///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // BOCHS ENHANCED DEBUGGER Ver 1.2 // (C) Chourdakis Michael, 2008 // http://www.turboirc.com // // Modified by Bruce Ewing // #include "config.h" #if BX_DEBUGGER && BX_DEBUGGER_GUI #include #include "bochs.h" #include "param_names.h" #include "cpu/cpu.h" #include "disasm/disasm.h" #include "enh_dbg.h" // Match stuff #define MATCH_TRUE 1 #define MATCH_FALSE 0 #define MATCH_ABORT -1 #define NEGATE_CLASS #define OPTIMIZE_JUST_STAR // get a "class" to access the disassebler // Note; any instance has access to all the member functions -- that is enough! // -- i.e. No further initialization necessary. static disassembler bx_disassemble; const char* DC0txt[2] = {"P.Address","L.Address"}; // DumpMode definitions in text const char* BTxt[6] = { "Continue [c]", "Step [s]", "Step N [s ###]", "Refresh", "Break [^C]", "Break All"}; int BtnLkup[6] = { CMD_CONT, CMD_STEP1, CMD_STEPN, CMD_RFRSH, CMD_BREAK }; #ifdef WIN32 int useCR = 1; // Win32 needs CRLF pairs for an EOL bx_bool NeedSysRresize = TRUE; // use Sys Reg to help autosize Reg "hex" column #else int useCR = 0; bx_bool NeedSysRresize = FALSE; // use Sys Reg to help autosize Reg "hex" column #endif bx_bool SeeReg[8] = { TRUE, // in 64bit mode, show 32bit versions of registers also (EAX, ...) TRUE, // show segment registers (CS, ...) TRUE, // show GDTR, IDTR, LDTR, Task Reg TRUE, // show control register (CR0, ...) FALSE, // show FPU (STi) / MMX registers FALSE, // show XMM registers FALSE, // show the Debug Registers (DR0, ...) FALSE // Test Registers not yet supported in bochs }; bx_bool SingleCPU = FALSE; // Display all SMP CPUs bx_bool ShowIOWindows = TRUE; // Display the Input and Output Internal Debugger windows bx_bool ShowButtons = TRUE; // Display the top-row Step/Continue pushbuttons bx_bool SeeRegColors = TRUE; // Display registers with background color "groups" bx_bool ignoreNxtT = TRUE; // Do not show "Next at t=" output lines bx_bool ignSSDisasm = TRUE; // Do not show extra disassembly line at each break int UprCase = 0; // 1 = convert all Asm, Register names, Register values to uppercase int DumpInAsciiMode = 3; // bit 1 = show ASCII in dumps, bit 2 = show hex, value=0 is illegal bx_bool isLittleEndian = TRUE; int DefaultAsmLines = 512; // default # of asm lines disassembled and "cached" int bottommargin = 6; // ASM autoscroller tries to leave this many lines below int topmargin = 3; // autoscroller tries to leave this many lines above // Note: topmargin must be less than bottommargin // How to use DockOrder: the Register list is window 1, ASM is window 2, MemDump is window 3 // Create the hex value with the digits in the order you want the windows to be. // 0x312 would have MemDump on the left, Register in the middle, ASM on the right short DockOrder = 0x123; // set the default List "docking" (Reg, ASM, Dump) bx_bool SA_valid = FALSE; Bit64u SelectedDataAddress = 0; Bit64u CurrentAsmLA = 0; // = EIP/RIP -- for highlighting in ASM window Bit64u BottomAsmLA; // beginning and end addrs on ASM window Bit64u TopAsmLA; Bit32u PrevStepNSize = 50; // cpu_loop control variables unsigned TotCPUs; // # of CPUs in a multi-CPU simulation unsigned CpuSupportSSE = 0; // cpu supports SSE unsigned CurrentCPU; // cpu that is being displayed struct ASKTEXT ask_str; // window resizing/docking stuff int OneCharWide; // average width of a char in current font (pixels) int Sizing = 0; // current "resizing/docking mode" int Resize_HiX; // horizontal limits of the current resize operation (pixels) int Resize_LoX; unsigned ListWidthPix[3] = {5,7,8}; // set initial proportions of Reg, Asm, Dump windows int CurCenterList = 0; bx_bool DumpHasFocus = FALSE; // BarClix holds the x-axis position (in pixels or logical units) of the two resizing bars, // in parent coordinates (ie. any window that contains the lists) unsigned short BarClix[2]; bx_bool AtBreak = FALSE; // Status indicators bx_bool CpuModeChange = TRUE; bx_bool StatusChange = TRUE; bx_bool In64Mode = FALSE; // CPU modes bx_bool In32Mode = FALSE; unsigned CpuMode = 0; Bit32u InPaging = 0; // Storage for the top bit of CR0, unmodified bx_bool doOneTimeInit = TRUE; // Internal flags bx_bool ResizeColmns; // address/value column autosize flag bx_bool FWflag = FALSE; // friendly warning has been shown to user once already static char *PrevStack; // buffer for testing changes in stack values Bit64u PStackLA = 0; // to calculate alignment between prev and current stack bx_bool StackEntChg[STACK_ENTRIES]; // flag for "change detected" on each stack line // only pay special attention to registers up to EFER static const char* RegLCName[EFER_Rnum + 1] = { "rax","rbx","rcx","rdx","rsi","rdi","rbp","rsp","rip", "r8","r9","r10","r11","r12","r13","r14","r15", "eflags","eax","ebx","ecx","edx","esi","edi","ebp","esp","eip", "cs","ds","es","ss","fs","gs", "gdtr","idtr","ldtr","tr","cr0","cr2","cr3","cr4","efer" }; static char* RDispName[EFER_Rnum + 1]; static bx_param_num_c *RegObject[BX_MAX_SMP_THREADS_SUPPORTED][TOT_REG_NUM + EXTRA_REGS]; Bit64u rV[EFER_Rnum + 1]; // current values of registers Bit64u PV[EFER_Rnum + 1]; // previous values of registers Bit32s GDT_Len; // "limits" (= bytesize-1) for GDT and IDT Bit32s IDT_Len; Bit8u RegColor[TOT_REG_NUM]; // specifies foreground and background color of registers // Text color is red if the upper bit is set. Background is set according to ColorList. int RitemToRnum[TOT_REG_NUM]; // mapping from Reg List Item# to register number Bit64u ladrmin = 0; // bochs linear addressing access variables Bit64u ladrmax = 0; Bit64u l_p_offset; bx_bool DumpInitted = FALSE; // has the MemDump window ever been filled with data? int DumpAlign = 1; int PrevDAD; // saves "previous DumpAlign value" (forces column autosize) char *DataDump; Bit64u DumpStart = 0; // current emulated address (lin or phys) of DataDump bx_bool doDumpRefresh; int DViewMode = VIEW_MEMDUMP; bx_bool LinearDump = TRUE; // FALSE = memdump uses physical addressing char *tmpcb; // 512b is allocated in bigbuf char *CurStack; // Stack workspace (400b usually) char AsciiHex[512]; // Unsigned char to printable hex xlat table static char UCtable[256]; char bigbuf[outbufSIZE]; // 40K preallocated storage for all char buffers (see DoAllInit) char *DbgAppendPtr = bigbuf; char *OutWindow; // buffer for the Output window int OutWinCnt = OutWinSIZE; // available size of OutWindow buffer int PO_Tdelay = 0; // delay before displaying partial output lines int AsmLineCount = 1; // # of disassembled asm lines loaded int AsmPgSize = 0; int ListLineRatio; // number of vertical pixels in a ListView Item int ListVerticalPix; // number of vertical pixels in each List Bit64u AsmLA[MAX_ASM]; // linear address of each disassembled ASM line // Command stuff int CommandHistoryIdx = 0; char *CmdHistory[CmdHistorySize]; // 64 command History storage (fixed 80b each) int CmdHInsert = 0; // index of next history entry to store int SizeList = 0; Bit32s xClick = -1; // halfway through a mouseclick flag + location Bit32s yClick = 0; // values are in Listview coordinates static const char* GDTt2[8] = { "16-bit code", "64-bit code", "32-bit code", "16-bit data", "64-bit data", "32-bit data", "Illegal", "Unused" }; static const char* GDTsT[] = { "","Available 16bit TSS","LDT","Busy 16bit TSS","16bit Call Gate", "Task Gate","16bit Interrupt Gate","16bit Trap Gate","Reserved", "Available 32bit TSS","Reserved","Busy 32bit TSS","32bit Call Gate", "Reserved","32bit Interrupt Gate","32bit Trap Gate" }; // Register hex display formats -- index by UprCase static const char* Fmt64b[2] = { FMT_ADDRX64, "%016llX" }; static const char* Fmt32b[2] = { "%08x", "%08X" }; static const char* Fmt16b[2] = { "%04x", "%04X" }; static const char* xDT64Fmt[2] = { FMT_ADDRX64 " (%4x)", "%016llX (%4X)" }; static const char* xDT32Fmt[2] = { "%08x (%4x)", "%08X (%4X)" }; static const char *BrkName[5] = { "Linear Breakpt", "Physical Breakpt", "Virtual Breakpt", "Write Watchpoint", "Read Watchpoint", }; bx_address BrkLAddr[BX_DBG_MAX_LIN_BPOINTS]; unsigned BrkIdx[BX_DBG_MAX_LIN_BPOINTS]; int BreakCount = 0; // Breakpoint Dump Window stuff unsigned short BrkpIDMap[256]; unsigned short WWP_BaseEntry; unsigned short RWP_BaseEntry; unsigned short EndLinEntry; unsigned short EndPhyEntry; unsigned short WWPSnapCount; unsigned short RWPSnapCount; bx_phy_address WWP_Snapshot[16]; bx_phy_address RWP_Snapshot[16]; short nDock[36] = { // lookup table for alternate DockOrders 0x231, 0x312, 0x231, 0x213, 0x132, 0x132, 0x213, 0x321, 0x123, 0x123, 0x321, 0x312, 0x213, 0x213, 0x123, 0x312, 0x321, 0x312, 0x132, 0x123, 0x132, 0x321, 0x231, 0x231, 0x312, 0x312, 0x231, 0x213, 0x132, 0x213, 0x132, 0x123, 0x321, 0x321, 0x123, 0x231 }; void MakeXlatTables() { char *p, c; int