///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (c) 2013-2017 Stanislav Shwartsman // Written by Stanislav Shwartsman [sshwarts at sourceforge net] // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA // ///////////////////////////////////////////////////////////////////////// #ifndef BX_COMMON_FETCHDECODE_TABLES_H #define BX_COMMON_FETCHDECODE_TABLES_H // // Metadata for decoder... // #define SSE_PREFIX_NONE 0 #define SSE_PREFIX_66 1 #define SSE_PREFIX_F3 2 #define SSE_PREFIX_F2 3 // If the BxImmediate mask is set, the lowest 4 bits of the attribute // specify which kinds of immediate data required by instruction. #define BxImmediate 0x000f // bits 3..0: any immediate #define BxImmediate_I1 0x0001 // imm8 = 1 #define BxImmediate_Ib 0x0002 // 8 bit #define BxImmediate_Ib_SE 0x0003 // sign extend to operand size #define BxImmediate_Iw 0x0004 // 16 bit #define BxImmediate_Id 0x0005 // 32 bit #define BxImmediate_O 0x0006 // MOV_ALOd, mov_OdAL, mov_eAXOv, mov_OveAX #if BX_SUPPORT_X86_64 #define BxImmediate_Iq 0x0007 // 64 bit override #endif #define BxImmediate_BrOff8 0x0008 // Relative branch offset byte #define BxImmediate_BrOff16 BxImmediate_Iw // Relative branch offset word, not encodable in 64-bit mode #define BxImmediate_BrOff32 BxImmediate_Id // Relative branch offset dword #define BxImmediate_Ib4 BxImmediate_Ib // Register encoded in Ib[7:4] #define BxImmediate_Ib5 BxImmediate_Ib // Lookup for opcode and attributes in another opcode tables // Totally 15 opcode groups supported #define BxGroupX 0x00f0 // bits 7..4: opcode groups definition #define BxPrefixSSE66 0x0010 // Group encoding: 0001, SSE_PREFIX_66 only #define BxPrefixSSEF3 0x0020 // Group encoding: 0010, SSE_PREFIX_F3 only #define BxPrefixSSEF2 0x0030 // Group encoding: 0011, SSE_PREFIX_F2 only #define BxPrefixSSE 0x0040 // Group encoding: 0100 #define BxPrefixSSE2 0x0050 // Group encoding: 0101, do not allow SSE_PREFIX_F2 or SSE_PREFIX_F3 #define BxPrefixSSE4 0x0060 // Group encoding: 0110 #define BxPrefixSSEF2F3 0x0070 // Group encoding: 0111, ignore SSE_PREFIX_66 #define BxNoPrefixSSE 0x0080 // Group encoding: 1000, no SSE prefix allowed #define BxGroupN 0x0090 // Group encoding: 1001 #define BxSplitGroupN 0x00A0 // Group encoding: 1010 #define BxSplitMod11B 0x00B0 // Group encoding: 1011 #define BxSplitVexVL 0x00C0 // Group encoding: 1100 // The BxImmediate2 mask specifies kind of second immediate data // required by instruction. #define