX_INSTR_MEM_DATA_ACCESS(BX_CPU_ID, s, offset, 2, BX_READ); BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64); if (seg->cache.valid & SegAccessROK4G) { accessOK: laddr = BX_CPU_THIS_PTR get_laddr32(s, offset); #if BX_SupportGuest2HostTLB unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 1); Bit32u lpf = AlignedAccessLPFOf32(laddr, 1); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == lpf) { // See if the TLB entry privilege level allows us read access // from this CPL. if (tlbEntry->accessBits & (1<hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 2, BX_READ); Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset); ReadHostWordFromLittleEndian(hostAddr, data); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 2, CPL, BX_READ, (Bit8u*) &data); return data; } } #endif #if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK if (BX_CPU_THIS_PTR alignment_check()) { if (laddr & 1) { BX_ERROR(("read_virtual_word(): #AC misaligned access")); exception(BX_AC_EXCEPTION, 0, 0); } } #endif access_read_linear(laddr, 2, CPL, BX_READ, (void *) &data); return data; } if (seg->cache.valid & SegAccessROK) { if (offset < seg->cache.u.segment.limit_scaled) goto accessOK; } read_virtual_checks(seg, offset, 2); goto accessOK; } Bit32u BX_CPP_AttrRegparmN(2) BX_CPU_C::read_virtual_dword_32(unsigned s, Bit32u offset) { Bit32u laddr; bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s]; Bit32u data; BX_INSTR_MEM_DATA_ACCESS(BX_CPU_ID, s, offset, 4, BX_READ); BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64); if (seg->cache.valid & SegAccessROK4G) { accessOK: laddr = BX_CPU_THIS_PTR get_laddr32(s, offset); #if BX_SupportGuest2HostTLB unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 3); Bit32u lpf = AlignedAccessLPFOf32(laddr, 3); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == lpf) { // See if the TLB entry privilege level allows us read access // from this CPL. if (tlbEntry->accessBits & (1<hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 4, BX_READ); Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset); ReadHostDWordFromLittleEndian(hostAddr, data); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 4, CPL, BX_READ, (Bit8u*) &data); return data; } } #endif #if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK if (BX_CPU_THIS_PTR alignment_check()) { if (laddr & 3) { BX_ERROR(("read_virtual_dword(): #AC misaligned access")); exception(BX_AC_EXCEPTION, 0, 0); } } #endif access_read_linear(laddr, 4, CPL, BX_READ, (void *) &data); return data; } if (seg->cache.valid & SegAccessROK) { if (offset < (seg->cache.u.segment.limit_scaled-2)) goto accessOK; } read_virtual_checks(seg, offset, 4); goto accessOK; } Bit64u BX_CPP_AttrRegparmN(2) BX_CPU_C::read_virtual_qword_32(unsigned s, Bit32u offset) { Bit32u laddr; bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s]; Bit64u data; BX_INSTR_MEM_DATA_ACCESS(BX_CPU_ID, s, offset, 8, BX_READ); BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64); if (seg->cache.valid & SegAccessROK4G) { accessOK: laddr = BX_CPU_THIS_PTR get_laddr32(s, offset); #if BX_SupportGuest2HostTLB unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 7); Bit32u lpf = AlignedAccessLPFOf32(laddr, 7); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == lpf) { // See if the TLB entry privilege level allows us read access // from this CPL. if (tlbEntry->accessBits & (1<hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 8, BX_READ); Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset); ReadHostQWordFromLittleEndian(hostAddr, data); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 8, CPL, BX_READ, (Bit8u*) &data); return data; } } #endif #if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK if (BX_CPU_THIS_PTR alignment_check()) { if (laddr & 7) { BX_ERROR(("read_virtual_qword(): #AC misaligned access")); exception(BX_AC_EXCEPTION, 0, 0); } } #endif access_read_linear(laddr, 8, CPL, BX_READ, (void *) &data); return data; } if (seg->cache.valid & SegAccessROK) { if (offset <= (seg->cache.u.segment.limit_scaled-7)) goto accessOK; } read_virtual_checks(seg, offset, 8); goto accessOK; } ////////////////////////////////////////////////////////////// // special Read-Modify-Write operations // // address translation info is kept across read/write calls // ////////////////////////////////////////////////////////////// Bit8u BX_CPP_AttrRegparmN(2) BX_CPU_C::read_RMW_virtual_byte_32(unsigned s, Bit32u offset) { Bit32u laddr; bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s]; Bit8u data; BX_INSTR_MEM_DATA_ACCESS(BX_CPU_ID, s, offset, 1, BX_RW); BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64); if (seg->cache.valid & SegAccessWOK4G) { accessOK: laddr = BX_CPU_THIS_PTR