///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001-2019 The Bochs Project // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR #if BX_CPU_LEVEL >= 3 BX_CPP_INLINE void BX_CPP_AttrRegparmN(1) BX_CPU_C::branch_near32(Bit32u new_EIP) { BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64); // check always, not only in protected mode if (new_EIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) { BX_ERROR(("branch_near32: offset outside of CS limits")); exception(BX_GP_EXCEPTION, 0); } EIP = new_EIP; #if BX_SUPPORT_HANDLERS_CHAINING_SPEEDUPS == 0 // assert magic async_event to stop trace execution BX_CPU_THIS_PTR async_event |= BX_ASYNC_EVENT_STOP_TRACE; #endif } void BX_CPU_C::call_far32(bxInstruction_c *i, Bit16u cs_raw, Bit32u disp32) { BX_INSTR_FAR_BRANCH_ORIGIN(); invalidate_prefetch_q(); #if BX_DEBUGGER BX_CPU_THIS_PTR show_flag |= Flag_call; #endif RSP_SPECULATIVE; if (protected_mode()) { call_protected(i, cs_raw, disp32); } else { // CS.LIMIT can't change when in real/v8086 mode if (disp32 > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) { BX_ERROR(("%s: instruction pointer not within code segment limits", i->getIaOpcodeNameShort())); exception(BX_GP_EXCEPTION, 0); } push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value); push_32(EIP); load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], cs_raw); EIP = disp32; } RSP_COMMIT; BX_INSTR_FAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_CALL, FAR_BRANCH_PREV_CS, FAR_BRANCH_PREV_RIP, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, EIP); } void BX_CPU_C::jmp_far32(bxInstruction_c *i, Bit16u cs_raw, Bit32u disp32) { BX_INSTR_FAR_BRANCH_ORIGIN(); invalidate_prefetch_q(); // jump_protected doesn't affect ESP so it is ESP safe if (protected_mode()) { jump_protected(i, cs_raw, disp32); } else { // CS.LIMIT can't change when in real/v8086 mode if (disp32 > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) { BX_ERROR(("%s: instruction pointer not within code segment limits", i->getIaOpcodeNameShort())); exception(BX_GP_EXCEPTION, 0); } load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], cs_raw); EIP = disp32; } BX_INSTR_FAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_JMP, FAR_BRANCH_PREV_CS, FAR_BRANCH_PREV_RIP, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, EIP); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::RETnear32_Iw(bxInstruction_c *i) { BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64); #if BX_DEBUGGER BX_CPU_THIS_PTR show_flag |= Flag_ret; #endif RSP_SPECULATIVE; Bit32u return_EIP = pop_32(); #if BX_SUPPORT_CET if (ShadowStackEnabled(CPL)) { Bit32u shadow_EIP = shadow_stack_pop_32(); if (shadow_EIP != return_EIP) exception(BX_CP_EXCEPTION, BX_CP_NEAR_RET); } #endif if (return_EIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) { BX_ERROR(("%s: offset outside of CS limits", i->getIaOpcodeNameShort())); exception(BX_GP_EXCEPTION, 0); } EIP = return_EIP; Bit16u imm16 = i->Iw(); if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) ESP += imm16; else SP += imm16; RSP_COMMIT; BX_INSTR_UCNEAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_RET, PREV_RIP, EIP); BX_NEXT_TRACE(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::RETfar32_Iw(bxInstruction_c *i) { invalidate_prefetch_q(); BX_INSTR_FAR_BRANCH_ORIGIN(); #if BX_DEBUGGER BX_CPU_THIS_PTR show_flag |= Flag_ret; #endif Bit16u imm16 = i->Iw(); RSP_SPECULATIVE; if (protected_mode()) { return_protected(i, imm16); } else { Bit32u eip = pop_32(); Bit16u cs_raw = (Bit16u) pop_32(); /* 32bit pop, MSW discarded */ // CS.LIMIT can't change when in real/v8086 mode if (eip > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) { BX_ERROR(("%s: instruction pointer not within code segment limits", i->getIaOpcodeNameShort())); exception(BX_GP_EXCEPTION, 0); } load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], cs_raw); EIP = eip; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) ESP += imm16; else SP += imm16; } RSP_COMMIT; BX_INSTR_FAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_RET, FAR_BRANCH_PREV_CS, FAR_BRANCH_PREV_RIP, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, RIP); BX_NEXT_TRACE(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CALL_Jd(bxInstruction_c *i) { #if BX_DEBUGGER BX_CPU_THIS_PTR show_flag |= Flag_call; #endif RSP_SPECULATIVE; /* push 32 bit EA of next instruction */ push_32(EIP); #if BX_SUPPORT_CET if (ShadowStackEnabled(CPL) && i->Id()) shadow_stack_push_32(EIP); #endif Bit32u new_EIP = EIP + i->Id(); branch_near32(new_EIP); RSP_COMMIT; BX_INSTR_UCNEAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_CALL, PREV_RIP, EIP); BX_LINK_TRACE(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CALL32_Ap(bxInstruction_c *i) { BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64); Bit16u cs_raw = i->Iw2(); Bit32u disp32 = i->Id(); call_far32(i, cs_raw, disp32); BX_NEXT_TRACE(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CALL_EdR(bxInstruction_c *i) { #if BX_DEBUGGER BX_CPU_THIS_PTR show_flag |= Flag_call; #endif Bit32u new_EIP = BX_READ_32BIT_REG(i->dst()); RSP_SPECULATIVE; /* push 32 bit EA of next instruction */ push_32(EIP); #if BX_SUPPORT_CET if (ShadowStackEnabled(CPL)) shadow_stack_push_32(EIP); #endif branch_near32(new_EIP); RSP_COMMIT; #if BX_SUPPORT_CET track_indirect_if_not_suppressed(i, CPL); #endif BX_INSTR_UCNEAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_CALL_INDIRECT, PREV_RIP, EIP); BX_NEXT_TRACE(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CALL32_Ep(bxInstruction_c *i) { bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); Bit32u op1_32 = read_virtual_dword(i->seg(), eaddr); Bit16u cs_raw = read_virtual_word (i->seg(), (eaddr+4) & i->asize_mask()); call_far32(i, cs_raw, op1_32); BX_NEXT_TRACE(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JMP_Jd(bxInstruction_c *i) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_UCNEAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_JMP, PREV_RIP, new_EIP); BX_LINK_TRACE(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JO_Jd(bxInstruction_c *i) { if (get_OF()) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, PREV_RIP, new_EIP); BX_LINK_TRACE(i); } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID, PREV_RIP); BX_NEXT_INSTR(i); // trace can continue over non-taken branch } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JNO_Jd(bxInstruction_c *i) { if (! get_OF()) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, PREV_RIP, new_EIP); BX_LINK_TRACE(i); } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID, PREV_RIP); BX_NEXT_INSTR(i); // trace can continue over non-taken branch } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JB_Jd(bxInstruction_c *i) { if (get_CF()) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, PREV_RIP, new_EIP); BX_LINK_TRACE(i); } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID, PREV_RIP); BX_NEXT_INSTR(i); // trace can continue over non-taken branch } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JNB_Jd(bxInstruction_c *i) { if (! get_CF()) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, PREV_RIP, new_EIP); BX_LINK_TRACE(i); } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID, PREV_RIP); BX_NEXT_INSTR(i); // trace can continue over non-taken branch } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JZ_Jd(bxInstruction_c *i) { if (get_ZF()) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, PREV_RIP, new_EIP); BX_LINK_TRACE(i); } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID, PREV_RIP); BX_NEXT_INSTR(i); // trace can continue over non-taken branch } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JNZ_Jd(bxInstruction_c *i) { if (! get_ZF()) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, PREV_RIP, new_EIP); BX_LINK_TRACE(i); } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID, PREV_RIP); BX_NEXT_INSTR(i); // trace can continue over non-taken branch } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JBE_Jd(bxInstruction_c *i) { if (get_CF() || get_ZF()) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, PREV_RIP, new_EIP); BX_LINK_TRACE(i); } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID, PREV_RIP); BX_NEXT_INSTR(i); // trace can continue over non-taken branch } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JNBE_Jd(bxInstruction_c *i) { if (! (get_CF() || get_ZF())) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, PREV_RIP, new_EIP); BX_LINK_TRACE(i); } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID, PREV_RIP); BX_NEXT_INSTR(i); // trace can continue over non-taken branch } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JS_Jd(bxInstruction_c *i) { if (get_SF()) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, PREV_RIP, new_EIP); BX_LINK_TRACE(i); } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID, PREV_RIP); BX_NEXT_INSTR(i); // trace can continue over non-taken branch } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JNS_Jd(bxInstruction_c *i) { if (! get_SF()) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, PREV_RIP, new_EIP); BX_LINK_TRACE(i); } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID, PREV_RIP); BX_NEXT_INSTR(i); // trace can continue over non-taken branch } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JP_Jd(bxInstruction_c *i) { if (get_PF()) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, PREV_RIP, new_EIP); BX_LINK_TRACE(i); } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID, PREV_RIP); BX_NEXT_INSTR(i); // trace can continue over non-taken branch } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JNP_Jd(bxInstruction_c *i) { if (! get_PF()) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, PREV_RIP, new_EIP); BX_LINK_TRACE(i); } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID, PREV_RIP); BX_NEXT_INSTR(i); // trace can continue over non-taken branch } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JL_Jd(bxInstruction_c *i) { if (getB_SF() != getB_OF()) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, PREV_RIP, new_EIP); BX_LINK_TRACE(i); } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID, PREV_RIP); BX_NEXT_INSTR(i); // trace can continue over non-taken branch } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JNL_Jd(bxInstruction_c *i) { if (getB_SF() == getB_OF()) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, PREV_RIP, new_EIP); BX_LINK_TRACE(i); } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID, PREV_RIP); BX_NEXT_INSTR(i); // trace can continue over non-taken branch } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JLE_Jd(bxInstruction_c *i) { if (get_ZF() || (getB_SF() != getB_OF())) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, PREV_RIP, new_EIP); BX_LINK_TRACE(i); } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID, PREV_RIP); BX_NEXT_INSTR(i); // trace can continue over non-taken branch } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JNLE_Jd(bxInstruction_c *i) { if (! get_ZF() && (getB_SF() == getB_OF())) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, PREV_RIP, new_EIP); BX_LINK_TRACE(i); } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID, PREV_RIP); BX_NEXT_INSTR(i); // trace can continue over non-taken branch } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JMP_Ap(bxInstruction_c *i) { BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64); Bit32u disp32; Bit16u cs_raw; if (i->os32L()) { disp32 = i->Id(); } else { disp32 = i->Iw(); } cs_raw = i->Iw2(); jmp_far32(i, cs_raw, disp32); BX_NEXT_TRACE(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JMP_EdR(bxInstruction_c *i) { Bit32u new_EIP = BX_READ_32BIT_REG(i->dst()); branch_near32(new_EIP); BX_INSTR_UCNEAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_JMP_INDIRECT, PREV_RIP, new_EIP); #if BX_SUPPORT_CET track_indirect_if_not_suppressed(i, CPL); #endif BX_NEXT_TRACE(i); } /* Far indirect jump */ void BX_CPP_AttrRegparmN(1) BX_CPU_C::JMP32_Ep(bxInstruction_c *i) { bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); Bit32u op1_32 = read_virtual_dword(i->seg(), eaddr); Bit16u cs_raw = read_virtual_word (i->seg(), (eaddr+4) & i->asize_mask()); jmp_far32(i, cs_raw, op1_32); BX_NEXT_TRACE(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::IRET32(bxInstruction_c *i) { BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64); invalidate_prefetch_q(); BX_INSTR_FAR_BRANCH_ORIGIN(); #if BX_SUPPORT_SVM if (BX_CPU_THIS_PTR in_svm_guest) { if (SVM_INTERCEPT(SVM_INTERCEPT0_IRET)) Svm_Vmexit(SVM_VMEXIT_IRET); } #endif #if BX_SUPPORT_VMX if (BX_CPU_THIS_PTR