BxImmediate2 0x0300 // bits 8.9: any immediate #define BxImmediate_Ib2 0x0100 #define BxImmediate_Iw2 0x0200 #define BxImmediate_Id2 0x0300 #define BxVexL0 0x0100 // bit 8 (aliased with imm2) #define BxVexL1 0x0200 // bit 9 (aliased with imm2) #define BxVexW0 0x0400 // bit 10 #define BxVexW1 0x0800 // bit 11 #define BxAlias 0x3000 // bits 12..13 #define BxAliasSSE 0x1000 // Encoding 01: form final opcode using SSE prefix and current opcode #define BxAliasVexW 0x2000 // Encoding 10: form final opcode using VEX.W and current opcode #define BxAliasVexW64 0x3000 // Encoding 11: form final opcode using VEX.W and current opcode in 64-bit mode only #define BxGroup1 BxGroupN #define BxGroup1A BxGroupN #define BxGroup2 BxGroupN #define BxGroup3 BxGroupN #define BxGroup4 BxGroupN #define BxGroup5 BxGroupN #define BxGroup6 BxGroupN // BxGroup7 handled separately #define BxGroup8 BxGroupN #define BxGroup9 BxSplitGroupN #define BxGroup11 BxGroupN #define BxGroup12 BxGroupN #define BxGroup13 BxGroupN #define BxGroup14 BxGroupN // BxGroup15 handled separately #define BxGroup16 BxGroupN #define BxGroup17 BxGroupN // BxGroup17 handled separately enum { BX_ILLEGAL_OPCODE, BX_ILLEGAL_LOCK_PREFIX, BX_ILLEGAL_VEX_XOP_VVV, BX_ILLEGAL_VEX_XOP_WITH_SSE_PREFIX, BX_ILLEGAL_VEX_XOP_WITH_REX_PREFIX, BX_ILLEGAL_VEX_XOP_OPCODE_MAP, BX_VEX_XOP_W0_ONLY, BX_VEX_XOP_W1_ONLY, BX_VEX_XOP_BAD_VECTOR_LENGTH, BX_VSIB_FORBIDDEN_ASIZE16, BX_VSIB_ILLEGAL_SIB_INDEX, BX_EVEX_RESERVED_BITS_SET, BX_EVEX_ILLEGAL_EVEX_B_SAE_NOT_ALLOWED, BX_EVEX_ILLEGAL_EVEX_B_BROADCAST_NOT_ALLOWED, BX_EVEX_ILLEGAL_KMASK_REGISTER, BX_EVEX_ILLEGAL_ZERO_MASKING_NO_OPMASK, BX_EVEX_ILLEGAL_ZERO_MASKING_VSIB, BX_EVEX_ILLEGAL_ZERO_MASKING_MEMORY_DESTINATION, }; typedef struct BxOpcodeInfo_t { Bit16u Attr; Bit16u IA; } BxOpcodeInfo_t; typedef struct BxExtOpcodeInfo_t { Bit16u Attr; Bit16u IA; const BxExtOpcodeInfo_t *AnotherArray; } BxExtOpcodeInfo_t; // // This file contains common IA-32/X86-64 opcode tables, like FPU opcode // table, 3DNow! opcode table or SSE opcode groups (choose the opcode // according to instruction prefixes) // BX_CPP_INLINE Bit16u FetchWORD(const Bit8u *iptr) { Bit16u data; ReadHostWordFromLittleEndian(iptr, data); return data; } BX_CPP_INLINE Bit32u FetchDWORD(const Bit8u *iptr) { Bit32u data; ReadHostDWordFromLittleEndian(iptr, data); return data; } #if BX_SUPPORT_X86_64 BX_CPP_INLINE Bit64u FetchQWORD(const Bit8u *iptr) { Bit64u data; ReadHostQWordFromLittleEndian(iptr, data); return