get_laddr32(s, offset); #if BX_SupportGuest2HostTLB unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0); Bit32u lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == lpf) { // See if the TLB entry privilege level allows us write access // from this CPL. if (tlbEntry->accessBits & (0x10 << CPL)) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 1, BX_RW); Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset); #if BX_SUPPORT_ICACHE pageWriteStampTable.decWriteStamp(tlbEntry->ppf); #endif data = *hostAddr; BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr; BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 1, CPL, BX_READ, (Bit8u*) &data); return data; } } #endif access_read_linear(laddr, 1, CPL, BX_RW, (void *) &data); return data; } if (seg->cache.valid & SegAccessWOK) { if (offset <= seg->cache.u.segment.limit_scaled) goto accessOK; } write_virtual_checks(seg, offset, 1); goto accessOK; } Bit16u BX_CPP_AttrRegparmN(2) BX_CPU_C::read_RMW_virtual_word_32(unsigned s, Bit32u offset) { Bit32u laddr; bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s]; Bit16u data; BX_INSTR_MEM_DATA_ACCESS(BX_CPU_ID, s, offset, 2, BX_RW); BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64); if (seg->cache.valid & SegAccessWOK4G) { accessOK: laddr = BX_CPU_THIS_PTR get_laddr32(s, offset); #if BX_SupportGuest2HostTLB unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 1); Bit32u lpf = AlignedAccessLPFOf32(laddr, 1); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == lpf) { // See if the TLB entry privilege level allows us write access // from this CPL. if (tlbEntry->accessBits & (0x10 << CPL)) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 2, BX_RW); Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset); #if BX_SUPPORT_ICACHE pageWriteStampTable.decWriteStamp(tlbEntry->ppf); #endif ReadHostWordFromLittleEndian(hostAddr, data); BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr; BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 2, CPL, BX_READ, (Bit8u*) &data); return data; } } #endif #if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK if (BX_CPU_THIS_PTR alignment_check()) { if (laddr & 1) { BX_ERROR(("read_RMW_virtual_word(): #AC misaligned access")); exception(BX_AC_EXCEPTION, 0, 0); } } #endif access_read_linear(laddr, 2, CPL, BX_RW, (void *) &data); return data; } if (seg->cache.valid & SegAccessWOK) { if (offset < seg->cache.u.segment.limit_scaled) goto accessOK; } write_virtual_checks(seg, offset, 2); goto accessOK; } Bit32u BX_CPP_AttrRegparmN(2) BX_CPU_C::read_RMW_virtual_dword_32(unsigned s, Bit32u offset) { Bit32u laddr; bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s]; Bit32u data; BX_INSTR_MEM_DATA_ACCESS(BX_CPU_ID, s, offset, 4, BX_RW); BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64); if (seg->cache.valid & SegAccessWOK4G) { accessOK: laddr = BX_CPU_THIS_PTR get_laddr32(s, offset); #if BX_SupportGuest2HostTLB unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 3); Bit32u lpf = AlignedAccessLPFOf32(laddr, 3); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == lpf) { // See if the TLB entry privilege level allows us write access // from this CPL. if (tlbEntry->accessBits & (0x10 << CPL)) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 4, BX_RW); Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset); #if BX_SUPPORT_ICACHE pageWriteStampTable.decWriteStamp(tlbEntry->ppf); #endif ReadHostDWordFromLittleEndian(hostAddr, data); BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr; BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 4, CPL, BX_READ, (Bit8u*) &data); return data; } } #endif #if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK if (BX_CPU_THIS_PTR alignment_check()) { if (laddr & 3) { BX_ERROR(("read_RMW_virtual_dword(): #AC misaligned access")); exception(BX_AC_EXCEPTION, 0, 0); } } #endif access_read_linear(laddr, 4, CPL, BX_RW, (void *) &data); return data; } if (seg->cache.valid & SegAccessWOK) { if (offset < (seg->cache.u.segment.limit_scaled-2)) goto accessOK; } write_virtual_checks(seg, offset, 4); goto accessOK; } Bit64u BX_CPP_AttrRegparmN(2) BX_CPU_C::read_RMW_virtual_qword_32(unsigned s, Bit32u offset) { Bit32u laddr; bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s]; Bit64u data; BX_INSTR_MEM_DATA_ACCESS(BX_CPU_ID, s, offset, 8, BX_RW); BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64); if (seg->cache.valid & SegAccessWOK4G) { accessOK: laddr = BX_CPU_THIS_PTR get_laddr32(s, offset); #if BX_SupportGuest2HostTLB unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 7); Bit32u lpf = AlignedAccessLPFOf32(laddr, 7); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == lpf) { // See if the TLB entry privilege level