i = 256; while (--i >= 0) // make an upper case translation table UCtable[i]= toupper(i); p = AsciiHex; // then also make a "hex" table for ( i = 0; i < 256; i++) { c = i >> 4; if (c > 9) c += 'A' - 10; // do all hex in uppercase else c += '0'; *(p++)= c; c = i & 0xf; if (c > 9) c += 'A' - 10; else c += '0'; *(p++)= c; } } int DoMatch(const char *text, const char *p, bx_bool IsCaseSensitive) { // probably the MOST DIFFICULT FUNCTION in TurboIRC // Thanks to BitchX for copying this function //int last; int matched; //int reverse; int pT = 0; int pP = 0; for (; p[pP] != '\0'; pP++, pT++) { if (text[pT] == '\0' && p[pP] != '*') return MATCH_ABORT; switch (p[pP]) { // case '\\': // Match with following char // pP++; // NO BREAK HERE default: if (IsCaseSensitive) { if (text[pT] != p[pP]) return MATCH_FALSE; else continue; } if (UCtable[(int) text[pT]] != UCtable[(int) p[pP]]) return MATCH_FALSE; continue; case '?': continue; case '*': if (p[pP] == '*') pP++; if (p[pP] == '\0') return MATCH_TRUE; while (text[pT] != FALSE) { matched = DoMatch(text + pT++, p + pP, FALSE); if (matched != MATCH_FALSE) return matched; } return MATCH_ABORT; } } return (text[pT] == '\0'); } // This will be called from the other funcs int VMatching(const char *text, const char *p, bx_bool IsCaseSensitive) { #ifdef OPTIMIZE_JUST_STAR if (p[0] == '*' && p[1] == '\0') return MATCH_TRUE; #endif return (DoMatch(text, p, IsCaseSensitive) == MATCH_TRUE); } int IsMatching(const char *text, const char *p, bx_bool IsCaseSensitive) { return VMatching(text, p, IsCaseSensitive); } // utility function for list resizing operation -- set LoX and HiX // the resize operation exits if the mouse moves beyond LoX or HiX void SetHorzLimits() { int i; if (Sizing == -2) // is it the left or right bar? { Resize_LoX = OneCharWide << 2; // set horizontal limits i = ListWidthPix[(DockOrder >> 8) -1]; // col1 width // calculate end of col2 - 4 charwidths in parent coordinates Resize_HiX = i + ListWidthPix[CurCenterList] - (OneCharWide << 2); Sizing = 1; } else { i = ListWidthPix[(DockOrder >> 8) -1]; // col1 width Resize_LoX = i + (OneCharWide << 2); // set horizontal limits // calculate total width - 4 charwidths in parent coordinates i = ListWidthPix[REG_WND] + ListWidthPix[ASM_WND] + ListWidthPix[DUMP_WND]; Resize_HiX = i - (OneCharWide << 2); Sizing = 2; } } void DockResize (int DestIdx, Bit32u ParentX) { if (Sizing >= 10) // dock operation { int Siz = Sizing - 10; // calculate which list initiated dock = moving window if (Siz != DestIdx) // moving window = destination window is a no-op { // Convert Sizing and DestIdx into a table lookup index (j) // -- otherwise, the "algorithm" to compute new DockOrder is annoying int j = (Siz*2 + ((Siz | DestIdx) & 1)) *6; if (Siz == 1) j = (Siz*4 + (DestIdx & 2)) *3; // convert current DockOrder to a number from 0 to 5, add to j j += ((DockOrder >> 7) - 2) &6; if (((DockOrder >> 4) &3) > (DockOrder & 3)) j += 1; DockOrder = nDock[j]; MoveLists(); } } else // resize operation { int idx, totpix; if (Sizing == 1) { idx = (DockOrder >> 8) -1; // sizing the left bar totpix = ListWidthPix[idx] + ListWidthPix[CurCenterList]; ListWidthPix[idx] = ParentX; ListWidthPix[CurCenterList] = totpix - ParentX; // reset the widths of the left and center windows } else { ParentX -= ListWidthPix[(DockOrder >> 8) -1]; // caclulate new width of center window idx = (DockOrder & 3) -1; totpix = ListWidthPix[idx] + ListWidthPix[CurCenterList]; ListWidthPix[CurCenterList] = ParentX; ListWidthPix[idx] = totpix - ParentX; // reset the widths of the right and center windows } MoveLists(); } } // Convert a string (except for the 0x in a hex number) to uppercase void upr(char* d) { char *p; p = d; while (*p != 0) { if (*p == '0' && p[1] == 'x') p += 2; else { *p = UCtable[(int) *p]; // use the lookup table created by MakeXlatTables ++p; } } } // create EFLAGS display for Status line void ShowEflags(char *buf) { static const char *EflBName[16] = { "cf", "pf", "af", "zf", "sf", "tf", "if", "df", "of", "nt", "rf", "vm", "ac", "vif", "vip", "id" }; static const int EflBNameLen[16] = { 2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,2 }; static const int EflBitVal[16] = { 1, 4, 0x10, 0x40, 0x80, 0x100, 0x200, 0x400, 0x800, 0x4000, 0x10000, 0x20000, 0x40000, 0x80000, 0x100000, 0x200000 }; Bit32u Efl = (Bit32u) rV[EFL_Rnum]; int i = 16; char *cp = buf + 6; sprintf(buf,"IOPL=%1u", (Efl & 0x3000) >> 12); while (--i >= 0) { *(cp++)= ' '; strcpy (cp, EflBName[i]); // copy the name of the bitflag if ((Efl & EflBitVal[i]) != 0) // if the bit is set, put the name in uppercase upr(cp); cp += EflBNameLen[i]; } } // change the display on the status line if anything has changed void UpdateStatus() { static bx_bool PrevAtBreak = FALSE; if (StatusChange == FALSE) return; // avoid sending unnecessary messages/invalidations StatusChange = FALSE; if (AtBreak != FALSE) // modify status line only during a break { char eflags_buf[80]; ShowEflags(eflags_buf); // prints out eflags SetStatusText(3, eflags_buf); // display eflags if (CpuModeChange != FALSE) // Did CR0 bits or EFER bits change value? { CpuModeChange = FALSE; char mode[32]; switch (CpuMode) { case BX_MODE_IA32_REAL: if (In32Mode == FALSE) strcpy (mode, "CPU: Real Mode 16"); else strcpy (mode, "CPU: Real Mode 32"); break; case BX_MODE_IA32_V8086: strcpy (mode, "CPU: V8086 Mode"); break; case BX_MODE_IA32_PROTECTED: if (In32Mode == FALSE) { if (InPaging != 0) strcpy (mode, "CPU: Protected Mode 16 (PG)"); else strcpy (mode, "CPU: Protected Mode 16"); } else { if (InPaging != 0) strcpy (mode, "CPU: Protected Mode 32 (PG)"); else strcpy (mode, "CPU: Protected Mode 32"); } break; case BX_MODE_LONG_COMPAT: strcpy (mode, "CPU: Compatibility Mode"); break; case BX_MODE_LONG_64: strcpy (mode, "CPU: Long Mode"); break; } SetStatusText(1, mode); // display CPU mode in status col#1 } } if (AtBreak != PrevAtBreak) // switch window color ("active"=white or gray), depending on AtBreak value MakeListsGray(); PrevAtBreak = AtBreak; } // Read a copy of some emulated linear bochs memory // Note: laddr + len must not cross a 4K boundary -- otherwise, there are no limits bx_bool ReadBxLMem(Bit64u laddr, unsigned len, Bit8u *buf) { return bx_dbg_read_linear(CurrentCPU, laddr, len, buf); } // binary conversion (and validity testing) on hex/decimal char string inputs Bit64u cvthex(char *p, Bit64u errval) { Bit64u ret = 0; bx_bool end = FALSE; while (end == FALSE) { if (*p >= '0' && *p <= '9') // test for digits ret = (ret << 4) | (*(p++) - '0'); else if ((*p | 0x20) >= 'a' && (*p | 0x20) <= 'f') // test for hex letters ret = (ret << 4) | ((*(p++) | 0x20) - 'a' + 10); // 0xA = 10, of course else end = TRUE; } if (*p != 0 && *p != ' ' && *p != '\t') // hex must end on a whitespace return errval; return ret; } Bit64u cvt64(char *nstr, bx_bool negok) { char *p, *s; Bit64u ret = 0; bx_bool neg = FALSE; p= nstr; while (*p==' ' || *p == '\t') ++p; if (*p == '-' && negok != FALSE) { ++p; neg = TRUE; } if (*p == '0' && (p[1] | 0x20) == 'x' && neg == FALSE) return cvthex (p+2, 0); s = p; while (*p >= '0' && *p <= '9') ret = (ret * 10) + *(p++) - '0'; if ((*p | 0x20) >= 'a' && (*p | 0x20) <= 'f' && neg == FALSE) return cvthex (s, ret); if (neg != FALSE) return 0 - ret; return ret; } // "singlestep" disassembly lines from the internal debugger are sometimes ignored bx_bool isSSDisasm(char *s) { if (ignSSDisasm == FALSE) // ignoring those lines? return FALSE; while (*s == ' ') // need to parse the line to see if it is ASM ++s; if (*s != '(') // first char must be ( return FALSE; while (*s != '[' && *s != 0) // then there must be a [ ++s; if (*s == 0) return FALSE; while (*s != 0 && (*s != ')' || s[1] != ':' || s[2] != ' ')) ++s; if (*s == 0) return FALSE; while (*s != ';' && *s != 0) // last, there must be a ; ++s; if (*s == 0) return FALSE; return TRUE; } // dump output from the bochs internal debugger to Output window // Note: this routine may be called *DIRECTLY* from bochs! void ParseIDText(const char *x) { int i = 0; int overflow = 0; while (*x !