data; } #endif #define BX_PREPARE_EVEX_NO_BROADCAST (0x80 | BX_PREPARE_EVEX) #define BX_PREPARE_EVEX_NO_SAE (0x40 | BX_PREPARE_EVEX) #define BX_PREPARE_EVEX (0x20) #define BX_PREPARE_OPMASK (0x10) #define BX_PREPARE_AVX (0x08) #define BX_PREPARE_SSE (0x04) #define BX_LOCKABLE (0x02) #define BX_TRACE_END (0x01) struct bxIAOpcodeTable { BxExecutePtr_tR execute1; BxExecutePtr_tR execute2; Bit8u src[4]; Bit8u opflags; }; // where the source should be taken from enum { BX_SRC_NONE = 0, // no source, implicit source or immediate BX_SRC_EAX = 1, // the src is AL/AX/EAX/RAX or ST(0) for x87 BX_SRC_NNN = 2, // the src should be taken from modrm.nnn BX_SRC_RM = 3, // the src is register or memory reference, register should be taken from modrm.rm BX_SRC_EVEX_RM = 4, // the src is register or EVEX memory reference, register should be taken from modrm.rm BX_SRC_VVV = 5, // the src should be taken from (e)vex.vvv BX_SRC_VIB = 6, // the src should be taken from immediate byte BX_SRC_VSIB = 7, // the src is gather/scatter vector index BX_SRC_IMM = 8, // the src is immediate value BX_SRC_IMPLICIT = 9, // the src is implicit register or memory reference }; // for diassembly: // when the source is register, indicates the register type and size // when the source is memory reference, give hint about the memory access size enum { BX_NO_REGISTER = 0, BX_GPR8 = 0x1, BX_GPR8_32 = 0x2, // 8-bit memory reference but 32-bit GPR BX_GPR16 = 0x3, BX_GPR16_32 = 0x4, // 16-bit memory reference but 32-bit GPR BX_GPR32 = 0x5, BX_GPR64 = 0x6, BX_FPU_REG = 0x7, BX_MMX_REG = 0x8, BX_VMM_REG = 0x9, BX_KMASK_REG = 0xA, BX_SEGREG = 0xB, BX_CREG = 0xC, BX_DREG = 0xD, // encodings 0xE to 0xF are still free }; // to be used together with BX_SRC_EVEX_RM enum { BX_VMM_FULL_VECTOR = 0, BX_VMM_SCALAR_BYTE = 1, BX_VMM_SCALAR_WORD = 2, BX_VMM_SCALAR = 3, BX_VMM_HALF_VECTOR = 4, BX_VMM_QUARTER_VECTOR = 5, BX_VMM_OCT_VECTOR = 6, BX_VMM_VEC128 = 7, BX_VMM_VEC256 = 8 // encodings 0x9 to 0xF are still free }; // immediate forms enum { BX_IMMB = 0x1, BX_IMMW = 0x2, BX_IMMD = 0x3, BX_IMMD_SE = 0x4, BX_IMMQ = 0x5, BX_IMMB2 = 0x6, BX_IMM_BrOff16 = 0x7, BX_IMM_BrOff32 = 0x8, BX_IMM_BrOff64 = 0x9, BX_DIRECT_PTR = 0xA, BX_DIRECT_MEMREF32 = 0xB, BX_DIRECT_MEMREF64 = 0xC, // encodings 0xD to 0xF are still free }; // implicit register or memory references enum { BX_RSIREF_B = 0x1, BX_RSIREF_W = 0x2, BX_RSIREF_D = 0x3, BX_RSIREF_Q = 0x4, BX_RDIREF_B = 0x5, BX_RDIREF_W = 0x6, BX_RDIREF_D = 0x7, BX_RDIREF_Q = 0x8, BX_USECL = 0x9, BX_USEDX = 0xA, // encodings 0xB to 0xF are still free }; #define BX_FORM_SRC(type, src) (((type) << 4) | (src)) #define BX_DISASM_SRC_ORIGIN(desc) (desc & 0xf) #define BX_DISASM_SRC_TYPE(desc) (desc >> 4) const Bit8u OP_NONE = BX_SRC_NONE; const Bit8u OP_Eb = BX_FORM_SRC(BX_GPR8, BX_SRC_RM); const Bit8u OP_Ebd = BX_FORM_SRC(BX_GPR8_32, BX_SRC_RM); const Bit8u OP_Ew = BX_FORM_SRC(BX_GPR16, BX_SRC_RM); const Bit8u OP_Ewd = BX_FORM_SRC(BX_GPR16_32, BX_SRC_RM); const Bit8u OP_Ed = BX_FORM_SRC(BX_GPR32, BX_SRC_RM); const Bit8u OP_Eq = BX_FORM_SRC(BX_GPR64, BX_SRC_RM); const Bit8u OP_Gb = BX_FORM_SRC(BX_GPR8, BX_SRC_NNN); const Bit8u OP_Gw = BX_FORM_SRC(BX_GPR16, BX_SRC_NNN); const Bit8u OP_Gd = BX_FORM_SRC(BX_GPR32, BX_SRC_NNN); const Bit8u OP_Gq = BX_FORM_SRC(BX_GPR64, BX_SRC_NNN); const Bit8u OP_ALReg = BX_FORM_SRC(BX_GPR8, BX_SRC_EAX); const Bit8u OP_AXReg = BX_FORM_SRC(BX_GPR16, BX_SRC_EAX); const Bit8u OP_EAXReg = BX_FORM_SRC(BX_GPR32, BX_SRC_EAX); const Bit8u OP_RAXReg = BX_FORM_SRC(BX_GPR64, BX_SRC_EAX); const Bit8u OP_CLReg = BX_FORM_SRC(BX_USECL, BX_SRC_IMPLICIT); const Bit8u OP_DXReg = BX_FORM_SRC(BX_USEDX, BX_SRC_IMPLICIT); const Bit8u OP_Ib = BX_FORM_SRC(BX_IMMB, BX_SRC_IMM); const Bit8u OP_Iw = BX_FORM_SRC(BX_IMMW, BX_SRC_IMM); const Bit8u OP_Id = BX_FORM_SRC(BX_IMMD, BX_SRC_IMM); const Bit8u OP_sId = BX_FORM_SRC(BX_IMMD_SE, BX_SRC_IMM); const Bit8u OP_Iq = BX_FORM_SRC(BX_IMMQ, BX_SRC_IMM); const Bit8u OP_Ib2 = BX_FORM_SRC(BX_IMMB2, BX_SRC_IMM); const Bit8u OP_Jw = BX_FORM_SRC(BX_IMM_BrOff16, BX_SRC_IMM); const Bit8u OP_Jd = BX_FORM_SRC(BX_IMM_BrOff32, BX_SRC_IMM); const Bit8u OP_Jq = BX_FORM_SRC(BX_IMM_BrOff64, BX_SRC_IMM); const Bit8u OP_M = BX_FORM_SRC(BX_NO_REGISTER, BX_SRC_RM); const Bit8u OP_Mt = BX_FORM_SRC(BX_FPU_REG, BX_SRC_RM); const Bit8u OP_Mdq = BX_FORM_SRC(BX_VMM_REG, BX_SRC_RM); const Bit8u OP_Mb = OP_Eb; const Bit8u OP_Mw = OP_Ew; const Bit8u OP_Md = OP_Ed; const Bit8u OP_Mq = OP_Eq; const Bit8u OP_Pq = BX_FORM_SRC(BX_MMX_REG, BX_SRC_NNN); const Bit8u OP_Qq = BX_FORM_SRC(BX_MMX_REG, BX_SRC_RM); const Bit8u OP_Qd = BX_FORM_SRC(BX_MMX_REG, BX_SRC_RM); const Bit8u OP_Vdq = BX_FORM_SRC(BX_VMM_REG, BX_SRC_NNN); const Bit8u OP_Vps = BX_FORM_SRC(BX_VMM_REG, BX_SRC_NNN); const Bit8u OP_Vpd = BX_FORM_SRC(BX_VMM_REG, BX_SRC_NNN); const Bit8u OP_Vss = BX_FORM_SRC(BX_VMM_REG, BX_SRC_NNN); const Bit8u OP_Vsd = BX_FORM_SRC(BX_VMM_REG, BX_SRC_NNN); const