///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2005-2021 The Bochs Project // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA #ifndef BX_HDIMAGE_H #define BX_HDIMAGE_H // required for access() checks #ifndef F_OK #define F_OK 0 #endif // hdimage capabilities #define HDIMAGE_READONLY 1 #define HDIMAGE_HAS_GEOMETRY 2 #define HDIMAGE_AUTO_GEOMETRY 4 // hdimage format check return values #define HDIMAGE_FORMAT_OK 0 #define HDIMAGE_SIZE_ERROR -1 #define HDIMAGE_READ_ERROR -2 #define HDIMAGE_NO_SIGNATURE -3 #define HDIMAGE_TYPE_ERROR -4 #define HDIMAGE_VERSION_ERROR -5 // SPARSE IMAGES HEADER #define SPARSE_HEADER_MAGIC (0x02468ace) #define SPARSE_HEADER_VERSION 2 #define SPARSE_HEADER_V1 1 #define SPARSE_HEADER_SIZE (256) // Plenty of room for later #define SPARSE_PAGE_NOT_ALLOCATED (0xffffffff) typedef struct { Bit32u magic; Bit32u version; Bit32u pagesize; Bit32u numpages; Bit64u disk; Bit32u padding[58]; } sparse_header_t; #define STANDARD_HEADER_MAGIC "Bochs Virtual HD Image" #define STANDARD_HEADER_V1 (0x00010000) #define STANDARD_HEADER_VERSION (0x00020000) #define STANDARD_HEADER_SIZE (512) // WARNING : headers are kept in x86 (little) endianness typedef struct { Bit8u magic[32]; Bit8u type[16]; Bit8u subtype[16]; Bit32u version; Bit32u header; } standard_header_t; #define REDOLOG_TYPE "Redolog" #define REDOLOG_SUBTYPE_UNDOABLE "Undoable" #define REDOLOG_SUBTYPE_VOLATILE "Volatile" #define REDOLOG_SUBTYPE_GROWING "Growing" #define REDOLOG_PAGE_NOT_ALLOCATED (0xffffffff) #define UNDOABLE_REDOLOG_EXTENSION ".redolog" #define UNDOABLE_REDOLOG_EXTENSION_LENGTH (strlen(UNDOABLE_REDOLOG_EXTENSION)) #define VOLATILE_REDOLOG_EXTENSION ".XXXXXX" #define VOLATILE_REDOLOG_EXTENSION_LENGTH (strlen(VOLATILE_REDOLOG_EXTENSION)) typedef struct { // the fields in the header are kept in little endian Bit32u catalog; // #entries in the catalog Bit32u bitmap; // bitmap size in bytes Bit32u extent; // extent size in bytes Bit32u timestamp; // modification time in FAT format (subtype 'undoable' only) Bit64u disk; // disk size in bytes } redolog_specific_header_t; typedef struct { // the fields in the header are kept in little endian Bit32u catalog; // #entries in the catalog Bit32u bitmap; // bitmap size in bytes Bit32u extent; // extent size in bytes Bit64u disk; // disk size in bytes } redolog_specific_header_v1_t; typedef struct { standard_header_t standard; redolog_specific_header_t specific; Bit8u padding[STANDARD_HEADER_SIZE - (sizeof (standard_header_t) + sizeof (redolog_specific_header_t))]; } redolog_header_t; typedef struct { standard_header_t standard; redolog_specific_header_v1_t specific; Bit8u padding[STANDARD_HEADER_SIZE - (sizeof (standard_header_t) + sizeof (redolog_specific_header_v1_t))]; } redolog_header_v1_t; // htod : convert host to disk (little) endianness // dtoh : convert disk (little) to host endianness #if defined (BX_LITTLE_ENDIAN) #define htod16(val) (val) #define dtoh16(val) (val) #define htod32(val) (val) #define dtoh32(val) (val) #define htod64(val) (val) #define dtoh64(val) (val) #else #define htod16(val) ((((val)&0xff00)>>8) | (((val)&0xff)<<8)) #define dtoh16(val) htod16(val) #define htod32(val) bx_bswap32(val) #define dtoh32(val) htod32(val) #define htod64(val) bx_bswap64(val) #define dtoh64(val) htod64(val) #endif class device_image_t; class redolog_t; #ifdef BXIMAGE int bx_create_image_file(const char *filename); #endif BOCHSAPI_MSVCONLY int bx_read_image(int fd, Bit64s offset, void *buf, int count); BOCHSAPI_MSVCONLY int bx_write_image(int fd, Bit64s offset, void *buf, int count); BOCHSAPI_MSVCONLY int bx_close_image(int fd, const char *pathname); #ifndef WIN32 int hdimage_open_file(const char *pathname, int flags, Bit64u *fsize, time_t *mtime); #else BOCHSAPI_MSVCONLY int hdimage_open_file(const char *pathname, int flags, Bit64u *fsize, FILETIME *mtime); #endif bool hdimage_detect_image_mode(const char *pathname, const char **image_mode); BOCHSAPI_MSVCONLY bool hdimage_backup_file(int fd, const char *backup_fname); BOCHSAPI_MSVCONLY bool hdimage_copy_file(const char *src, const char *dst); bool coherency_check(device_image_t *ro_disk, redolog_t *redolog); #ifndef WIN32 