allows us write access // from this CPL. if (tlbEntry->accessBits & (0x10 << CPL)) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 8, BX_RW); Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset); #if BX_SUPPORT_ICACHE pageWriteStampTable.decWriteStamp(tlbEntry->ppf); #endif ReadHostQWordFromLittleEndian(hostAddr, data); BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr; BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 8, CPL, BX_READ, (Bit8u*) &data); return data; } } #endif #if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK if (BX_CPU_THIS_PTR alignment_check()) { if (laddr & 7) { BX_ERROR(("read_RMW_virtual_qword(): #AC misaligned access")); exception(BX_AC_EXCEPTION, 0, 0); } } #endif access_read_linear(laddr, 8, CPL, BX_RW, (void *) &data); return data; } if (seg->cache.valid & SegAccessWOK) { if (offset <= (seg->cache.u.segment.limit_scaled-7)) goto accessOK; } write_virtual_checks(seg, offset, 8); goto accessOK; } void BX_CPP_AttrRegparmN(1) BX_CPU_C::write_RMW_virtual_byte(Bit8u val8) { BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, BX_CPU_THIS_PTR address_xlation.paddress1, 2, BX_WRITE, (Bit8u*) &val8); if (BX_CPU_THIS_PTR address_xlation.pages > 2) { // Pages > 2 means it stores a host address for direct access. Bit8u *hostAddr = (Bit8u *) BX_CPU_THIS_PTR address_xlation.pages; *hostAddr = val8; } else { // address_xlation.pages must be 1 BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1, 1, &val8); } } void BX_CPP_AttrRegparmN(1) BX_CPU_C::write_RMW_virtual_word(Bit16u val16) { if (BX_CPU_THIS_PTR address_xlation.pages > 2) { // Pages > 2 means it stores a host address for direct access. Bit16u *hostAddr = (Bit16u *) BX_CPU_THIS_PTR address_xlation.pages; WriteHostWordToLittleEndian(hostAddr, val16); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, BX_CPU_THIS_PTR address_xlation.paddress1, 2, BX_WRITE, (Bit8u*) &val16); } else if (BX_CPU_THIS_PTR address_xlation.pages == 1) { BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1, 2, &val16); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, BX_CPU_THIS_PTR address_xlation.paddress1, 2, BX_WRITE, (Bit8u*) &val16); } else { #ifdef BX_LITTLE_ENDIAN BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1, 1, &val16); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, BX_CPU_THIS_PTR address_xlation.paddress1, 1, BX_WRITE, (Bit8u*) &val16); BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress2, 1, ((Bit8u *) &val16) + 1); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, BX_CPU_THIS_PTR address_xlation.paddress2, 1, BX_WRITE, ((Bit8u*) &val16)+1); #else BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1, 1, ((Bit8u *) &val16) + 1); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, BX_CPU_THIS_PTR address_xlation.paddress1, 1, BX_WRITE, ((Bit8u*) &val16)+1); BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress2, 1, &val16); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, BX_CPU_THIS_PTR address_xlation.paddress2, 1, BX_WRITE, (Bit8u*) &val16); #endif } } void BX_CPP_AttrRegparmN(1) BX_CPU_C::write_RMW_virtual_dword(Bit32u val32) { if (BX_CPU_THIS_PTR address_xlation.pages > 2) { // Pages > 2 means it stores a host address for direct access. Bit32u *hostAddr = (Bit32u *) BX_CPU_THIS_PTR address_xlation.pages; WriteHostDWordToLittleEndian(hostAddr, val32); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, BX_CPU_THIS_PTR address_xlation.paddress1, 4, BX_WRITE, (Bit8u*) &val32); } else if (BX_CPU_THIS_PTR address_xlation.pages == 1) { BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1, 4, &val32); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, BX_CPU_THIS_PTR address_xlation.paddress1, 4, BX_WRITE, (Bit8u*) &val32); } else { #ifdef BX_LITTLE_ENDIAN BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, &val32); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, BX_WRITE, (Bit8u*) &val32); BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, ((Bit8u *) &val32) + BX_CPU_THIS_PTR address_xlation.len1); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, BX_WRITE, ((Bit8u *) &val32) + BX_CPU_THIS_PTR address_xlation.len1); #else BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, ((Bit8u *) &val32) + (4 - BX_CPU_THIS_PTR address_xlation.len1)); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, BX_WRITE, ((Bit8u *) &val32) + (4 - BX_CPU_THIS_PTR address_xlation.len1)); BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, &val32); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, BX_WRITE, (Bit8u*) &val32); #endif } } void BX_CPP_AttrRegparmN(1) BX_CPU_C::write_RMW_virtual_qword(Bit64u val64) { if (BX_CPU_THIS_PTR address_xlation.pages > 2) { // Pages > 2 means it stores a host