=0 && *x != '\r' && *x != '\n' && DbgAppendPtr < tmpcb) *(DbgAppendPtr++)= *(x++); // append the chars from x into the bigbuf if (DbgAppendPtr >= tmpcb) // overflow error? { DispMessage("Debugger output cannot be parsed -- line too long","Buffer overflow"); DbgAppendPtr = bigbuf; // throw away the line return; } *DbgAppendPtr = 0; if (*x == 0) // automatically process only complete lines further { PO_Tdelay = 2; // wait a half second, then force display of partial lines return; } PO_Tdelay = 0; // line completed -- cancel any partial output time delay // restart DbgAppendPtr at the beginning of a new line buffer char *s = DbgAppendPtr = bigbuf; // s -> raw text line from debugger if (ignoreNxtT != FALSE) { if (strncmp(s,"Next at t",9) == 0) return; } if (isSSDisasm(s) != FALSE) return; while ((*s >= ' ' || *s == '\t') && i < 204) // scan out to eol, count chars { ++i; ++s; } if (i > 203) // max out at 203 chars per line (should never happen) { i = 200; overflow = 3; } char *p = OutWindow; if ((i+overflow+2+useCR) > OutWinCnt) // amt needed vs. space available { s = OutWindow; // need to toss lines off beginning of OutWindow int j = OutWinCnt - overflow - 2 - useCR; while (j < i) // throw away one line at a time { // stop on any unprintable char < ' ' while ((unsigned char)*s >= ' ' || *s == '\t') { ++s; ++j; // increase available space as chars are tossed } // in reality, s must be pointing at an EOL s += 1 + useCR; j += 1 + useCR; } OutWinCnt = j + overflow + 2 + useCR; j = OutWinSIZE - OutWinCnt; // chars to copy, without the terminal zero while (j-- > 0) // recopy the OutWindow buffer up *(p++) = *(s++); } else p = OutWindow + OutWinSIZE - OutWinCnt; OutWinCnt -= i + overflow + 1 + useCR; if (useCR != 0) *(p++) = '\r'; // end of buf only had a 0 in it, *(p++) = '\n'; // and needs an EOL to display properly s = bigbuf; while (i-- > 0) // copy the new output line onto the buffer *(p++) = *(s++); if (overflow != 0) { *(p++) = '.'; // just for fun, if the line overflows *(p++) = '.'; *(p++) = '.'; } *p = 0; SetOutWinTxt(); // OS specific routine to replace Output window's text } // load appropriate register values from simulation into local rV[] array void FillRegs() { int i = EFER_Rnum + 1; // EFER is the highest reg # in rV while (--i >= 0) { if (RegObject[CurrentCPU][i] != NULL) rV[i] = RegObject[CurrentCPU][i]->get64(); } #if BX_SUPPORT_X86_64 == 0 // copy RIP, RSP from EIP, ESP -- so LAs for both are always easily available rV[RIP_Rnum] = rV[EIP_Rnum]; rV[RSP_Rnum] = rV[ESP_Rnum]; #else // copy the lower dwords of RAX - RIP to EAX - EIP (with 32bit truncation) i = RIP_Rnum + 1; while (--i >= 0) rV[i + (EAX_Rnum - RAX_Rnum)] = GET32L(rV[i]); #endif if (RegObject[CurrentCPU][GDTR_Lim] != NULL) // get the limits on GDT and IDT GDT_Len = RegObject[CurrentCPU][GDTR_Lim]->get(); if (RegObject[CurrentCPU][IDTR_Lim] != NULL) IDT_Len = RegObject[CurrentCPU][IDTR_Lim]->get(); // Check CR0 bit 31 -- Paging bit Bit32u NewPg = (Bit32u) rV[CR0_Rnum] & 0x80000000; if (InPaging != NewPg) { GrayMenuItem ((int) NewPg, CMD_PAGEV); StatusChange = TRUE; } InPaging = NewPg; } // grab linear breakpoints out of internal debugger's bx_guard structures, and sort them void ParseBkpt() { extern bx_guard_t bx_guard; int k; int j = 0; int i = bx_guard.iaddr.num_linear; while (--i >= 0) { if (bx_guard.iaddr.lin[i].enabled != FALSE) { BrkLAddr[j] = bx_guard.iaddr.lin[i].addr; BrkIdx[j] = bx_guard.iaddr.lin[i].bpoint_id; ++j; } } BreakCount = i = j; // sort the breakpoint list (linear sort), to make it faster to search while (--i > 0) { j = k = i; while (--j >= 0) { if (BrkLAddr[j] > BrkLAddr[k]) // find the next biggest k = j; } if (k < i) { bx_address h = BrkLAddr[i]; // do the swap on BOTH arrays j = BrkIdx[i]; BrkLAddr[i] = BrkLAddr[k]; BrkIdx[i] = BrkIdx[k]; BrkLAddr[k] = h; BrkIdx[k] = j; } } } // this routine is only called if debugger already knows SSE is supported // -- but it might not be "turned on", either int FillSSE(int LineCount) { #if BX_CPU_LEVEL >= 6 Bit64u val = 0; bx_param_num_c *p; char *cols[3]; char ssetxt[80]; if ((rV[CR0_Rnum] & 0xc) != 0) // TS or EM flags in CR0 temporarily disable SSE { cols[0] = ssetxt; strcpy (ssetxt, "SSE-off"); InsertListRow(cols, 1, REG_WND, LineCount, 4); RitemToRnum[LineCount] = XMM0_Rnum; return ++LineCount; } // format: XMM[#] 00000000:00000000 (each 16 hex digits) *ssetxt = 0; cols[1] = ssetxt; // column 1 is being left blank cols[0] = ssetxt + 1; cols[2] = ssetxt + 10; strcpy (ssetxt+1, "XMM[0]"); ssetxt[10] = '0'; // I'm putting a hex value in the decimal column -- more room there! ssetxt[11] = 'x'; strcpy (ssetxt + 28, " : "); for (int i = 0; i < BX_XMM_REGISTERS; i++) { if (i >= 10) { ssetxt[5] = '1'; ssetxt[6] = i - 10 + '0'; ssetxt[7] = ']'; ssetxt[8] = 0; } else ssetxt[5] = i + '0'; RitemToRnum[LineCount] = i + XMM0_Rnum; p = RegObject[CurrentCPU][XMM0_hi + i]; if (p != NULL) val = p->get64(); // get the value of "xmm(i)_hi" register else val = 0; sprintf (ssetxt + 12,Fmt64b[UprCase],val); p = RegObject[CurrentCPU][XMM0_Rnum + i]; if (p != NULL) val = p->get64(); // "SSE.xmm[i]_lo" else val = 0; sprintf (ssetxt + 31,Fmt64b[UprCase], val); InsertListRow(cols, 3, REG_WND, LineCount, 4); // 3 cols, group 4 ++LineCount; } #endif return (LineCount); } // this routine is only called if debugger already knows FPU is supported // -- but it might not be active int FillMMX(int LineCount) { static double scale_factor = pow(2.0, -63.0); int i; Bit16u exp = 0; Bit64u mmreg = 0; bx_param_num_c *p; unsigned short exponent[8]; char *cols[3]; char fputxt[60]; cols[0] = fputxt; if ((rV[CR0_Rnum] & 0xc) != 0) // TS or EM flags in CR0 temporarily disable MMX/FPU/SSE { strcpy (fputxt, "FPU-off"); InsertListRow(cols, 1, REG_WND, LineCount, 3); RitemToRnum[LineCount] = ST0_Rnum; return ++LineCount; } // format: MM#|ST# 00000000:00000000 then FPU float value in "decimal" column cols[1] = fputxt + 10; cols[2] = fputxt + 32; strcpy (fputxt, "MM0-ST0"); strcpy (fputxt + 18, " : "); i = 7; for (i = 0; i < 8; i++) { fputxt[2] = i + '0'; fputxt[6] = i + '0'; RitemToRnum[LineCount] = i + ST0_Rnum; p = RegObject[CurrentCPU][ST0_Rnum + i]; if (p != NULL) mmreg = p->get64(); // get the value of "mmx(i)" register else mmreg = 0; sprintf (fputxt + 10,Fmt32b[UprCase],GET32H(mmreg)); sprintf (fputxt + 21,Fmt32b[UprCase], GET32L(mmreg)); p = RegObject[CurrentCPU][ST0_exp + i]; if (p != NULL) exp = (Bit16u) p->get64(); // get the exponent for this FPU register else exp = 0; exponent[i] = exp; // save each one temporarily double f = pow(2.0, ((0x7fff & exp) - 0x3fff)); if (exp & 0x8000) f = -f; #ifdef _MSC_VER f *= (double)(signed __int64)(mmreg>>1) * scale_factor * 2; #else f *= mmreg*scale_factor; #endif sprintf (cols[2],"%.3e",f); InsertListRow(cols, 3, REG_WND, LineCount, 3); // 3 cols, group 3 ++LineCount; } strcpy (fputxt, "ST0.exp"); for (i = 0; i < 8; i++) { fputxt[2] = i + '0'; RitemToRnum[LineCount] = i + ST0_exp; sprintf (fputxt+10,Fmt16b[UprCase], exponent[i]); // col1 sprintf (fputxt+32,"%u", exponent[i]); // col2 InsertListRow(cols, 3, REG_WND, LineCount, 3); // 3 cols, group 3 ++LineCount; } return LineCount; } // get values of Debug registers from simulation int FillDebugRegs(int itemnum) { bx_param_num_c *bxp; Bit32u val; unsigned int i; char *cols[2]; char drtxt[20]; strcpy (drtxt,"dr0"); if (UprCase != FALSE) { *drtxt = 'D'; drtxt[1] = 'R'; } cols[0] = drtxt; cols[1] = drtxt + 4; for(i = 0; i < 6; i++) { bxp = RegObject[CurrentCPU][DR0_Rnum + i]; val = 0; if (bxp != NULL) val = bxp->get(); RitemToRnum[itemnum] = i + DR0_Rnum; sprintf(drtxt + 4,Fmt32b[UprCase],val); InsertListRow(cols, 2, REG_WND, itemnum, 5); // 3 cols, group 5 ++drtxt[2]; // change the name, the cheap way if (i == 3) drtxt[2] += 2; // jump from "DR3" to "DR6" ++itemnum; } return itemnum; } #define BX_GUI_DB_ASM_DATA (4400) // Disassemble a linear memory area, in a loop, loading text into ASM window // completely update the ASM display with new data void FillAsm(Bit64u LAddr, int MaxLines) { Bit64u ReadAddr = LAddr; int BufLen = 0; int i, len; bx_bool BufEmpty; bx_bool Go = TRUE; char AsmData[BX_GUI_DB_ASM_DATA]; // 5K for binary disassembly data char *s, *p = AsmData; // just to avoid a compiler warning char *cols[3]; char asmtxt[200]; cols[0] = asmtxt; cols[1] = asmtxt + 36; cols[2] = asmtxt + 100; AsmLineCount = 0; // initialize for disasm window update StartListUpdate(ASM_WND); if (MaxLines > MAX_ASM) // just for protection MaxLines = MAX_ASM; while (Go != FALSE) { // copydown buffer -- buffer size must be 4K + 16 s= AsmData; i= BufLen; // BufLen is guaranteed < 16 while (i-- > 0) *(s++)= *(p++); // load buffer, up to the next 4k boundary len = 4096 - (((int) ReadAddr) & 0xfff); // calculate read amount Go = ReadBxLMem(ReadAddr, len, (Bit8u *) s); BufLen += len; ReadAddr += len; if (Go == FALSE) break; BufEmpty = FALSE; p= AsmData; // start at the beginning of the new buffer while (AsmLineCount < MaxLines && BufEmpty == FALSE) { // disassemble 1 line with a direct call, into asmtxt len = bx_disassemble.disasm(In32Mode, In64Mode, (bx_address) 0, (bx_address) LAddr, (Bit8u *) p, cols[2]); if (len <= BufLen) // disassembly was successful? { AsmLA[AsmLineCount] = LAddr; // save, and if (In64Mode == FALSE) // "display" linear addy of the opcode sprintf (asmtxt,Fmt32b[UprCase],LAddr); else sprintf (asmtxt,Fmt64b[UprCase],LAddr); BufLen -= len; // used up len bytes from buffer LAddr += len; // calculate next LAddr // then build the "bytes" column entry s = cols[1]; *(s++) = '('; // begin with the bytecount in parens i = len; if (len > 9) { *(s++)= '1'; // len < 16, so convert to decimal the easy way i -= 10; } *(s++) = i + '0'; *(s++) = ')'; *(s++) = ' '; while (len-- > 0) { i = (unsigned char) *(p++); *(s++) = AsciiHex[2*i]; *(s++) = AsciiHex[2*i+1]; } *s = 0; // zero terminate the "bytes" string // then, finalize the ASM disassembly text if (UprCase != FALSE) // do any requested uppercase conversion on the text upr(cols[2]); InsertListRow(cols, 3, ASM_WND, AsmLineCount, 8); // 3 cols, "no" group ++AsmLineCount; } else BufEmpty = TRUE; } if (AsmLineCount >= MaxLines) // disassembled enough lines? Go = FALSE; } if (ResizeColmns != FALSE) RedrawColumns(ASM_WND); EndListUpdate(ASM_WND); } // Reload the entire Register window with data void LoadRegList() { int i, itemnum; // TODO: This routine needs a big rewrite to make it pretty bx_bool showEreg = TRUE; char *cols[3]; char regtxt[100]; StartListUpdate(REG_WND); FillRegs(); // get new values for rV local register array // Display GP registers -- 64 bit registers first, if they exist cols[1] = regtxt; cols[2] = regtxt + 40; itemnum = 0; #if BX_SUPPORT_X86_64 if (In64Mode) { showEreg = SeeReg[0]; // get user option setting for EAX, etc. for (i = RAX_Rnum; i <= R15_Rnum; i++) { RitemToRnum[itemnum] = i; // always recreate the register -> itemnum mapping sprintf(regtxt,Fmt64b[UprCase], rV[i]); // print the hex column sprintf(cols[2], FMT_LL "d", rV[i]); // and decimal cols[0] = RDispName[i]; InsertListRow(cols, 3, REG_WND, itemnum, 0); // 3 cols, group 0 ++itemnum; } } #endif // then 32bit GP registers (if appropriate) if (showEreg != FALSE) { for (i = EAX_Rnum; i <= EIP_Rnum; i++) { RitemToRnum[itemnum] = i; sprintf(regtxt, Fmt32b[UprCase], (Bit32u)rV[i]); // print the hex column sprintf(cols[2], FMT_LL "d", rV[i]); // and decimal cols[0] = RDispName[i]; if (In32Mode == FALSE && i == 26) // Check for Real Mode (Pmode is TRUE in Long Mode) { rV[EIP_Rnum] &= 0xffff; // in Real Mode, mask IP to 2 bytes ++cols[0]; // and shorten name to 2 letters } InsertListRow(cols, 3, REG_WND, itemnum, 0); // 3 cols, group 0 ++itemnum; } } // always insert eflags next RitemToRnum[itemnum] = EFL_Rnum; sprintf(regtxt,Fmt32b[UprCase],(Bit32u)rV[EFL_Rnum]); // print the hex column cols[0] = RDispName[EFL_Rnum]; InsertListRow(cols, 2, REG_WND, itemnum, 0); // 2 cols, group 0 ++itemnum; if (rV[EFL_Rnum] != PV[EFL_Rnum]) StatusChange = TRUE; // if eflags changed, force a status update // display Segment registers (if requested) if (SeeReg[1]) { for(i = CS_Rnum; i <= GS_Rnum; i++) // segment registers { RitemToRnum[itemnum] = i; sprintf(regtxt, Fmt16b[UprCase], rV[i] & 0xffff); cols[0] = RDispName[i]; InsertListRow(cols, 2, REG_WND, itemnum, 1); // 2 cols, group 1 ++itemnum; } } // display System regsiters (if requested) // displaying these once may be necessary for column resizing if (SeeReg[2] || (ResizeColmns != FALSE && NeedSysRresize != FALSE)) { int j = TRRnum; if (In32Mode == FALSE) // don't show lgdt or tr in Real mode j= IDTRnum; for(i = GDTRnum; i <= j; i++) { RitemToRnum[itemnum] = i; if (i == GDTRnum || i == IDTRnum) { Bit16u limit = GDT_Len; if (i == IDTRnum) limit = IDT_Len; if (In64Mode == FALSE) sprintf(regtxt,xDT32Fmt[UprCase],(Bit32u)rV[i],limit); else sprintf(regtxt,xDT64Fmt[UprCase],rV[i],limit); } else sprintf(regtxt,Fmt16b[UprCase], rV[i] & 0xffff); // lgdt, tr cols[0] = RDispName[i]; InsertListRow(cols, 2, REG_WND, itemnum, 1); // 2 cols, group 1 ++itemnum; } } // display Control Registers (if requested) if (SeeReg[3]) { for(i = CR0_Rnum; i <= EFER_Rnum; i++) { RitemToRnum[itemnum] = i; if (In64Mode && (i == CR2_Rnum || i == CR3_Rnum)) sprintf(regtxt,Fmt64b[UprCase],rV[i]); else sprintf(regtxt,Fmt32b[UprCase],(Bit32u)rV[i]); cols[0] = RDispName[i]; InsertListRow(cols, 2, REG_WND, itemnum, 2); // 2 cols, group 2 ++itemnum; } } // set the register background colors for rV i = EFER_Rnum + 1; // total number of registers stored in rV while (--i >= 0) { if (rV[i] != PV[i]) // set the "red" flag if value changed RegColor[i] |= 0x80; else RegColor[i] &= 0x7f; } // Load any optional STi, MMX, SSE, DRx, TRx register info into the Register window #if BX_SUPPORT_FPU // MMX-FPU registers if (SeeReg[4] != FALSE) itemnum = FillMMX(itemnum); #endif // SSE registers if (CpuSupportSSE && SeeReg[5] != FALSE) itemnum = FillSSE(itemnum); // Internal x86 Debug Registers if (SeeReg[6] != FALSE) itemnum = FillDebugRegs(itemnum); RedrawColumns(REG_WND); // resize Hex Value column sometimes EndListUpdate(REG_WND); } // scroll ASM window so that the current line is in the "middle" void doAsmScroll() { int j; int CurTopIdx = GetASMTopIdx(); int nli = -2; // Can the current line be displayed at all? if (CurrentAsmLA < *AsmLA || CurrentAsmLA > AsmLA[AsmLineCount-1]) return; // convert from LA to a Line Index (nli) with a search j = CurTopIdx; // try to start at CurTopIdx if (AsmLA[j] > CurrentAsmLA) j = 0; while (nli < 0 && j < AsmLineCount && AsmLA[j] <= CurrentAsmLA) { if (AsmLA[j] == CurrentAsmLA) nli = j; ++j; } // not found -> CurrentAsmLA is an illegal opcode address if (nli < 0) return; // is the current line ALREADY in the middle of the window? if (nli < CurTopIdx || nli >= CurTopIdx + AsmPgSize - bottommargin) { // need to scroll! int ScrollLines = nli - CurTopIdx - topmargin; j = AsmLineCount - CurTopIdx - AsmPgSize; // limit ScrollLines by the theoretical max and min if (ScrollLines > j) ScrollLines = j + 1; // just a little extra to make sure if (ScrollLines < -CurTopIdx) ScrollLines = -CurTopIdx - 1; // just a little extra to make sure // convert # of scroll lines to pixels ScrollASM (ScrollLines * ListLineRatio); } Invalidate(ASM_WND); // "current opcode" in ASM window needs redrawing } // try to find a Linear Address to start a "pretty" autodisassembly void CanDoLA(Bit64u *h) { int index; if (TopAsmLA > *h || *h > AsmLA[AsmLineCount-1]) // is it hopeless? return; if (bottommargin > AsmLineCount) index = 0; else index = AsmLineCount - bottommargin; while (++index < AsmLineCount) { if (AsmLA[index] == *h) { *h = AsmLA[index - topmargin]; return; } } } void InitRegObjects() { bx_list_c *cpu_list; extern bx_list_c *root_param; int cpu = BX_SMP_PROCESSORS; // get the param tree interface objects for every single register on all CPUs while (--cpu >= 0) { // RegObject[j]s are all initialized to NULL when allocated in the BSS area // but it doesn't hurt anything to do it again, once int i = TOT_REG_NUM + EXTRA_REGS; while (--i >= 0) RegObject[cpu][i] = (bx_param_num_c *) NULL; char pname[16]; sprintf (pname,"bochs.cpu%d", cpu); // set the "cpu number" for cpu_list cpu_list = (bx_list_c *) SIM->get_param(pname, root_param); // TODO: in the next version, put all the names in an array, and loop // -- but that method is not compatible with bochs 2.3.7 or earlier #if BX_SUPPORT_X86_64 == 0 RegObject[cpu][EAX_Rnum] = SIM->get_param_num("EAX", cpu_list); RegObject[cpu][EBX_Rnum] = SIM->get_param_num("EBX", cpu_list); RegObject[cpu][ECX_Rnum] = SIM->get_param_num("ECX", cpu_list); RegObject[cpu][EDX_Rnum] = SIM->get_param_num("EDX", cpu_list); RegObject[cpu][ESI_Rnum] = SIM->get_param_num("ESI", cpu_list); RegObject[cpu][EDI_Rnum] = SIM->get_param_num("EDI", cpu_list); RegObject[cpu][EBP_Rnum] = SIM->get_param_num("EBP", cpu_list); RegObject[cpu][ESP_Rnum] = SIM->get_param_num("ESP", cpu_list); RegObject[cpu][EIP_Rnum] = SIM->get_param_num("EIP", cpu_list); #else RegObject[cpu][RAX_Rnum] = SIM->get_param_num("RAX", cpu_list); RegObject[cpu][RBX_Rnum] = SIM->get_param_num("RBX", cpu_list); RegObject[cpu][RCX_Rnum] = SIM->get_param_num("RCX", cpu_list); RegObject[cpu][RDX_Rnum] = SIM->get_param_num("RDX", cpu_list); RegObject[cpu][RSI_Rnum] = SIM->get_param_num("RSI", cpu_list); RegObject[cpu][RDI_Rnum] = SIM->get_param_num("RDI", cpu_list); RegObject[cpu][RBP_Rnum] = SIM->get_param_num("RBP", cpu_list); RegObject[cpu][RSP_Rnum] = SIM->get_param_num("RSP", cpu_list); RegObject[cpu][RIP_Rnum] = SIM->get_param_num("RIP", cpu_list); RegObject[cpu][R8_Rnum] = SIM->get_param_num("R8", cpu_list); RegObject[cpu][R9_Rnum] = SIM->get_param_num("R9", cpu_list); RegObject[cpu][R10_Rnum] = SIM->get_param_num("R10", cpu_list); RegObject[cpu][R11_Rnum] = SIM->get_param_num("R11", cpu_list); RegObject[cpu][R12_Rnum] = SIM->get_param_num("R12", cpu_list); RegObject[cpu][R13_Rnum] = SIM->get_param_num("R13", cpu_list); RegObject[cpu][R14_Rnum] = SIM->get_param_num("R14", cpu_list); RegObject[cpu][R15_Rnum] = SIM->get_param_num("R15", cpu_list); #endif