///////////////////////////////////////////////////////////////////////// // $Id: mult32.cc,v 1.25 2007-12-26 23:07:44 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR #if BX_SUPPORT_X86_64==0 #define RAX EAX #define RDX EDX #endif void BX_CPU_C::MUL_EAXEd(bxInstruction_c *i) { Bit32u op1_32, op2_32, product_32h, product_32l; Bit64u product_64; op1_32 = EAX; /* op2 is a register or memory reference */ if (i->modC0()) { op2_32 = BX_READ_32BIT_REG(i->rm()); } else { /* pointer, segment address pair */ op2_32 = read_virtual_dword(i->seg(), RMAddr(i)); } product_64 = ((Bit64u) op1_32) * ((Bit64u) op2_32); product_32l = (Bit32u) (product_64 & 0xFFFFFFFF); product_32h = (Bit32u) (product_64 >> 32); /* now write product back to destination */ RAX = product_32l; RDX = product_32h; /* set EFLAGS */ SET_FLAGS_OSZAPC_LOGIC_32(product_32l); if(product_32h != 0) { ASSERT_FLAGS_OxxxxC(); } } void BX_CPU_C::IMUL_EAXEd(bxInstruction_c *i) { Bit32s op1_32, op2_32; op1_32 = EAX; /* op2 is a register or memory reference */ if (i->modC0()) { op2_32 = BX_READ_32BIT_REG(i->rm()); } else { /* pointer, segment address pair */ op2_32 = (Bit32s) read_virtual_dword(i->seg(), RMAddr(i)); } Bit64s product_64 = ((Bit64s) op1_32) * ((Bit64s) op2_32); Bit32u product_32l = (Bit32u) (product_64 & 0xFFFFFFFF); Bit32u product_32h = (Bit32u) (product_64 >> 32); /* now write product back to destination */ RAX = product_32l; RDX = product_32h; /* set eflags: * IMUL r/m32: condition for clearing CF & OF: * EDX:EAX = sign-extend of EAX */ SET_FLAGS_OSZAPC_LOGIC_32(product_32l); if(product_64 != (Bit32s)product_64) { ASSERT_FLAGS_OxxxxC(); } } void BX_CPU_C::DIV_EAXEd(bxInstruction_c *i) { Bit32u op2_32, remainder_32, quotient_32l; Bit64u op1_64, quotient_64; op1_64 = (((Bit64u) EDX) << 32) + ((Bit64u) EAX); /* op2 is a register or memory reference */ if (i->modC0()) { op2_32 = BX_READ_32BIT_REG(i->rm()); } else { /* pointer, segment address pair */ op2_32 = read_virtual_dword(i->seg(), RMAddr(i)); } if (op2_32 == 0) { exception(BX_DE_EXCEPTION, 0, 0); } quotient_64 = op1_64 / op2_32; remainder_32 = (Bit32u) (op1_64 % op2_32); quotient_32l = (Bit32u) (quotient_64 & 0xFFFFFFFF); if (quotient_64 != quotient_32l) { exception(BX_DE_EXCEPTION, 0, 0); } /* set EFLAGS: * DIV affects the following flags: O,S,Z,A,P,C are undefined */ /* now write quotient back to destination */ RAX = quotient_32l; RDX = remainder_32; } void BX_CPU_C::IDIV_EAXEd(bxInstruction_c *i) { Bit32s op2_32, remainder_32, quotient_32l; Bit64s op1_64, quotient_64; op1_64 = (((Bit64u) EDX) << 32) | ((Bit64u) EAX); /* op2 is a register or memory reference */ if (i->modC0()) { op2_32 = BX_READ_32BIT_REG(i->rm()); } else { /* pointer, segment address pair */ op2_32 = (Bit32s) read_virtual_dword(i->seg(), RMAddr(i)); } if (op2_32 == 0) exception(BX_DE_EXCEPTION, 0, 0); /* check MIN_INT divided by -1 case */ if ((op1_64 == ((Bit64s)BX_CONST64(0x8000000000000000))) && (op2_32 == -1)) exception(BX_DE_EXCEPTION, 0, 0); quotient_64 = op1_64 / op2_32; remainder_32 = (Bit32s) (op1_64 % op2_32); quotient_32l = (Bit32s) (quotient_64 & 0xFFFFFFFF); if (quotient_64 != quotient_32l) { exception(BX_DE_EXCEPTION, 0, 0); } /* set EFLAGS: * IDIV affects the following flags: O,S,Z,A,P,C are undefined */ /* now write quotient back to destination */ RAX = quotient_32l; RDX = remainder_32; } void BX_CPU_C::IMUL_GdEdId(bxInstruction_c *i) { Bit32s op2_32, op3_32; op3_32 = i->Id(); /* op2 is a register or memory reference */ if (i->modC0()) { op2_32 = BX_READ_32BIT_REG(i->rm()); } else { /* pointer, segment address pair */ op2_32 = (Bit32s) read_virtual_dword(i->seg(), RMAddr(i)); } Bit64s product_64 = ((Bit64s) op2_32) * ((Bit64s) op3_32); Bit32u product_32 = (Bit32u)(product_64 & 0xFFFFFFFF); /* now write product back to destination */ BX_WRITE_32BIT_REGZ(i->nnn(), product_32); /* set eflags: * IMUL r32,r/m32,imm32: condition for clearing CF & OF: * result exactly fits within r32 */ SET_FLAGS_OSZAPC_LOGIC_32(product_32); if(product_64 != (Bit32s) product_64) { ASSERT_FLAGS_OxxxxC(); } } void BX_CPU_C::IMUL_GdEd(bxInstruction_c *i) { Bit32s op1_32, op2_32; /* op2 is a register or memory reference */ if (i->modC0()) { op2_32 = BX_READ_32BIT_REG(i->rm()); } else { /* pointer, segment address pair */ op2_32 = (Bit32s) read_virtual_dword(i->seg(), RMAddr(i)); } op1_32 = BX_READ_32BIT_REG(i->nnn()); Bit64s product_64 = ((Bit64s) op1_32) * ((Bit64s) op2_32); Bit32u product_32 = (Bit32u)(product_64 & 0xFFFFFFFF); /* now write product back to destination */ BX_WRITE_32BIT_REGZ(i->nnn(), product_32); /* set eflags: * IMUL r32,r/m32: condition for clearing CF & OF: * result exactly fits within r32 */ SET_FLAGS_OSZAPC_LOGIC_32(product_32); if(product_64 != (Bit32s) product_64) { ASSERT_FLAGS_OxxxxC(); } }