Bit8u OP_Vq = BX_FORM_SRC(BX_VMM_REG, BX_SRC_NNN); const Bit8u OP_Vd = BX_FORM_SRC(BX_VMM_REG, BX_SRC_NNN); const Bit8u OP_Wq = BX_FORM_SRC(BX_VMM_REG, BX_SRC_RM); const Bit8u OP_Wd = BX_FORM_SRC(BX_VMM_REG, BX_SRC_RM); const Bit8u OP_Ww = BX_FORM_SRC(BX_VMM_REG, BX_SRC_RM); const Bit8u OP_Wb = BX_FORM_SRC(BX_VMM_REG, BX_SRC_RM); const Bit8u OP_Wdq = BX_FORM_SRC(BX_VMM_REG, BX_SRC_RM); const Bit8u OP_Wps = BX_FORM_SRC(BX_VMM_REG, BX_SRC_RM); const Bit8u OP_Wpd = BX_FORM_SRC(BX_VMM_REG, BX_SRC_RM); const Bit8u OP_Wss = BX_FORM_SRC(BX_VMM_REG, BX_SRC_RM); const Bit8u OP_Wsd = BX_FORM_SRC(BX_VMM_REG, BX_SRC_RM); const Bit8u OP_mVps = BX_FORM_SRC(BX_VMM_FULL_VECTOR, BX_SRC_EVEX_RM); const Bit8u OP_mVpd = BX_FORM_SRC(BX_VMM_FULL_VECTOR, BX_SRC_EVEX_RM); const Bit8u OP_mVps32 = BX_FORM_SRC(BX_VMM_SCALAR, BX_SRC_EVEX_RM); const Bit8u OP_mVpd64 = BX_FORM_SRC(BX_VMM_SCALAR, BX_SRC_EVEX_RM); const Bit8u OP_mVdq = BX_FORM_SRC(BX_VMM_FULL_VECTOR, BX_SRC_EVEX_RM); const Bit8u OP_mVss = BX_FORM_SRC(BX_VMM_SCALAR, BX_SRC_EVEX_RM); const Bit8u OP_mVsd = BX_FORM_SRC(BX_VMM_SCALAR, BX_SRC_EVEX_RM); const Bit8u OP_mVdq8 = BX_FORM_SRC(BX_VMM_SCALAR_BYTE, BX_SRC_EVEX_RM); const Bit8u OP_mVdq16 = BX_FORM_SRC(BX_VMM_SCALAR_WORD, BX_SRC_EVEX_RM); const Bit8u OP_mVdq32 = BX_FORM_SRC(BX_VMM_SCALAR, BX_SRC_EVEX_RM); const Bit8u OP_mVdq64 = BX_FORM_SRC(BX_VMM_SCALAR, BX_SRC_EVEX_RM); const Bit8u OP_mVHV = BX_FORM_SRC(BX_VMM_HALF_VECTOR, BX_SRC_EVEX_RM); const Bit8u OP_mVQV = BX_FORM_SRC(BX_VMM_QUARTER_VECTOR, BX_SRC_EVEX_RM); const Bit8u OP_mVOV = BX_FORM_SRC(BX_VMM_OCT_VECTOR, BX_SRC_EVEX_RM); const Bit8u OP_mVdq128 = BX_FORM_SRC(BX_VMM_VEC128, BX_SRC_EVEX_RM); const Bit8u OP_mVdq256 = BX_FORM_SRC(BX_VMM_VEC256, BX_SRC_EVEX_RM); const Bit8u OP_VSib = BX_FORM_SRC(BX_VMM_SCALAR, BX_SRC_VSIB); const Bit8u OP_Hdq = BX_FORM_SRC(BX_VMM_REG, BX_SRC_VVV); const Bit8u OP_Hps = BX_FORM_SRC(BX_VMM_REG, BX_SRC_VVV); const Bit8u OP_Hpd = BX_FORM_SRC(BX_VMM_REG, BX_SRC_VVV); const Bit8u OP_Hss = BX_FORM_SRC(BX_VMM_REG, BX_SRC_VVV); const Bit8u OP_Hsd = BX_FORM_SRC(BX_VMM_REG, BX_SRC_VVV); const Bit8u OP_Bd = BX_FORM_SRC(BX_GPR32, BX_SRC_VVV); const Bit8u OP_Bq = BX_FORM_SRC(BX_GPR64, BX_SRC_VVV); const Bit8u OP_VIb = BX_FORM_SRC(BX_VMM_REG, BX_SRC_VIB); const Bit8u OP_Cd = BX_FORM_SRC(BX_CREG, BX_SRC_NNN); const Bit8u OP_Cq = BX_FORM_SRC(BX_CREG, BX_SRC_NNN); const Bit8u OP_Dd = BX_FORM_SRC(BX_DREG, BX_SRC_NNN); const Bit8u OP_Dq = BX_FORM_SRC(BX_DREG, BX_SRC_NNN); const Bit8u OP_Sw = BX_FORM_SRC(BX_SEGREG, BX_SRC_NNN); const Bit8u OP_Od = BX_FORM_SRC(BX_DIRECT_MEMREF32, BX_SRC_IMM); const Bit8u OP_Oq = BX_FORM_SRC(BX_DIRECT_MEMREF64, BX_SRC_IMM); const Bit8u OP_Ap = BX_FORM_SRC(BX_DIRECT_PTR, BX_SRC_IMM); const Bit8u OP_KGb = BX_FORM_SRC(BX_KMASK_REG, BX_SRC_NNN); const Bit8u OP_KEb = BX_FORM_SRC(BX_KMASK_REG, BX_SRC_RM); const Bit8u OP_KHb = BX_FORM_SRC(BX_KMASK_REG, BX_SRC_VVV); const Bit8u OP_KGw = BX_FORM_SRC(BX_KMASK_REG, BX_SRC_NNN); const Bit8u OP_KEw = BX_FORM_SRC(BX_KMASK_REG, BX_SRC_RM); const Bit8u OP_KHw = BX_FORM_SRC(BX_KMASK_REG, BX_SRC_VVV); const Bit8u OP_KGd = BX_FORM_SRC(BX_KMASK_REG, BX_SRC_NNN); const Bit8u OP_KEd = BX_FORM_SRC(BX_KMASK_REG, BX_SRC_RM); const Bit8u OP_KHd = BX_FORM_SRC(BX_KMASK_REG, BX_SRC_VVV); const Bit8u OP_KGq = BX_FORM_SRC(BX_KMASK_REG, BX_SRC_NNN); const Bit8u OP_KEq = BX_FORM_SRC(BX_KMASK_REG, BX_SRC_RM); const Bit8u OP_KHq = BX_FORM_SRC(BX_KMASK_REG, BX_SRC_VVV); const Bit8u OP_ST0 = BX_FORM_SRC(BX_FPU_REG, BX_SRC_EAX); const Bit8u OP_STi = BX_FORM_SRC(BX_FPU_REG, BX_SRC_RM); const Bit8u OP_Xb = BX_FORM_SRC(BX_RSIREF_B, BX_SRC_IMPLICIT); const Bit8u OP_Xw = BX_FORM_SRC(BX_RSIREF_W, BX_SRC_IMPLICIT); const Bit8u OP_Xd = BX_FORM_SRC(BX_RSIREF_D, BX_SRC_IMPLICIT); const Bit8u OP_Xq = BX_FORM_SRC(BX_RSIREF_Q, BX_SRC_IMPLICIT); const Bit8u OP_Yb = BX_FORM_SRC(BX_RDIREF_B, BX_SRC_IMPLICIT); const Bit8u OP_Yw = BX_FORM_SRC(BX_RDIREF_W, BX_SRC_IMPLICIT); const Bit8u OP_Yd = BX_FORM_SRC(BX_RDIREF_D, BX_SRC_IMPLICIT); const Bit8u OP_Yq = BX_FORM_SRC(BX_RDIREF_Q, BX_SRC_IMPLICIT); struct bx_modrm { unsigned modrm, mod, nnn, rm; }; // // Common FetchDecode Opcode Tables // #include "fetchdecode_x87.h" /* ************************************************************************ */ /* Opcode Groups */ static const BxExtOpcodeInfo_t BxOpcodeGroupSSE_ERR[3] = { /* 66 */ { 0, BX_IA_ERROR }, /* F3 */ { 0, BX_IA_ERROR }, /* F2 */ { 0, BX_IA_ERROR } }; /* ******* */ /* Group 9 */ /* ******* */ static const BxExtOpcodeInfo_t BxOpcodeGroupSSE_RDPID[3] = { /* 66 */ { 0, BX_IA_ERROR }, /* F3 */ { 0, BX_IA_RDPID_Ed }, /* F2 */ { 0, BX_IA_ERROR } }; static const BxExtOpcodeInfo_t BxOpcodeGroupSSE_G9VMX6[3] = { /* 66 */ { 0, BX_IA_VMCLEAR_Mq }, /* F3 */ { 0, BX_IA_VMXON_Mq }, /* F2 */ { 0, BX_IA_ERROR } }; static const BxExtOpcodeInfo_t BxOpcodeInfoG9w[8*2] = { /* /r form */ /* 0 */ { 0, BX_IA_ERROR }, /* 1 */ { 0, BX_IA_ERROR }, /* 2 */ { 