RegObject[cpu][EFL_Rnum] = SIM->get_param_num("EFLAGS", cpu_list); RegObject[cpu][CS_Rnum] = SIM->get_param_num("CS.selector", cpu_list); RegObject[cpu][DS_Rnum] = SIM->get_param_num("DS.selector", cpu_list); RegObject[cpu][ES_Rnum] = SIM->get_param_num("ES.selector", cpu_list); RegObject[cpu][SS_Rnum] = SIM->get_param_num("SS.selector", cpu_list); RegObject[cpu][FS_Rnum] = SIM->get_param_num("FS.selector", cpu_list); RegObject[cpu][GS_Rnum] = SIM->get_param_num("GS.selector", cpu_list); RegObject[cpu][GDTRnum] = SIM->get_param_num("GDTR.base", cpu_list); RegObject[cpu][GDTR_Lim] = SIM->get_param_num("GDTR.limit", cpu_list); RegObject[cpu][IDTRnum] = SIM->get_param_num("IDTR.base", cpu_list); RegObject[cpu][IDTR_Lim] = SIM->get_param_num("IDTR.limit", cpu_list); RegObject[cpu][LDTRnum] = SIM->get_param_num("LDTR.base", cpu_list); RegObject[cpu][TRRnum] = SIM->get_param_num("TR.base", cpu_list); RegObject[cpu][CR0_Rnum] = SIM->get_param_num("CR0", cpu_list); RegObject[cpu][CR2_Rnum] = SIM->get_param_num("CR2", cpu_list); RegObject[cpu][CR3_Rnum] = SIM->get_param_num("CR3", cpu_list); #if BX_CPU_LEVEL >= 5 RegObject[cpu][CR4_Rnum] = SIM->get_param_num("CR4", cpu_list); #endif #if BX_CPU_LEVEL >= 6 RegObject[cpu][EFER_Rnum] = SIM->get_param_num("MSR.EFER", cpu_list); #endif #if BX_SUPPORT_FPU RegObject[cpu][ST0_Rnum] = SIM->get_param_num("FPU.st0.fraction", cpu_list); RegObject[cpu][ST1_Rnum] = SIM->get_param_num("FPU.st1.fraction", cpu_list); RegObject[cpu][ST2_Rnum] = SIM->get_param_num("FPU.st2.fraction", cpu_list); RegObject[cpu][ST3_Rnum] = SIM->get_param_num("FPU.st3.fraction", cpu_list); RegObject[cpu][ST4_Rnum] = SIM->get_param_num("FPU.st4.fraction", cpu_list); RegObject[cpu][ST5_Rnum] = SIM->get_param_num("FPU.st5.fraction", cpu_list); RegObject[cpu][ST6_Rnum] = SIM->get_param_num("FPU.st6.fraction", cpu_list); RegObject[cpu][ST7_Rnum] = SIM->get_param_num("FPU.st7.fraction", cpu_list); RegObject[cpu][ST0_exp] = SIM->get_param_num("FPU.st0.exp", cpu_list); RegObject[cpu][ST1_exp] = SIM->get_param_num("FPU.st1.exp", cpu_list); RegObject[cpu][ST2_exp] = SIM->get_param_num("FPU.st2.exp", cpu_list); RegObject[cpu][ST3_exp] = SIM->get_param_num("FPU.st3.exp", cpu_list); RegObject[cpu][ST4_exp] = SIM->get_param_num("FPU.st4.exp", cpu_list); RegObject[cpu][ST5_exp] = SIM->get_param_num("FPU.st5.exp", cpu_list); RegObject[cpu][ST6_exp] = SIM->get_param_num("FPU.st6.exp", cpu_list); RegObject[cpu][ST7_exp] = SIM->get_param_num("FPU.st7.exp", cpu_list); #endif #if BX_CPU_LEVEL >= 6 CpuSupportSSE = SIM->get_param("SSE", cpu_list) != NULL; if (CpuSupportSSE) { RegObject[cpu][XMM0_Rnum] = SIM->get_param_num("SSE.xmm00_0", cpu_list); RegObject[cpu][XMM1_Rnum] = SIM->get_param_num("SSE.xmm01_0", cpu_list); RegObject[cpu][XMM2_Rnum] = SIM->get_param_num("SSE.xmm02_0", cpu_list); RegObject[cpu][XMM3_Rnum] = SIM->get_param_num("SSE.xmm03_0", cpu_list); RegObject[cpu][XMM4_Rnum] = SIM->get_param_num("SSE.xmm04_0", cpu_list); RegObject[cpu][XMM5_Rnum] = SIM->get_param_num("SSE.xmm05_0", cpu_list); RegObject[cpu][XMM6_Rnum] = SIM->get_param_num("SSE.xmm06_0", cpu_list); RegObject[cpu][XMM7_Rnum] = SIM->get_param_num("SSE.xmm07_0", cpu_list); RegObject[cpu][XMM0_hi] = SIM->get_param_num("SSE.xmm00_1", cpu_list); RegObject[cpu][XMM1_hi] = SIM->get_param_num("SSE.xmm01_1", cpu_list); RegObject[cpu][XMM2_hi] = SIM->get_param_num("SSE.xmm02_1", cpu_list); RegObject[cpu][XMM3_hi] = SIM->get_param_num("SSE.xmm03_1", cpu_list); RegObject[cpu][XMM4_hi] = SIM->get_param_num("SSE.xmm04_1", cpu_list); RegObject[cpu][XMM5_hi] = SIM->get_param_num("SSE.xmm05_1", cpu_list); RegObject[cpu][XMM6_hi] = SIM->get_param_num("SSE.xmm06_1", cpu_list); RegObject[cpu][XMM7_hi] = SIM->get_param_num("SSE.xmm07_1", cpu_list); #if BX_SUPPORT_X86_64 RegObject[cpu][XMM8_Rnum] = SIM->get_param_num("SSE.xmm08_0", cpu_list); RegObject[cpu][XMM9_Rnum] = SIM->get_param_num("SSE.xmm09_0", cpu_list); RegObject[cpu][XMMA_Rnum] = SIM->get_param_num("SSE.xmm10_0", cpu_list); RegObject[cpu][XMMB_Rnum] = SIM->get_param_num("SSE.xmm11_0", cpu_list); RegObject[cpu][XMMC_Rnum] = SIM->get_param_num("SSE.xmm12_0", cpu_list); RegObject[cpu][XMMD_Rnum] = SIM->get_param_num("SSE.xmm13_0", cpu_list); RegObject[cpu][XMME_Rnum] = SIM->get_param_num("SSE.xmm14_0", cpu_list); RegObject[cpu][XMMF_Rnum] = SIM->get_param_num("SSE.xmm15_0", cpu_list); RegObject[cpu][XMM8_hi] = SIM->get_param_num("SSE.xmm08_1", cpu_list); RegObject[cpu][XMM9_hi] = SIM->get_param_num("SSE.xmm09_1", cpu_list); RegObject[cpu][XMMA_hi] = SIM->get_param_num("SSE.xmm10_1", cpu_list); RegObject[cpu][XMMB_hi] = SIM->get_param_num("SSE.xmm11_1", cpu_list); RegObject[cpu][XMMC_hi] = SIM->get_param_num("SSE.xmm12_1", cpu_list); RegObject[cpu][XMMD_hi] = SIM->get_param_num("SSE.xmm13_1", cpu_list); RegObject[cpu][XMME_hi] = SIM->get_param_num("SSE.xmm14_1", cpu_list); RegObject[cpu][XMMF_hi] = SIM->get_param_num("SSE.xmm15_1", cpu_list); #endif } #endif RegObject[cpu][DR0_Rnum] = SIM->get_param_num("DR0", cpu_list); RegObject[cpu][DR1_Rnum] = SIM->get_param_num("DR1", cpu_list); RegObject[cpu][DR2_Rnum] = SIM->get_param_num("DR2", cpu_list); RegObject[cpu][DR3_Rnum] = SIM->get_param_num("DR3", cpu_list); RegObject[cpu][DR6_Rnum] = SIM->get_param_num("DR6", cpu_list); RegObject[cpu][DR7_Rnum] = SIM->get_param_num("DR7", cpu_list); } } void doUpdate() { void FillStack(); if (doOneTimeInit != FALSE) SpecialInit(); // begin an autoupdate of Register and Asm windows LoadRegList(); // build and show ListView ParseBkpt(); // get the linear breakpoint list if (DViewMode == VIEW_STACK) // in stack view mode, keep the stack updated FillStack(); CurrentAsmLA = BX_CPU(CurrentCPU)->get_laddr(BX_SEG_REG_CS, (bx_address) rV[RIP_Rnum]); if (CurrentAsmLA < BottomAsmLA || CurrentAsmLA > TopAsmLA) { Bit64u h = CurrentAsmLA; // generate a startLA (= h) that overlaps by topmargin, if possible CanDoLA(&h); FillAsm(h, DefaultAsmLines); // Set the scroll position for the new ASM window BottomAsmLA = *AsmLA; int j = bottommargin; // try to use this bottom margin on ASM window if (j > AsmLineCount) j = AsmLineCount; TopAsmLA = AsmLA[AsmLineCount - j]; //TopAsmLA is the scroll point } else doAsmScroll(); // ASM window may need to scroll ResizeColmns = FALSE; // done with reformatting, if it was needed UpdateStatus(); // Mode and Eflags may have changed status } // Fill the GDT ListView, reading GDT data directly from bochs linear mem void FillGDT() { unsigned int i, j, GroupId; unsigned int k = (GDT_Len + 1) / 8; Bit8u gdtbuf[8]; char *cols[18]; char gdttxt[90]; doDumpRefresh = FALSE; Bit64u laddr = rV[GDTRnum]; StartListUpdate(DUMP_WND); *gdttxt = 0; cols[0]= gdttxt + 1; cols[1]= gdttxt + 30; cols[2]= gdttxt + 40; cols[3]= gdttxt + 80; cols[4]= gdttxt; // columns #5 to 17 are blank cols[5]= gdttxt; cols[6]= gdttxt; cols[7]= gdttxt; cols[8]= gdttxt; cols[9]= gdttxt; cols[10]= gdttxt; cols[11]= gdttxt; cols[12]= gdttxt; cols[13]= gdttxt; cols[14]= gdttxt; cols[15]= gdttxt; cols[16]= gdttxt; for(i = 0; i < k; i++) { // read 2 dwords from bochs linear mem into "buffer" sprintf(cols[0], "%02u (Selector 0x%04X)", i, i << 3); if (ReadBxLMem(laddr, 8, gdtbuf) == FALSE) // abort the current GDT dump on a memory error { cols[1]= gdttxt; // ERROR - blank out cols #2 - 4 for this new row cols[2]= gdttxt; cols[3]= gdttxt; cols[17] = gdttxt + 30; strcpy (cols[17],"illegal address"); InsertListRow(cols, 18, DUMP_WND, i, 8); // 18 cols, "no group" RedrawColumns(DUMP_WND); EndListUpdate(DUMP_WND); break; } laddr += 8; // enforce proper littleendianness on the gdtbuf bytes Bit32u limit = gdtbuf[0] | ((Bit32u) gdtbuf[1] << 8); limit |= ((Bit32u)gdtbuf[6] & 0xf) << 16; if ((gdtbuf[6] & 0x80) != 0) // 'Granularity' bit = 4K limit multiplier limit = limit * 4096 + 4095; // and the bottom 12 bits aren't tested GroupId = 8; // default to "blank" group cols[17]= (char*)GDTsT[0]; // default info string is blank j = 8; // default GDT type (group) is blank if ((gdtbuf[5] & 0x10) == 0) // 'S' bit clear = System segment { GroupId = 1; if (limit == 0 && (gdtbuf[5] & 0x80) == 0) // 'P' (present) bit GroupId = 0; // point to the approprate info string for the GDT system segment type cols[17] = (char*)GDTsT[(int) (gdtbuf[5] & 0xf)]; } else // it's an 'executable' code or data segment { j = (gdtbuf[6] & 0x60) >> 5; // get the 'L' and 'D/B' bits if (j == 3) // both bits set is illegal j = 6; else if ((gdtbuf[5] & 0x8) == 0) j += 3; // data seg -> j= 3 to 5, code seg -> j= 0 to 2 #ifndef IS_WIN98 GroupId = j; // use GroupIDs on XP and higher systems #else cols[17] = (char*)GDTt2[j]; // otherwise, put descriptive text in "info" column #endif } // enforce proper littleendianness on the gdtbuf bytes Bit32u base = gdtbuf[2] | ((Bit32u) gdtbuf[3] << 8); base |= (Bit32u) gdtbuf[4] << 16; base |= (Bit32u) gdtbuf[7] << 24; if ((gdtbuf[6] & 0x60) == 0x20) // test for longmode segment { base = 0; // the base is always 0 in longmode, with "no" limit sprintf(cols[2],"0xFFFFFFFFFFFFFFFF"); } else