address for direct access. Bit64u *hostAddr = (Bit64u *) BX_CPU_THIS_PTR address_xlation.pages; WriteHostQWordToLittleEndian(hostAddr, val64); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, BX_CPU_THIS_PTR address_xlation.paddress1, 8, BX_WRITE, (Bit8u*) &val64); } else if (BX_CPU_THIS_PTR address_xlation.pages == 1) { BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1, 8, &val64); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, BX_CPU_THIS_PTR address_xlation.paddress1, 8, BX_WRITE, (Bit8u*) &val64); } else { #ifdef BX_LITTLE_ENDIAN BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, &val64); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, BX_WRITE, (Bit8u*) &val64); BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, ((Bit8u *) &val64) + BX_CPU_THIS_PTR address_xlation.len1); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, BX_WRITE, ((Bit8u *) &val64) + BX_CPU_THIS_PTR address_xlation.len1); #else BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, ((Bit8u *) &val64) + (8 - BX_CPU_THIS_PTR address_xlation.len1)); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, BX_CPU_THIS_PTR address_xlation.paddress1, BX_CPU_THIS_PTR address_xlation.len1, BX_WRITE, ((Bit8u *) &val64) + (8 - BX_CPU_THIS_PTR address_xlation.len1)); BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, &val64); BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, BX_CPU_THIS_PTR address_xlation.paddress2, BX_CPU_THIS_PTR address_xlation.len2, BX_WRITE, (Bit8u*) &val64); #endif } } // // Write data to new stack, these methods are required for emulation // correctness but not performance critical. // // assuming the write happens in legacy mode void BX_CPU_C::write_new_stack_word_32(bx_segment_reg_t *seg, Bit32u offset, unsigned curr_pl, Bit16u data) { Bit32u laddr; BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64); if (seg->cache.valid & SegAccessWOK4G) { accessOK: laddr = (Bit32u)(seg->cache.u.segment.base + offset); #if BX_SupportGuest2HostTLB unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 1); Bit32u lpf = AlignedAccessLPFOf32(laddr, 1); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == lpf) { // See if the TLB entry privilege level allows us write access // from this CPL. if (tlbEntry->accessBits & (0x10 << CPL)) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 2, BX_WRITE); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 2, curr_pl, BX_WRITE, (Bit8u*) &data); Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset); #if BX_SUPPORT_ICACHE pageWriteStampTable.decWriteStamp(tlbEntry->ppf); #endif WriteHostWordToLittleEndian(hostAddr, data); return; } } #endif #if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK if (BX_CPU_THIS_PTR alignment_check() && curr_pl == 3) { if (laddr & 1) { BX_ERROR(("write_new_stack_word_32(): #AC misaligned access")); exception(BX_AC_EXCEPTION, 0, 0); } } #endif access_write_linear(laddr, 2, curr_pl, (void *) &data); return; } if (seg->cache.valid & SegAccessWOK) { if (offset < seg->cache.u.segment.limit_scaled) goto accessOK; } write_virtual_checks(seg, offset, 2); goto accessOK; } // assuming the write happens in legacy mode void BX_CPU_C::write_new_stack_dword_32(bx_segment_reg_t *seg, Bit32u offset, unsigned curr_pl, Bit32u data) { Bit32u laddr; BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64); if (seg->cache.valid & SegAccessWOK4G) { accessOK: laddr = (Bit32u)(seg->cache.u.segment.base + offset); #if BX_SupportGuest2HostTLB unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 3); Bit32u lpf = AlignedAccessLPFOf32(laddr, 3); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == lpf) { // See if the TLB entry privilege level allows us write access // from this CPL. if (tlbEntry->accessBits & (0x10 << CPL)) { bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr; Bit32u pageOffset = PAGE_OFFSET(laddr); BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 4, BX_WRITE); BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, tlbEntry->ppf | pageOffset, 4, curr_pl, BX_WRITE, (Bit8u*) &data); Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset); #if BX_SUPPORT_ICACHE pageWriteStampTable.decWriteStamp(tlbEntry->ppf); #endif WriteHostDWordToLittleEndian(hostAddr, data); return; } } #endif #if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK if (BX_CPU_THIS_PTR alignment_check() && curr_pl == 3) { if (laddr & 3) { BX_ERROR(("write_new_stack_dword_32(): #AC misaligned access")); exception(BX_AC_EXCEPTION, 0, 0); } } #endif access_write_linear(laddr, 4, curr_pl, (void *) &data); return; } if (seg->cache.valid & SegAccessWOK) { if (offset < (seg->cache.u.segment.limit_scaled-2)) goto accessOK; } write_virtual_checks(seg, offset, 4); goto accessOK; }