// Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #include "bochs.h" #if BX_PROVIDE_CPU_MEMORY Bit32u BX_MEM_C::get_memory_in_k(void) { bx_printf("(%u) get_memory_in_k() = %u\n", BX_SIM_ID, (unsigned) (BX_MEM_THIS megabytes * 1024)); return(BX_MEM_THIS megabytes * 1024); } #endif // #if BX_PROVIDE_CPU_MEMORY #if BX_PROVIDE_CPU_MEMORY // BX_MEM_C constructor BX_MEM_C::BX_MEM_C(void) { BX_MEM.vector = NULL; BX_MEM.len = 0; BX_MEM.megabytes = 0; } #endif // #if BX_PROVIDE_CPU_MEMORY #if BX_PROVIDE_CPU_MEMORY // BX_MEM_C constructor BX_MEM_C::BX_MEM_C(size_t memsize) { bx_printf("(%u) BX_MEM_C::BX_MEM_C(size_t) called\n", BX_SIM_ID); bx_printf("(%u) memsize = %u\n", BX_SIM_ID, (unsigned) memsize); vector = new Bit8u[memsize]; len = memsize; megabytes = len / (1024*1024); } #endif // #if BX_PROVIDE_CPU_MEMORY #if BX_PROVIDE_CPU_MEMORY // BX_MEM_C destructor BX_MEM_C::~BX_MEM_C(void) { if (this-> vector != NULL) { delete this->vector; } else { bx_printf("(%u) memory not freed as it wasn't allocated!\n", BX_SIM_ID); } } #endif // #if BX_PROVIDE_CPU_MEMORY #if BX_PROVIDE_CPU_MEMORY void BX_MEM_C::init_memory(int memsize) { // you can pass 0 if memory has been allocated already through // the constructor, or the desired size of memory if it hasn't if (BX_MEM_THIS vector == NULL) { // memory not already allocated, do now... bx_printf("(%u) BX_MEM_C::init_memory(int): allocating memory.\n", BX_SIM_ID); bx_printf("(%u) memsize = %u\n", BX_SIM_ID, (unsigned) memsize); BX_MEM_THIS vector = new Bit8u[memsize]; BX_MEM_THIS len = memsize; BX_MEM_THIS megabytes = memsize / (1024*1024); } // initialize all memory to 0x00 memset(BX_MEM_THIS vector, 0x00, BX_MEM_THIS len); // initialize ROM area (0xc0000 .. 0xfffff) to 0xff memset(BX_MEM_THIS vector + 0xc0000, 0xff, 0x40000); #if BX_DEBUGGER // initialize dirty pages table memset(BX_MEM.dbg_dirty_pages, 0, sizeof(BX_MEM.dbg_dirty_pages)); if (BX_MEM.megabytes > BX_MAX_DIRTY_PAGE_TABLE_MEGS) { bx_printf("Error: memory larger than dirty page table can handle\n"); bx_panic("Error: increase BX_MAX_DIRTY_PAGE_TABLE_MEGS\n"); } #endif } #endif // #if BX_PROVIDE_CPU_MEMORY #if BX_PROVIDE_CPU_MEMORY void BX_MEM_C::load_ROM(const char *path, Bit32u romaddress) { struct stat stat_buf; int fd, ret; unsigned long size, offset; // read in ROM BIOS image file fd = open(path, O_RDONLY #ifdef O_BINARY | O_BINARY #endif ); if (fd < 0) { fprintf(stderr, "load_ROM: couldn't open ROM image file '%s'.\n", path); exit(1); } ret = fstat(fd, &stat_buf); if (ret) { fprintf(stderr, "load_ROM: couldn't stat ROM image file '%s'.\n", path); exit(1); } size = stat_buf.st_size; if ( (romaddress + size) > BX_MEM_THIS len ) { fprintf(stderr, "load_ROM: ROM address range > physical memsize!