sprintf(cols[2],"0x%X",limit); sprintf(cols[1],"0x%X",base); sprintf(cols[3],"%u", (gdtbuf[5] & 0x60) >> 5); if (i == 0) cols[17] = (char*)GDTt2[7]; // call "Null" selector "unused" InsertListRow(cols, 18, DUMP_WND, i, GroupId); // 18 cols } RedrawColumns(DUMP_WND); EndListUpdate(DUMP_WND); } // Fills the IDT ListView, reading IDT data directly from bochs linear mem void FillIDT() { Bit64u laddr; Bit8u idtbuf[16]; Bit16u sel; Bit32u ofs; unsigned entrysize; unsigned int i; char *cols[18]; char idttxt[80]; unsigned int mode = 0; if (In32Mode) mode = 1; if (In64Mode) mode = 2; doDumpRefresh = FALSE; *idttxt = 0; cols[0]= idttxt + 1; cols[1]= idttxt; // columns #2 to 17 are blank cols[2]= idttxt; cols[3]= idttxt; cols[4]= idttxt; cols[5]= idttxt; cols[6]= idttxt; cols[7]= idttxt; cols[8]= idttxt; cols[9]= idttxt; cols[10]= idttxt; cols[11]= idttxt; cols[12]= idttxt; cols[13]= idttxt; cols[14]= idttxt; cols[15]= idttxt; cols[16]= idttxt; cols[17]= idttxt + 10; entrysize = 4 << mode; // calculate the bytesize of the entries unsigned int k = (IDT_Len + 1) / entrysize; StartListUpdate(DUMP_WND); // recover the IDT linear base address laddr = rV[IDTRnum]; if (k > 256) // if IDT_Len is unreasonably large, set a reasonable maximum k = 256; for(i = 0; i < k; i++) { idttxt[1] = AsciiHex[2*i]; idttxt[2] = AsciiHex[2*i+1]; idttxt[3] = 0; if (ReadBxLMem(laddr, entrysize, idtbuf) == FALSE) // abort the current IDT dump on a memory error { strcpy (cols[17],"illegal address"); InsertListRow(cols, 18, DUMP_WND, i, 8); // 18 cols, "no group" RedrawColumns(DUMP_WND); EndListUpdate(DUMP_WND); break; } laddr += entrysize; // enforce proper littleendianness on the idtbuf bytes ofs = idtbuf[0] | ((Bit32u) idtbuf[1] << 8); sel = idtbuf[2] | ((Bit16u) idtbuf[3] << 8); switch (mode) { case 0: // Real Mode sprintf(cols[17],"0x%04X:0x%04X", sel, ofs); break; case 1: // Pmode ofs |= ((Bit32u) idtbuf[6] << 16) | ((Bit32u) idtbuf[7] << 24); sprintf(cols[17],"0x%04X:0x%08X", sel, ofs); // TODO: also print some flags from idtbuf[5], maybe, in another column break; case 2: // Lmode Bit64u off64 = (Bit64u)(ofs | ((Bit32u) idtbuf[6] << 16) | ((Bit32u) idtbuf[7] << 24)); off64 |= ((Bit64u) idtbuf[8] << 32) | ((Bit64u) idtbuf[9] << 40); off64 |= ((Bit64u) idtbuf[10] << 48) | ((Bit64u) idtbuf[11] << 56); sprintf(cols[17],"0x%04X:0x" FMT_LLCAPX, sel, off64); // TODO: also print some flags from idtbuf[5], maybe, in another column break; } InsertListRow(cols, 18, DUMP_WND, i, 8); // 18 cols, "no group" } RedrawColumns(DUMP_WND); EndListUpdate(DUMP_WND); } // insert one entry into the Paging data list (a linear and a physical addy) void AddPagingLine(int LC, char *pa_lin, char *pa_phy) { char zero = 0; char *cols[18]; cols[0]= pa_lin; cols[1]= &zero; // columns #2 to 17 are blank cols[2]= &zero; cols[3]= &zero; cols[4]= &zero; cols[5]= &zero; cols[6]= &zero; cols[7]= &zero; cols[8]= &zero; cols[9]= &zero; cols[10]= &zero; cols[11]= &zero; cols[12]= &zero; cols[13]= &zero; cols[14]= &zero; cols[15]= &zero; cols[16]= &zero; cols[17]= pa_phy; InsertListRow(cols, 18, DUMP_WND, LC, 8); // 18 cols, "no group" } // lifted from bx_dbg_dump_table in dbg_main of the internal debugger void FillPAGE() { Bit32u lin, start_lin, curlin; // show only low 32 bit bx_phy_address phy; Bit64u start_phy, phy64; int LineCount = 0; char pa_lin[50]; char pa_phy[50]; doDumpRefresh = FALSE; StartListUpdate(DUMP_WND); curlin = lin = 0; // always start at linear address 0 start_lin = 1; // force a mismatch on the first line start_phy = 2; while (LineCount < 1024 && curlin != 0xfffff000) { // get translation lin -> phys, and verify mapping is legal if (BX_CPU(CurrentCPU)->dbg_xlate_linear2phy(lin, &phy) != FALSE) { phy64 = phy; if ((lin - start_lin) != (phy64 - start_phy)) { if (start_lin != 1) { sprintf (pa_lin,"0x%08X - 0x%08X",start_lin, lin - 1); sprintf (pa_phy,"0x" FMT_LLCAPX " - 0x" FMT_LLCAPX, start_phy, start_phy + (lin-1-start_lin)); AddPagingLine (LineCount,pa_lin,pa_phy); ++LineCount; } start_lin = lin; start_phy = phy64; } } else { if (start_lin != 1) { sprintf (pa_lin,"0x%08X - 0x%08X",start_lin, lin - 1); sprintf (pa_phy,"0x" FMT_LLCAPX " - 0x" FMT_LLCAPX, start_phy, start_phy + (lin-1-start_lin)); AddPagingLine (LineCount,pa_lin,pa_phy); ++LineCount; } start_lin = 1; start_phy = 2; } curlin = lin; lin += 0x1000; // then test the next 4K page in the loop } if (start_lin != 1) // need to output one last line? { sprintf (pa_lin,"0x%08X - 0x%08X", start_lin, -1); sprintf (pa_phy,"0x" FMT_LLCAPX " - 0x" FMT_LLCAPX,start_phy, start_phy + (lin-1-start_lin)); AddPagingLine (LineCount,pa_lin,pa_phy); } RedrawColumns(DUMP_WND); EndListUpdate(DUMP_WND); } // build the stack display void FillStack() { // sometimes need to specially invalidate the stack window static bx_bool StkInvOnce = FALSE; Bit64u StackLA, EndLA; unsigned int len, i, wordsize, overlap; int j; bx_bool LglAddy; bx_bool UpdateDisp; char *cp, *cpp; char *cols[18]; char stktxt[120]; *stktxt = 0; cols[0]= stktxt + 1; cols[1]= stktxt + 40; cols[2]= stktxt; // columns #3 to 17 are blank cols[3]= stktxt; cols[4]= stktxt; cols[5]= stktxt; cols[6]= stktxt; cols[7]= stktxt; cols[8]= stktxt; cols[9]= stktxt; cols[10]= stktxt; cols[11]= stktxt; cols[12]= stktxt; cols[13]= stktxt; cols[14]= stktxt; cols[15]= stktxt; cols[16]= stktxt; cols[17]= stktxt + 80; doDumpRefresh = FALSE; StackLA = (Bit64u) BX_CPU(CurrentCPU)->get_laddr(BX_SEG_REG_SS, (bx_address) rV[RSP_Rnum]); if (PStackLA == 1) // illegal value requests a full refresh PStackLA = StackLA ^ 0x4000; // force a non-match below (kludge) wordsize = 4; // assume Pmode if (In32Mode == FALSE) wordsize = 2; else if (In64Mode) wordsize = 8; len = STACK_ENTRIES * wordsize; // TODO: enforce that cp is wordsize aligned // also -- enforce that StackLA is wordsize aligned cp = CurStack; i = (unsigned) StackLA & 0xfff; // where is stack bottom, in its 4K memory page? if (i > 0x1000 - len) // does len cross a 4K boundary? { unsigned int ReadSize = 0x1000 - i; // read up to the 4K boundary, then try to read the last chunk if (ReadBxLMem(StackLA, ReadSize, (Bit8u *) cp) == FALSE) { // no data to show -- just one error message sprintf (cols[17],"illegal address"); StartListUpdate(DUMP_WND); InsertListRow(cols, 18, DUMP_WND, 0, 8); // 18 cols, "no group" EndListUpdate(DUMP_WND); return; } LglAddy = ReadBxLMem(StackLA + ReadSize, len + i - 0x1000, (Bit8u *) cp + ReadSize); if (LglAddy == FALSE) len = ReadSize; } else ReadBxLMem(StackLA, len, (Bit8u *) cp); UpdateDisp = CpuModeChange; // calculate which stack entries have changed cp = CurStack; cpp = PrevStack; j = overlap = len / wordsize; while (--j >= 0) StackEntChg[j] = TRUE; // assume that all lines have changed if (PStackLA > StackLA) // calculate the overlap between the prev and current stacks { EndLA = PStackLA - StackLA; if (EndLA < len) { i = (unsigned int) (EndLA / wordsize); cp += i * wordsize; } else i = overlap; // force the next loop to exit } else { EndLA = StackLA - PStackLA; if (EndLA < len) { i = 0; j = (int) (EndLA / wordsize); cpp += j * wordsize; overlap -= j; } else i = overlap; // force the next loop to exit } while (i < overlap) { j = wordsize; // if the two entries match, cancel the EntryChange flag for that entry while (j > 0 && *cp == *cpp) { --j; ++cp; ++cpp; } if (j == 0) StackEntChg[i] = FALSE; // got a match on all bytes else { cp += j; // bump the pointers to the next stack entry cpp += j; } ++i; } j = len / wordsize; while (--j >= 0) UpdateDisp |= StackEntChg[j]; if (UpdateDisp == FALSE) // Don't need to update the list? (no changes?) { if (StkInvOnce == FALSE) Invalidate(DUMP_WND); // Invalidate ONCE to turn off all the red stuff StkInvOnce = TRUE; return; } StartListUpdate(DUMP_WND); StkInvOnce = FALSE; PStackLA = StackLA; cp = CurStack; cpp = PrevStack; j = len; while (--j >= 0) *(cpp++)= *(cp++); // copy the stack to the Prev buffer j= STACK_ENTRIES * 8 - len; while (--j >= 0) *(cpp++)= 0; // zero out the unused tail end of the prev buffer cp = CurStack; // the following display loop runs on the cp pointer EndLA = StackLA + len - 1; i = 0; while (StackLA < EndLA) { if (In64Mode == FALSE) { int tmp; sprintf (cols[0],Fmt32b[1],StackLA); if (In32Mode == FALSE) tmp = *((Bit16s *) cp); else tmp = *((Bit32s *) cp); sprintf (cols[1],Fmt32b[UprCase],tmp); sprintf (cols[17],"%d",tmp); } else { Bit64s tmp = *((Bit64s *) cp); sprintf (cols[0],Fmt64b[UprCase],StackLA); sprintf (cols[1],Fmt64b[1],tmp); sprintf (cols[17], FMT_LL "d",tmp); } InsertListRow(cols, 18, DUMP_WND, i, 8); // 18 cols, "no group" StackLA += wordsize; cp += wordsize; ++i; } RedrawColumns(DUMP_WND); EndListUpdate(DUMP_WND); } // utility function to print breakpoints in a unified way void prtbrk (Bit32u seg, Bit64u