Bit16u fat_datetime(time_t time, int return_time); #else Bit16u BOCHSAPI_MSVCONLY fat_datetime(FILETIME time, int return_time); #endif // base class class BOCHSAPI_MSVCONLY device_image_t { public: // Default constructor device_image_t(); virtual ~device_image_t() {} // Open a image. Returns non-negative if successful. virtual int open(const char* pathname); // Open an image with specific flags. Returns non-negative if successful. virtual int open(const char* pathname, int flags) = 0; // Close the image. virtual void close() = 0; // Position ourselves. Return the resulting offset from the // beginning of the file. virtual Bit64s lseek(Bit64s offset, int whence) = 0; // Read count bytes to the buffer buf. Return the number of // bytes read (count). virtual ssize_t read(void* buf, size_t count) = 0; // Write count bytes from buf. Return the number of bytes // written (count). virtual ssize_t write(const void* buf, size_t count) = 0; // Get image capabilities virtual Bit32u get_capabilities(); // Get modification time in FAT format virtual Bit32u get_timestamp(); // Check image format static int check_format(int fd, Bit64u imgsize) {return HDIMAGE_NO_SIGNATURE;} #ifdef BXIMAGE // Create new image file virtual int create_image(const char *pathname, Bit64u size) {return 0;} #else // Save/restore support virtual void register_state(bx_list_c *parent); virtual bool save_state(const char *backup_fname) {return 0;} virtual void restore_state(const char *backup_fname) {} #endif unsigned cylinders; unsigned heads; unsigned spt; unsigned sect_size; Bit64u hd_size; protected: #ifndef WIN32 time_t mtime; #else FILETIME mtime; #endif }; // FLAT MODE class flat_image_t : public device_image_t { public: // Open an image with specific flags. Returns non-negative if successful. int open(const char* pathname, int flags); // Close the image. void close(); // Position ourselves. Return the resulting offset from the // beginning of the file. Bit64s lseek(Bit64s offset, int whence); // Read count bytes to the buffer buf. Return the number of // bytes read (count). ssize_t read(void* buf, size_t count); // Write count bytes from buf. Return the number of bytes // written (count). ssize_t write(const void* buf, size_t count); // Check image format static int check_format(int fd, Bit64u imgsize); #ifndef BXIMAGE // Save/restore support bool save_state(const char *backup_fname); void restore_state(const char *backup_fname); #endif private: int fd; const char *pathname; }; // CONCAT MODE class concat_image_t : public device_image_t { public: // Default constructor concat_image_t(); // Open an image with specific flags. Returns non-negative if successful. int open(const char* pathname, int flags); // Close the image. void close(); // Position ourselves. Return the resulting offset from the // beginning of the file. Bit64s lseek(Bit64s offset, int whence); // Read count bytes to the buffer buf. Return the number of // bytes read (count). ssize_t read(void* buf, size_t count); // Write count bytes from buf. Return the number of bytes // written (count). ssize_t write(const void* buf, size_t count); #ifndef BXIMAGE // Save/restore support bool save_state(const char *backup_fname); void restore_state(const char *backup_fname); #endif private: #define BX_CONCAT_MAX_IMAGES 8 int fd_table[BX_CONCAT_MAX_IMAGES]; Bit64u start_offset_table[BX_CONCAT_MAX_IMAGES]; Bit64u length_table[BX_CONCAT_MAX_IMAGES]; void increment_string(char *str); int maxfd; // number of entries in tables that are valid // notice if anyone does sequential read or write without seek in between. // This can be supported pretty easily, but needs additional checks. // 0=something other than seek was last operation // 1=seek was last operation //int seek_was_last_op; // the following variables tell which partial image file to use for // the next read and write. int index; // index into table int curr_fd; // fd to use for reads and writes Bit64u curr_min, curr_max; // byte offset boundary of this image Bit64u total_offset; // current byte offset const char *pathname0; }; // SPARSE MODE class sparse_image_t : public device_image_t { // Format of a sparse file: // 256 byte