0, BX_IA_ERROR }, /* 3 */ { 0, BX_IA_ERROR }, /* 4 */ { 0, BX_IA_ERROR }, /* 5 */ { 0, BX_IA_ERROR }, /* 6 */ { BxPrefixSSEF2F3, BX_IA_RDRAND_Ew, BxOpcodeGroupSSE_ERR }, /* 7 */ { BxPrefixSSEF2F3, BX_IA_RDSEED_Ew, BxOpcodeGroupSSE_RDPID }, /* /m form */ /* 0 */ { 0, BX_IA_ERROR }, /* 1 */ { 0, BX_IA_CMPXCHG8B }, /* 2 */ { 0, BX_IA_ERROR }, /* 3 */ { BxPrefixSSE, BX_IA_XRSTORS, BxOpcodeGroupSSE_ERR }, /* 4 */ { BxPrefixSSE, BX_IA_XSAVEC, BxOpcodeGroupSSE_ERR }, /* 5 */ { BxPrefixSSE, BX_IA_XSAVES, BxOpcodeGroupSSE_ERR }, /* 6 */ { BxPrefixSSE, BX_IA_VMPTRLD_Mq, BxOpcodeGroupSSE_G9VMX6 }, /* 7 */ { BxPrefixSSE, BX_IA_VMPTRST_Mq, BxOpcodeGroupSSE_ERR } }; static const BxExtOpcodeInfo_t BxOpcodeInfoG9d[8*2] = { /* /r form */ /* 0 */ { 0, BX_IA_ERROR }, /* 1 */ { 0, BX_IA_ERROR }, /* 2 */ { 0, BX_IA_ERROR }, /* 3 */ { 0, BX_IA_ERROR }, /* 4 */ { 0, BX_IA_ERROR }, /* 5 */ { 0, BX_IA_ERROR }, /* 6 */ { BxPrefixSSEF2F3, BX_IA_RDRAND_Ed, BxOpcodeGroupSSE_ERR }, /* 7 */ { BxPrefixSSEF2F3, BX_IA_RDSEED_Ed, BxOpcodeGroupSSE_RDPID }, /* /m form */ /* 0 */ { 0, BX_IA_ERROR }, /* 1 */ { 0, BX_IA_CMPXCHG8B }, /* 2 */ { 0, BX_IA_ERROR }, /* 3 */ { BxPrefixSSE, BX_IA_XRSTORS, BxOpcodeGroupSSE_ERR }, /* 4 */ { BxPrefixSSE, BX_IA_XSAVEC, BxOpcodeGroupSSE_ERR }, /* 5 */ { BxPrefixSSE, BX_IA_XSAVES, BxOpcodeGroupSSE_ERR }, /* 6 */ { BxPrefixSSE, BX_IA_VMPTRLD_Mq, BxOpcodeGroupSSE_G9VMX6 }, /* 7 */ { BxPrefixSSE, BX_IA_VMPTRST_Mq, BxOpcodeGroupSSE_ERR } }; #if BX_SUPPORT_X86_64 static const BxExtOpcodeInfo_t BxOpcodeInfo64G9q[8*2] = { /* /r form */ /* 0 */ { 0, BX_IA_ERROR }, /* 1 */ { 0, BX_IA_ERROR }, /* 2 */ { 0, BX_IA_ERROR }, /* 3 */ { 0, BX_IA_ERROR }, /* 4 */ { 0, BX_IA_ERROR }, /* 5 */ { 0, BX_IA_ERROR }, /* 6 */ { BxPrefixSSEF2F3, BX_IA_RDRAND_Eq, BxOpcodeGroupSSE_ERR }, /* 7 */ { BxPrefixSSEF2F3, BX_IA_RDSEED_Eq, BxOpcodeGroupSSE_RDPID }, /* /m form */ /* 0 */ { 0, BX_IA_ERROR }, /* 1 */ { 0, BX_IA_CMPXCHG16B }, /* 2 */ { 0, BX_IA_ERROR }, /* 3 */ { BxPrefixSSE, BX_IA_XRSTORS, BxOpcodeGroupSSE_ERR }, /* 4 */ { BxPrefixSSE, BX_IA_XSAVEC, BxOpcodeGroupSSE_ERR }, /* 5 */ { BxPrefixSSE, BX_IA_XSAVES, BxOpcodeGroupSSE_ERR }, /* 6 */ { BxPrefixSSE, BX_IA_VMPTRLD_Mq, BxOpcodeGroupSSE_G9VMX6 }, /* 7 */ { BxPrefixSSE, BX_IA_VMPTRST_Mq, BxOpcodeGroupSSE_ERR } }; #endif #if BX_SUPPORT_AVX #include "fetchdecode_avx.h" #include "fetchdecode_xop.h" #endif #if BX_SUPPORT_EVEX #include "fetchdecode_evex.h" #endif #endif // BX_COMMON_FETCHDECODE_TABLES_H