addy, unsigned int id, bx_bool enabled, char *cols[]) { int i = 0; if (enabled == FALSE) *cols[1] = 'n'; else *cols[1] = 'y'; sprintf (cols[17],"%u",id); if (seg <= 0xffff){ i= 5; sprintf (cols[0],"%04X:",seg); } sprintf (cols[0] + i,FMT_LLCAPX,addy); } // Displays all Breakpoints and Watchpoints void FillBrkp() { int LineCount, totqty, i; char *cols[18]; char brktxt[60]; unsigned int brktype; extern bx_guard_t bx_guard; doDumpRefresh = FALSE; *brktxt = 0; brktxt[49] = 0; // 0 terminate the "enabled" string cols[2]= brktxt; // columns #3 to 17 are blank cols[3]= brktxt; cols[4]= brktxt; cols[5]= brktxt; cols[6]= brktxt; cols[7]= brktxt; cols[8]= brktxt; cols[9]= brktxt; cols[10]= brktxt; cols[11]= brktxt; cols[12]= brktxt; cols[13]= brktxt; cols[14]= brktxt; cols[15]= brktxt; cols[16]= brktxt; StartListUpdate(DUMP_WND); i = 256; while (--i >= 0) BrkpIDMap[i] = 0; i = 16; while (--i >= 0) { WWP_Snapshot[i] = 0; RWP_Snapshot[i] = 0; } LineCount = 0; for (brktype = 0; brktype < 5; brktype++) { cols[0]= brktxt; cols[1]= brktxt; cols[17]= brktxt; InsertListRow(cols, 18, DUMP_WND, LineCount++, 8); // make a blank row cols[0]= (char*)BrkName[brktype]; InsertListRow(cols, 18, DUMP_WND, LineCount++, 8); // brkpt "type" as only text on row cols[0]= brktxt + 1; if (brktype < 3) { cols[17]= brktxt + 50; // only breakpoints have IDs cols[1]= brktxt + 48; // and can be "enabled" if (brktype == 0) { #if (BX_DBG_MAX_LIN_BPOINTS > 0) totqty = bx_guard.iaddr.num_linear; for (i = 0; i < totqty; i++) { BrkpIDMap[LineCount] = bx_guard.iaddr.lin[i].bpoint_id; prtbrk (0xf0000, (Bit64u) bx_guard.iaddr.lin[i].addr, (unsigned) BrkpIDMap[LineCount], bx_guard.iaddr.lin[i].enabled, cols); InsertListRow(cols, 18, DUMP_WND, LineCount++, 8); } #endif EndLinEntry = LineCount; } else if (brktype == 1) { #if (BX_DBG_MAX_PHY_BPOINTS > 0) totqty = bx_guard.iaddr.num_physical; for (i = 0; i < totqty; i++) { BrkpIDMap[LineCount] = bx_guard.iaddr.phy[i].bpoint_id; prtbrk (0xf0000, (Bit64u) bx_guard.iaddr.phy[i].addr, (unsigned) BrkpIDMap[LineCount], bx_guard.iaddr.phy[i].enabled, cols); InsertListRow(cols, 18, DUMP_WND, LineCount++, 8); } #endif EndPhyEntry = LineCount; } else { #if (BX_DBG_MAX_VIR_BPOINTS > 0) totqty = bx_guard.iaddr.num_virtual; for (i = 0; i < totqty; i++) { BrkpIDMap[LineCount] = bx_guard.iaddr.vir[i].bpoint_id; prtbrk (bx_guard.iaddr.vir[i].cs, (Bit64u) bx_guard.iaddr.vir[i].eip, (unsigned) BrkpIDMap[LineCount], bx_guard.iaddr.vir[i].enabled, cols); InsertListRow(cols, 18, DUMP_WND, LineCount++, 8); } #endif } } else if (brktype == 3) { WWP_BaseEntry = LineCount; totqty = num_write_watchpoints; WWPSnapCount = num_write_watchpoints; for (i = 0; i < totqty; i++) { WWP_Snapshot[i] = write_watchpoint[i].addr; sprintf (cols[0],"%08X",write_watchpoint[i].addr); InsertListRow(cols, 18, DUMP_WND, LineCount++, 8); } } else { RWP_BaseEntry = LineCount; totqty = num_read_watchpoints; RWPSnapCount = num_read_watchpoints; for (i = 0; i < totqty; i++) { RWP_Snapshot[i] = read_watchpoint[i].addr; sprintf (cols[0],"%08X",read_watchpoint[i].addr); InsertListRow(cols, 18, DUMP_WND, LineCount++, 8); } } } RedrawColumns(DUMP_WND); EndListUpdate(DUMP_WND); } // performs endian byteswapping the hard way, for a Data dump void FillDataX(char* t, char C, bx_bool doHex) { char tmpbuf[40]; char *d = tmpbuf; if (isLittleEndian == FALSE || doHex == FALSE) d = t + strlen(t); // bigendian can always be appended directly *d = C; d[1] = 0; if (isprint(C) == 0) *d = '.'; if (doHex != FALSE) { *d = AsciiHex[2* (unsigned char)C]; d[1] = AsciiHex[2* (unsigned char)C + 1]; d[2] = 0; if (isLittleEndian) // little endian => reverse hex digits { strcat(d,t); strcpy(t,d); // so append the new bytes to the FRONT of t } } } // do the ShowData display work asynchronously, as a thread void ShowData() { unsigned int i; char *x; char *cols[18]; char mdtxt[200]; char tmphex[40]; *mdtxt = 0; cols[0]= mdtxt + 1; // the amount of storage needed for each column is complicated cols[1]= mdtxt + 20; cols[2]= mdtxt + 60; cols[3]= mdtxt + 64; cols[4]= mdtxt + 70; cols[5]= mdtxt + 74; cols[6]= mdtxt + 84; cols[7]= mdtxt + 88; cols[8]= mdtxt + 94; cols[9]= mdtxt + 100; cols[10]= mdtxt + 120; cols[11]= mdtxt + 124; cols[12]= mdtxt + 130; cols[13]= mdtxt + 134; cols[14]= mdtxt + 144; cols[15]= mdtxt + 148; cols[16]= mdtxt + 154; cols[17]= mdtxt + 160; doDumpRefresh = FALSE; StartListUpdate(DUMP_WND); x = DataDump; // data dumps are ALWAYS 4K for(i = 0; i < 4096; i += 16) { if (In64Mode == FALSE) sprintf(cols[0],"0x%08X",(Bit32u) (DumpStart + i)); else sprintf(cols[0],"0x" FMT_LLCAPX,DumpStart + i); *tmphex = 0; *cols[17] = 0; for(unsigned y = 0; y < 16; y++) { if ((DumpInAsciiMode & 1) != 0) // verify the char is printable, then append it to the "ascii" column FillDataX(cols[17],x[y],FALSE); if ((DumpInAsciiMode & 2) != 0) { // convert char to hex, build "endian" hex value, 2 digits at a time FillDataX(tmphex,x[y],TRUE); if (((y + 1) & (DumpAlign - 1)) == 0) { strcpy (cols[y+2-DumpAlign], tmphex); *tmphex = 0; // FillDataX APPENDS, so you need to clear the buffer } } } InsertListRow(cols, 18, DUMP_WND, i>>4, 8); // 18 cols, list2, "no group" x+= 16; // bump to the next row of data } RedrawColumns(DUMP_WND); EndListUpdate(DUMP_WND); } // build Register "display" names from lower case names // (must build the pointer list while building the names) void MakeRDnames() { char *p = RDispName[0]; // first storage location for (int i=0; i <= EFER_Rnum; i++) { RDispName[i] = p; // create the Name pointer const char *c = RegLCName[i]; // Register name in lower case if (UprCase != 0) { while (*c != 0) *(p++) = UCtable[(int) *(c++)]; // use lookup tbl for uppercase } else { while (*c != 0) *(p++) = *(c++); } *(p++) = 0; } } // generic initialization routine -- called once, only at startup void DoAllInit() { char *p; int i; CurrentCPU = 0; // need to init CPU info once only if (SingleCPU == FALSE) TotCPUs = BX_SMP_PROCESSORS; else TotCPUs = 1; // divide up the pre-allocated char buffer into smaller pieces p = bigbuf + outbufSIZE; // point at the end of preallocated mem p -= 200; // 200 bytes is enough for all the register names RDispName[0] = p; p -= 4096; DataDump = p; // storage for 4K memory dumps p -= OutWinCnt; // 10K for Output Window buffer OutWindow = p; i = 64; while (--i >= 0) { p -= 80; // command history buffers are 80b each CmdHistory[i] = p; // set up 64 of them (5120b) *p = 0; // and clear each one } p -= STACK_ENTRIES * 8; // usually a 400 byte buffer for the stack values PrevStack = p; p -= STACK_ENTRIES * 8; // and another one CurStack = p; p -= 512; p -= 512; // 2 "hex" bytes per byte value tmpcb = p; i = TOT_REG_NUM; // fake up a color table -- there are just enough, currently int j = 7; // color 7 = orange while (i > 0) { // change color when the loop goes below the base register number if (i == DR0_Rnum) --j; // 6 Debug else if (i == XMM0_Rnum) --j; // 8 or 16 XMM else if (i == ST0_Rnum) --j; // 8 MMX/FPU else if (i == CR0_Rnum) --j; // EFER and CR else if (i == GDTRnum) --j; // Sys Registers else if (i == CS_Rnum) --j; // Segments else if (i == EAX_Rnum) --j; // GP Registers (32b) // below EAX is 64bit GP Registers and EFLAGS RegColor[--i] = j; } MakeXlatTables(); // create UpperCase and AsciiHex translation tables MakeRDnames(); // create Rnames from lower-case register names InitRegObjects(); // get/store all the bx_param_num_c objects for the registers } // refill whichever "data window" is active -- or param_tree void RefreshDataWin() { switch (DViewMode) { case VIEW_MEMDUMP: if (DumpInitted != FALSE) ShowData(); else EndListUpdate(2); // list is empty, so end (show) it! break; case VIEW_GDT: FillGDT(); break; case VIEW_IDT: FillIDT(); break; case VIEW_PAGING: FillPAGE(); break; case VIEW_STACK: PStackLA = 1; // flag to force a full stack refresh FillStack(); break; case VIEW_BREAK: FillBrkp(); break; case VIEW_PTREE: FillPTree(); } } // performs tasks whenever the simulation "breaks" void OnBreak() { int i = EFER_Rnum + 1; // check if Ptime has changed TakeInputFocus(); // display the new ptime on the status bar char time_buf[20]; sprintf (time_buf,"t= " FMT_LL "d", bx_pc_system.time_ticks()); SetStatusText (2, time_buf); // remember register values from before the last run while (--i >= 0) PV[i] = rV[i]; ladrmin = ladrmax; // invalidate any old linear->phys mapping // then detect current CPU mode the *right* way -- look for changes // TODO: create param Objects for CS.d_b and cpu_mode for each CPU unsigned PrevCpuMode = CpuMode; CpuMode = BX_CPU(CurrentCPU)->get_cpu_mode(); if (CpuMode == BX_MODE_LONG_64) { if (In64Mode == FALSE) // Entering LongMode? { CpuModeChange = TRUE; In64Mode = TRUE; In32Mode = TRUE; // In32Mode must be TRUE in LongMode ResizeColmns = TRUE; // if so, some