\n"); exit(1); } offset = 0; while (size > 0) { #if BX_PCI_SUPPORT if (bx_options.i440FXSupport) ret = read(fd, (bx_ptr_t) &bx_pci.s.i440fx.shadow[romaddress - 0xC0000 + offset], size); else ret = read(fd, (bx_ptr_t) &BX_MEM_THIS vector[romaddress + offset], size); #else ret = read(fd, (bx_ptr_t) &BX_MEM_THIS vector[romaddress + offset], size); #endif if (ret <= 0) { fprintf(stderr, "load_ROM: read failed on ROM BIOS image\n"); exit(1); } size -= ret; offset += ret; } close(fd); #if BX_PCI_SUPPORT if (bx_options.i440FXSupport) bx_printf("(%u) load_ROM: ROM BIOS in i440FX RAM '%s', size=%u read into memory at %08x\n", BX_SIM_ID, path, (unsigned) stat_buf.st_size, (unsigned) romaddress); else bx_printf("(%u) load_ROM: ROM BIOS '%s', size=%u read into memory at %08x\n", BX_SIM_ID, path, (unsigned) stat_buf.st_size, (unsigned) romaddress); #else // #if BX_PCI_SUPPORT bx_printf("(%u) load_ROM: ROM BIOS '%s', size=%u read into memory at %08x\n", BX_SIM_ID, path, (unsigned) stat_buf.st_size, (unsigned) romaddress); #endif // #if BX_PCI_SUPPORT } #endif // #if BX_PROVIDE_CPU_MEMORY #if ( BX_DEBUGGER || BX_DISASM ) Boolean BX_MEM_C::dbg_fetch_mem(Bit32u addr, unsigned len, Bit8u *buf) { if ( (addr + len) > BX_MEM.len ) { return(0); // error, beyond limits of memory } for (; len>0; len--) { #if BX_SUPPORT_VGA if ( (addr & 0xfffe0000) == 0x000a0000 ) { *buf = BX_VGA_MEM_READ(addr); } else { #endif #if BX_PCI_SUPPORT == 0 *buf = BX_MEM.vector[addr]; #else if ( bx_options.i440FXSupport && ((addr >= 0x000C0000) && (addr <= 0x000FFFFF)) ) { switch (bx_pci.rd_memType (addr)) { case 0x0: // Fetch from ShadowRAM *buf = BX_MEM.vector[addr]; // bx_printf ("Fetching from ShadowRAM %08x, len %u !\n", (unsigned)addr, (unsigned)len); break; case 0x1: // Fetch from ROM *buf = bx_pci.s.i440fx.shadow[(addr - 0xC0000)]; // bx_printf ("Fetching from ROM %08x, Data %02x \n", (unsigned)addr, *buf); break; default: bx_panic("dbg_fetch_mem: default case\n"); } } else *buf = BX_MEM.vector[addr]; #endif // #if BX_PCI_SUPPORT == 0 } buf++; addr++; } return(1); } #endif #if BX_DEBUGGER Boolean BX_MEM_C::dbg_set_mem(Bit32u addr, unsigned len, Bit8u *buf) { if ( (addr + len) > BX_MEM.len ) { return(0); // error, beyond limits of memory } for (; len>0; len--) { #if BX_SUPPORT_VGA if ( (addr & 0xfffe0000) == 0x000a0000 ) { BX_VGA_MEM_WRITE(addr, *buf); } else #endif BX_MEM.vector[addr] = *buf; buf++; addr++; } return(1); } #endif Boolean BX_MEM_C::dbg_crc32(unsigned long (*f)(unsigned char *buf, int len), Bit32u addr1, Bit32u addr2, Bit32u *crc) { unsigned len; *crc = 0; if (addr1 > addr2) return(0); if (addr2 >= BX_MEM.len) { return(0); // error, specified address past last phy mem addr } len = 1 + addr2 - addr1; *crc = f(BX_MEM.vector + addr1, len); return(1); }