///////////////////////////////////////////////////////////////////////// // $Id: mult32.cc,v 1.7 2002-09-15 01:00:19 kevinlawton Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #define LOG_THIS BX_CPU_THIS_PTR #if BX_SUPPORT_X86_64==0 #define RAX EAX #define RDX EDX #endif void BX_CPU_C::MUL_EAXEd(BxInstruction_t *i) { Bit32u op1_32, op2_32, product_32h, product_32l; Bit64u product_64; Boolean temp_flag; op1_32 = EAX; /* op2 is a register or memory reference */ if (i->mod == 0xc0) { op2_32 = BX_READ_32BIT_REG(i->rm); } else { /* pointer, segment address pair */ read_virtual_dword(i->seg, i->rm_addr, &op2_32); } product_64 = ((Bit64u) op1_32) * ((Bit64u) op2_32); product_32l = (Bit32u) (product_64 & 0xFFFFFFFF); product_32h = (Bit32u) (product_64 >> 32); /* now write product back to destination */ RAX = product_32l; RDX = product_32h; /* set eflags: * MUL affects the following flags: C,O */ temp_flag = (product_32h != 0); SET_FLAGS_OxxxxC(temp_flag, temp_flag); } void BX_CPU_C::IMUL_EAXEd(BxInstruction_t *i) { Bit32s op1_32, op2_32; Bit64s product_64; Bit32u product_32h, product_32l; op1_32 = EAX; /* op2 is a register or memory reference */ if (i->mod == 0xc0) { op2_32 = BX_READ_32BIT_REG(i->rm); } else { /* pointer, segment address pair */ read_virtual_dword(i->seg, i->rm_addr, (Bit32u *) &op2_32); } product_64 = ((Bit64s) op1_32) * ((Bit64s) op2_32); product_32l = (Bit32u) (product_64 & 0xFFFFFFFF); product_32h = (Bit32u) (product_64 >> 32); /* now write product back to destination */ RAX = product_32l; RDX = product_32h; /* set eflags: * IMUL affects the following flags: C,O * IMUL r/m16: condition for clearing CF & OF: * EDX:EAX = sign-extend of EAX */ if ( (EDX==0xffffffff) && (EAX & 0x80000000) ) { SET_FLAGS_OxxxxC(0, 0); } else if ( (EDX==0x00000000) && (EAX < 0x80000000) ) { SET_FLAGS_OxxxxC(0, 0); } else { SET_FLAGS_OxxxxC(1, 1); } } void BX_CPU_C::DIV_EAXEd(BxInstruction_t *i) { Bit32u op2_32, remainder_32, quotient_32l; Bit64u op1_64, quotient_64; op1_64 = (((Bit64u) EDX) << 32) + ((Bit64u) EAX); /* op2 is a register or memory reference */ if (i->mod == 0xc0) { op2_32 = BX_READ_32BIT_REG(i->rm); } else { /* pointer, segment address pair */ read_virtual_dword(i->seg, i->rm_addr, &op2_32); } if (op2_32 == 0) { exception(BX_DE_EXCEPTION, 0, 0); } quotient_64 = op1_64 / op2_32; remainder_32 = (Bit32u) (op1_64 % op2_32); quotient_32l = (Bit32u) (quotient_64 & 0xFFFFFFFF); if (quotient_64 != quotient_32l) { exception(BX_DE_EXCEPTION, 0, 0); } /* set EFLAGS: * DIV affects the following flags: O,S,Z,A,P,C are undefined */ /* now write quotient back to destination */ RAX = quotient_32l; RDX = remainder_32; } void BX_CPU_C::IDIV_EAXEd(BxInstruction_t *i) { Bit32s op2_32, remainder_32, quotient_32l; Bit64s op1_64, quotient_64; op1_64 = (((Bit64u) EDX) << 32) | ((Bit64u) EAX); /* op2 is a register or memory reference */ if (i->mod == 0xc0) { op2_32 = BX_READ_32BIT_REG(i->rm); } else { /* pointer, segment address pair */ read_virtual_dword(i->seg, i->rm_addr, (Bit32u *) &op2_32); } if (op2_32 == 0) { exception(BX_DE_EXCEPTION, 0, 0); } quotient_64 = op1_64 / op2_32; remainder_32 = (Bit32s) (op1_64 % op2_32); quotient_32l = (Bit32s) (quotient_64 & 0xFFFFFFFF); if (quotient_64 != quotient_32l) { exception(BX_DE_EXCEPTION, 0, 0); } /* set EFLAGS: * IDIV affects the following flags: O,S,Z,A,P,C are undefined */ /* now write quotient back to destination */ RAX = quotient_32l; RDX = remainder_32; } void BX_CPU_C::IMUL_GdEdId(BxInstruction_t *i) { #if BX_CPU_LEVEL < 2 BX_PANIC(("IMUL_GdEdId() unsupported on 8086!")); #else Bit32s op2_32, op3_32, product_32; Bit64s product_64; op3_32 = i->Id; /* op2 is a register or memory reference */ if (i->mod == 0xc0) { op2_32 = BX_READ_32BIT_REG(i->rm); } else { /* pointer, segment address pair */ read_virtual_dword(i->seg, i->rm_addr, (Bit32u *) &op2_32); } product_32 = op2_32 * op3_32; product_64 = ((Bit64s) op2_32) * ((Bit64s) op3_32); /* now write product back to destination */ BX_WRITE_32BIT_REGZ(i->nnn, product_32); /* set eflags: * IMUL affects the following flags: C,O * IMUL r16,r/m16,imm16: condition for clearing CF & OF: * result exactly fits within r16 */ if (product_64 == product_32) { SET_FLAGS_OxxxxC(0, 0); } else { SET_FLAGS_OxxxxC(1, 1); } #endif } void BX_CPU_C::IMUL_GdEd(BxInstruction_t *i) { #if BX_CPU_LEVEL < 3 BX_PANIC(("IMUL_GvEv() unsupported on 8086!")); #else Bit32s op1_32, op2_32, product_32; Bit64s product_64; /* op2 is a register or memory reference */ if (i->mod == 0xc0) { op2_32 = BX_READ_32BIT_REG(i->rm); } else { /* pointer, segment address pair */ read_virtual_dword(i->seg, i->rm_addr, (Bit32u *) &op2_32); } op1_32 = BX_READ_32BIT_REG(i->nnn); product_32 = op1_32 * op2_32; product_64 = ((Bit64s) op1_32) * ((Bit64s) op2_32); /* now write product back to destination */ BX_WRITE_32BIT_REGZ(i->nnn, product_32); /* set eflags: * IMUL affects the following flags: C,O * IMUL r16,r/m16,imm16: condition for clearing CF & OF: * result exactly fits within r16 */ if (product_64 == product_32) { SET_FLAGS_OxxxxC(0, 0); } else { SET_FLAGS_OxxxxC(1, 1); } #endif }