in_vmx_guest) if (is_masked_event(PIN_VMEXIT(VMX_VM_EXEC_CTRL1_VIRTUAL_NMI) ? BX_EVENT_VMX_VIRTUAL_NMI : BX_EVENT_NMI)) BX_CPU_THIS_PTR nmi_unblocking_iret = true; if (BX_CPU_THIS_PTR in_vmx_guest && PIN_VMEXIT(VMX_VM_EXEC_CTRL1_NMI_EXITING)) { if (PIN_VMEXIT(VMX_VM_EXEC_CTRL1_VIRTUAL_NMI)) unmask_event(BX_EVENT_VMX_VIRTUAL_NMI); } else #endif unmask_event(BX_EVENT_NMI); #if BX_DEBUGGER BX_CPU_THIS_PTR show_flag |= Flag_iret; #endif RSP_SPECULATIVE; if (protected_mode()) { iret_protected(i); } else { if (v8086_mode()) { // IOPL check in stack_return_from_v86() iret32_stack_return_from_v86(i); } else { Bit32u eip = pop_32(); Bit16u cs_raw = (Bit16u) pop_32(); // #SS has higher priority Bit32u eflags32 = pop_32(); // CS.LIMIT can't change when in real/v8086 mode if (eip > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) { BX_ERROR(("%s: instruction pointer not within code segment limits", i->getIaOpcodeNameShort())); exception(BX_GP_EXCEPTION, 0); } load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], cs_raw); EIP = eip; writeEFlags(eflags32, 0x00257fd5); // VIF, VIP, VM unchanged } } RSP_COMMIT; #if BX_SUPPORT_VMX BX_CPU_THIS_PTR nmi_unblocking_iret = false; #endif BX_INSTR_FAR_BRANCH(BX_CPU_ID, BX_INSTR_IS_IRET, FAR_BRANCH_PREV_CS, FAR_BRANCH_PREV_RIP, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, EIP); BX_NEXT_TRACE(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::JECXZ_Jb(bxInstruction_c *i) { // it is impossible to get this instruction in long mode BX_ASSERT(i->as64L() == 0); Bit32u temp_ECX; if (i->as32L()) temp_ECX = ECX; else temp_ECX = CX; if (temp_ECX == 0) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, PREV_RIP, new_EIP); BX_LINK_TRACE(i); } BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID, PREV_RIP); BX_NEXT_TRACE(i); } // // There is some weirdness in LOOP instructions definition. If an exception // was generated during the instruction execution (for example #GP fault // because EIP was beyond CS segment limits) CPU state should restore the // state prior to instruction execution. // // The final point that we are not allowed to decrement ECX register before // it is known that no exceptions can happen. // void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOOPNE32_Jb(bxInstruction_c *i) { // it is impossible to get this instruction in long mode BX_ASSERT(i->as64L() == 0); if (i->as32L()) { Bit32u count = ECX; count--; if (count != 0 && (get_ZF()==0)) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, PREV_RIP, new_EIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID, PREV_RIP); } #endif ECX = count; } else { Bit16u count = CX; count--; if (count != 0 && (get_ZF()==0)) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, PREV_RIP, new_EIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID, PREV_RIP); } #endif CX = count; } BX_NEXT_TRACE(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOOPE32_Jb(bxInstruction_c *i) { // it is impossible to get this instruction in long mode BX_ASSERT(i->as64L() == 0); if (i->as32L()) { Bit32u count = ECX; count--; if (count != 0 && get_ZF()) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, PREV_RIP, new_EIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID, PREV_RIP); } #endif ECX = count; } else { Bit16u count = CX; count--; if (count != 0 && get_ZF()) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, PREV_RIP, new_EIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID, PREV_RIP); } #endif CX = count; } BX_NEXT_TRACE(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::LOOP32_Jb(bxInstruction_c *i) { // it is impossible to get this instruction in long mode BX_ASSERT(i->as64L() == 0); if (i->as32L()) { Bit32u count = ECX; count--; if (count != 0) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, PREV_RIP, new_EIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID, PREV_RIP); } #endif ECX = count; } else { Bit16u count = CX; count--; if (count != 0) { Bit32u new_EIP = EIP + (Bit32s) i->Id(); branch_near32(new_EIP); BX_INSTR_CNEAR_BRANCH_TAKEN(BX_CPU_ID, PREV_RIP, new_EIP); } #if BX_INSTRUMENTATION else { BX_INSTR_CNEAR_BRANCH_NOT_TAKEN(BX_CPU_ID, PREV_RIP); } #endif CX = count; } BX_NEXT_TRACE(i); } #endif