header, containing details such as page size and number of pages // Page indirection table, mapping virtual pages to physical pages within file // Physical pages till end of file public: // Default constructor sparse_image_t(); // Open an image with specific flags. Returns non-negative if successful. int open(const char* pathname, int flags); // Close the image. void close(); // Position ourselves. Return the resulting offset from the // beginning of the file. Bit64s lseek(Bit64s offset, int whence); // Read count bytes to the buffer buf. Return the number of // bytes read (count). ssize_t read(void* buf, size_t count); // Write count bytes from buf. Return the number of bytes // written (count). ssize_t write(const void* buf, size_t count); // Check image format static int check_format(int fd, Bit64u imgsize); #ifdef BXIMAGE // Create new image file int create_image(const char *pathname, Bit64u size); #else // Save/restore support bool save_state(const char *backup_fname); void restore_state(const char *backup_fname); #endif private: int fd; #ifdef _POSIX_MAPPED_FILES void * mmap_header; size_t mmap_length; size_t system_pagesize_mask; #endif Bit32u *pagetable; // Header is written to disk in little-endian (x86) format // Thus needs to be converted on big-endian systems before read // The pagetable is also kept little endian sparse_header_t header; Bit32u pagesize; int pagesize_shift; Bit32u pagesize_mask; Bit64s data_start; Bit64u underlying_filesize; char *pathname; //Bit64s position; Bit32u position_virtual_page; Bit32u position_physical_page; Bit32u position_page_offset; Bit64s underlying_current_filepos; Bit64s total_size; void panic(const char * message); Bit64s get_physical_offset(); void set_virtual_page(Bit32u new_virtual_page); int read_header(); ssize_t read_page_fragment(Bit32u read_virtual_page, Bit32u read_page_offset, size_t read_size, void * buf); sparse_image_t *parent_image; }; #ifdef WIN32 class dll_image_t : public device_image_t { public: dll_image_t(); // Open an image with specific flags. Returns non-negative if successful. int open(const char* pathname, int flags); // Close the image. void close(); // Position ourselves. Return the resulting offset from the // beginning of the file. Bit64s lseek(Bit64s offset, int whence); // Read count bytes to the buffer buf. Return the number of // bytes read (count). ssize_t read(void* buf, size_t count); // Write count bytes from buf. Return the number of bytes // written (count). ssize_t write(const void* buf, size_t count); private: int vunit; Bit64s vblk; }; #endif // REDOLOG class class BOCHSAPI_MSVCONLY redolog_t { public: redolog_t(); int make_header(const char* type, Bit64u size); int create(const char* filename, const char* type, Bit64u size); int create(int filedes, const char* type, Bit64u size); int open(const char* filename, const char* type); int open(const char* filename, const char* type, int flags); void close(); Bit64u get_size(); Bit32u get_timestamp(); bool set_timestamp(Bit32u timestamp); Bit64s lseek(Bit64s offset, int whence); ssize_t read(void* buf, size_t count); ssize_t write(const void* buf, size_t count); static int check_format(int fd, const char *subtype); #ifdef BXIMAGE int commit(device_image_t *base_image); #else bool save_state(const char *backup_fname); #endif private: void print_header(); char *pathname; int fd; redolog_header_t header; // Header is kept in x86 (little) endianness Bit32u *catalog; Bit8u *bitmap; bool bitmap_update; Bit32u extent_index; Bit32u extent_offset; Bit32u extent_next; Bit32u bitmap_blocks; Bit32u extent_blocks; Bit64s imagepos; }; // GROWING MODE class growing_image_t : public device_image_t { public: // Contructor growing_image_t(); virtual ~growing_image_t(); // Open an image with specific flags. Returns non-negative if successful. int open(const char* pathname, int flags); // Close the image. void close(); // Position ourselves. Return the resulting offset from the // beginning of the file. Bit64s lseek(Bit64s offset, int whence); // Read count bytes to the buffer buf. Return the number of // bytes read (count). ssize_t read(void* buf, size_t count); // Write count bytes from buf. Return the number of bytes // written (count). ssize_t write(const void* buf, size_t count); // Get modification time in FAT format virtual Bit32u get_timestamp(); // Check image format static int check_format(int fd, Bit64u imgsize); #ifdef BXIMAGE // Create new image file int create_image(const char *pathname, Bit64u size); #else // Save/restore support bool save_state(const char *backup_fname); void restore_state(const char *backup_fname); #endif private: redolog_t *redolog; const char *pathname; }; // UNDOABLE MODE class undoable_image_t : public device_image_t { public: // Contructor undoable_image_t(const char* redolog_name); virtual ~undoable_image_t(); // Open an image with specific flags. Returns non-negative if successful. int open(const char* pathname, int flags); // Close the image. void close(); // Position ourselves. Return the resulting offset from the // beginning of the file. Bit64s lseek(Bit64s offset, int whence); // Read count bytes to the buffer buf. Return the number of // bytes read (count). ssize_t read(void* buf, size_t count); // Write count bytes from buf. Return the number of bytes // written (count). ssize_t write(const void* buf, size_t count); // Get image capabilities virtual Bit32u get_capabilities() {return caps;} #ifndef BXIMAGE // Save/restore support bool save_state(const char *backup_fname); void restore_state(const char *backup_fname); #endif private: redolog_t *redolog; // Redolog instance device_image_t *ro_disk; // Read-only base disk instance char *redolog_name; // Redolog name Bit32u caps; }; // VOLATILE MODE class volatile_image_t : public device_image_t { public: // Contructor volatile_image_t(const char* redolog_name); virtual ~volatile_image_t(); // Open an image with specific flags. Returns non-negative if successful. int open(const char* pathname, int flags); // Close the image. void close(); // Position ourselves. Return the resulting offset from the // beginning of the file. Bit64s lseek(Bit64s offset, int whence); // Read count bytes to the buffer buf. Return the number of // bytes read (count). ssize_t read(void* buf, size_t count); // Write count bytes from buf. Return the number of bytes // written (count). ssize_t write(const void* buf, size_t count); // Get image capabilities virtual Bit32u get_capabilities() {return caps;} #ifndef BXIMAGE // Save/restore support bool save_state(const char *backup_fname); void restore_state(const char *backup_fname); #endif private: redolog_t *redolog; // Redolog instance device_image_t *ro_disk; // Read-only base disk instance char *redolog_name; // Redolog name char *redolog_temp; // Redolog temporary file name Bit32u caps; }; #ifndef BXIMAGE #define DEV_hdimage_init_image(a,b,c) bx_hdimage_ctl.init_image(a,b,c) #define DEV_hdimage_init_cdrom(a) bx_hdimage_ctl.init_cdrom(a) class BOCHSAPI bx_hdimage_ctl_c : public logfunctions { public: bx_hdimage_ctl_c(); virtual ~bx_hdimage_ctl_c() {} void init(void); const char **get_mode_names(); int get_mode_id(const char *mode); void list_modules(void); void exit(void); device_image_t *init_image(const char *image_mode, Bit64u disk_size, const char *journal); cdrom_base_c *init_cdrom(const char *dev); }; BOCHSAPI extern bx_hdimage_ctl_c bx_hdimage_ctl; #endif // ifndef BXIMAGE // // The hdimage_locator class is used by device_image_t classes to register // their name. The common hdimage code uses the static 'create' method // to locate and instantiate a device_image_t class. // class BOCHSAPI_MSVCONLY hdimage_locator_c { public: static bool module_present(const char *mode); static Bit8u get_modules_count(void); static const char* get_module_name(Bit8u index); static void cleanup(void); static device_image_t *create(const char *mode, Bit64u disk_size, const char *journal); static bool detect_image_mode(int fd, Bit64u disk_size, const char **image_mode); protected: hdimage_locator_c(const char *mode); virtual ~hdimage_locator_c(); virtual device_image_t *allocate(Bit64u disk_size, const char *journal) = 0; virtual int check_format(int fd, Bit64u disk_size) {return -1;} private: static Bit8u count; static hdimage_locator_c *all; hdimage_locator_c *next; const char *mode; }; #endif