formatting has changed } } else { bx_bool d_b = BX_CPU(CurrentCPU)->sregs[BX_SEG_REG_CS].cache.u.segment.d_b; if (In32Mode != d_b || In64Mode != FALSE || PrevCpuMode != CpuMode) { CpuModeChange = TRUE; In64Mode = FALSE; In32Mode = d_b; } } if (CpuModeChange) { GrayMenuItem ((int) In64Mode, CMD_EREG); BottomAsmLA = ~0; // force an ASM autoload StatusChange = TRUE; } doUpdate(); // do a full "autoupdate" if (doDumpRefresh != FALSE) RefreshDataWin(); } static int HexFromAsk(const char* ask, char* b) // this routine converts a user-typed hex string into binary bytes { // it ignores any bigendian issues -- binary is converted front to end as chars int y = 0; int i = 0; for(;;) { unsigned int C = 0; if (strlen(ask + i) < 2) break; if (!sscanf(ask + i,"%02X",&C)) break; b[y++] = C; i += 2; } return y; } static bx_bool FindHex(const unsigned char* b1,int bs,const unsigned char* b2,int by) { // search bs bytes of b1 for(int i = 0; i < bs; i++) // TODO: this loop could be a little more efficient. { // -- it just scans an input byte string against DataDump memory bx_bool Match = TRUE; for(int y = 0; y < by; y++) { if (b1[i + y] != b2[y]) { Match = FALSE; break; } } if (Match != FALSE) return TRUE; } return FALSE; } bx_bool AskText(const char *title, const char *prompt, char *DefaultText) { ask_str.title= title; ask_str.prompt= prompt; ask_str.reply= DefaultText; return ShowAskDialog(); } // load new memory for a MemDump // newDS = illegal (1) is a flag to ask the user for a DumpStart address bx_bool InitDataDump(bx_bool isLinear, Bit64u newDS) { bx_bool retval = TRUE; bx_bool MsgOnErr = FALSE; if (AtBreak == FALSE) return FALSE; if (((int) newDS & 0xf) != 0) // legal addys must be on 16byte boundary { if (In64Mode == FALSE) sprintf(tmpcb,"0x%X",(Bit32u) DumpStart); else sprintf(tmpcb,"0x" FMT_LL "X",DumpStart); if (AskText("4K Memory Dump","4K Memory Dump -- Enter Address (use 0x for hex):",tmpcb) == FALSE) return FALSE; newDS = cvt64(tmpcb,FALSE); // input either hex or decimal newDS &= ~15; // force Mem Dump to be 16b aligned MsgOnErr = TRUE; } // load 4k DataDump array from bochs emulated linear or physical memory if (isLinear) { // cannot read linear mem across a 4K boundary -- so break the read in two // -- calculate location of 4K boundary (h): unsigned len = (int) newDS & 0xfff; unsigned i = 4096 - len; Bit64u h = newDS + i; retval = ReadBxLMem(newDS,i,(Bit8u *)DataDump); if (retval != FALSE && len != 0) retval = ReadBxLMem(h,len,(Bit8u *)DataDump + i); } else { retval = (bx_bool) bx_mem.dbg_fetch_mem(BX_CPU(CurrentCPU), (bx_phy_address)newDS, 4096, (Bit8u *)DataDump); } if (retval == FALSE) { // assume that the DataDump array is still valid -- fetch_mem should error without damage if (MsgOnErr != FALSE) DispMessage ("Address range was not legal memory","Memory Error"); return retval; } SA_valid = FALSE; // any previous MemDump click is now irrelevant ResizeColmns = TRUE; // autosize column 0 once DumpInitted = TRUE; // OK to refresh the Dump window in the future (it has data) DumpStart = newDS; LinearDump = isLinear; // finalize dump mode, since it worked ShowMemData(TRUE); // Display DataDump using these new parameters/data return TRUE; } // User is changing which registers are displaying in the Register list void ToggleSeeReg(int cmd) { int i = cmd - CMD_EREG; if (i < 0 || i > 7) return; if (i == 4 || i == 5) ResizeColmns = TRUE; // may need to resize the register value column SeeReg[i] ^= TRUE; SetMenuCheckmark ((int) SeeReg[i], i + CHK_CMD_EREG); if (AtBreak != FALSE) LoadRegList(); // do a register window update } void doNewWSize(int i) { // DumpAlign is the "wordsize" in bytes -- need to "calculate" the power of 2 int j = 0; if (DumpAlign == 2) j = 1; else if (DumpAlign == 4) j = 2; else if (DumpAlign == 8) j = 3; else if (DumpAlign == 16) j = 4; if (j != i) { ToggleWSchecks(i, j); DumpAlign = 1<= 0x10000) { if (DViewMode != VIEW_GDT) DispMessage("GDT limit is illegal","Simulation error"); ShowMemData(FALSE); } else { HideTree(); DViewMode = VIEW_GDT; // displaying a GDT FillGDT(); } } void ToggleIDT() { if (AtBreak == FALSE) return; GrayMenuItem (0, CMD_WPTWR); GrayMenuItem (0, CMD_WPTRD); if (DViewMode == VIEW_IDT || /*(IDT_Len & 3) != 3 ||*/ (unsigned) IDT_Len >= 0x10000) { if (DViewMode != VIEW_IDT) DispMessage("IDT limit is illegal","Simulation error"); ShowMemData(FALSE); } else { HideTree(); DViewMode = VIEW_IDT; // displaying an IDT FillIDT(); } } void TogglePAGE() { if (AtBreak == FALSE) return; GrayMenuItem (0, CMD_WPTWR); GrayMenuItem (0, CMD_WPTRD); if (DViewMode == VIEW_PAGING || InPaging == FALSE) ShowMemData(FALSE); else { HideTree(); DViewMode = VIEW_PAGING; // currently displaying Paging info FillPAGE(); } } void ToggleStack() { if (AtBreak == FALSE) return; GrayMenuItem (0, CMD_WPTWR); GrayMenuItem (0, CMD_WPTRD); if (DViewMode == VIEW_STACK) ShowMemData(FALSE); else { HideTree(); DViewMode = VIEW_STACK; // currently displaying stack PStackLA = 1; // flag to force a full refresh FillStack(); } } void ToggleBrkpt() { if (AtBreak == FALSE) return; GrayMenuItem (0, CMD_WPTWR); GrayMenuItem (0, CMD_WPTRD); if (DViewMode == VIEW_BREAK) ShowMemData(FALSE); else { HideTree(); // HideTree needs to know the "prev" DViewMode DViewMode = VIEW_BREAK; // currently displaying breakpoint info FillBrkp(); } } void TogglePTree() { if (AtBreak == FALSE) return; GrayMenuItem (0, CMD_WPTWR); GrayMenuItem (0, CMD_WPTRD); if (DViewMode == VIEW_PTREE) ShowMemData(FALSE); else { // FillPTree needs to know the "prev" DViewMode, to handle "refresh" events properly FillPTree(); // get all info from param_tree into tree-view window DViewMode = VIEW_PTREE; // currently displaying param_tree } } void doFind() { unsigned int i, L; bx_bool Select; char srchstr[100]; if (AtBreak == FALSE) return; *tmpcb = 0; // read ASM text or MemDump data, find matches, select all matching lines if (DumpHasFocus == FALSE) { if (AskText("Find text in mnemonic lines","ASM Search text:",tmpcb) == FALSE) return; if (strchr(tmpcb,'*') == 0 && strchr(tmpcb,'?') == 0) sprintf(srchstr,"*%s*",tmpcb); else strcpy(srchstr,tmpcb); if (UprCase != FALSE) // convert search string to uppercase if ASM is that way upr(srchstr); for(i = 0; i < (unsigned) AsmLineCount; i++) { GetLIText(ASM_WND, i, 2, tmpcb); // retrieve the ASM column 2 text for row i Select = FALSE; if (IsMatching(tmpcb, srchstr, TRUE) != FALSE) Select = TRUE; SetLIState(ASM_WND, i, Select); } } else { if (AskText("Memory Dump Search", "Sequential hex bytes (e.g 00FEFA - no spaces), or ascii string (max. 16b):",tmpcb) == FALSE) return; int by = HexFromAsk(tmpcb,srchstr); // by = len of binary search string // Find in all rows of 16 bytes -- must do rows, so they can be selected for(i = 0, L = 0; i < 4096; i += 16, L++) { Select = FALSE; if (by != 0 && FindHex((unsigned char *)DataDump + i,16,(unsigned char *)srchstr,by)) Select = TRUE; SetLIState(DUMP_WND, L, Select); } // Try ascii for additional matches and selected lines Select = TRUE; // this loop, only add selected lines to the display by = strlen(tmpcb); for(i = 0, L = 0; i < 4096; i += 16, L++) { if (by != 0 && FindHex((unsigned char *)DataDump + i,16,(unsigned char *)tmpcb,by)) SetLIState(DUMP_WND, L, Select); } } } void doStepN() { // can't run sim until everything is ready if (AtBreak == FALSE || debug_cmd_ready != FALSE) return; sprintf (tmpcb,"%d",PrevStepNSize); if (AskText("Singlestep N times","Number of steps (use 0x for hex):",tmpcb) == FALSE) return; Bit32u i = (Bit32u) cvt64(tmpcb,FALSE); // input either hex or decimal if (i == 0) return; PrevStepNSize = i; AtBreak = FALSE; StatusChange = TRUE; bx_dbg_stepN_command(CurrentCPU, i); AtBreak = TRUE; StatusChange = TRUE; OnBreak(); } // User wants a custom disassembly void doDisAsm() { int NumLines = DefaultAsmLines; if (AtBreak == FALSE) return; sprintf (tmpcb,"0x" FMT_LL "X",CurrentAsmLA); if (AskText("Disassemble", "Disassemble -- Enter Linear Start Address (use 0x for hex):",tmpcb) == FALSE) return; Bit64u h = cvt64(tmpcb,FALSE); // input either hex or decimal sprintf (tmpcb,"%d",NumLines); if (AskText("Disassemble","Number of lines: (Max. 2048)",tmpcb) == FALSE) return; sscanf (tmpcb,"%d",&NumLines); if (NumLines <= 0 || NumLines > 2048) return; if (NumLines > 1000 && FWflag == FALSE) ShowFW(); FillAsm(h, NumLines); // Set the scroll limits for the new ASM window BottomAsmLA = *AsmLA; int j = bottommargin; // try to use this bottom margin on ASM window if (j > AsmLineCount) j = AsmLineCount; TopAsmLA = AsmLA[AsmLineCount - j]; //TopAsmLA is the scroll point } // Toggle all "selected" items as linear breakpoint on the ASM window void SetBreak(int OneEntry) { int L; if (AtBreak == FALSE) return; if (OneEntry >= 0) L = OneEntry; else // -1 is a flag to start the search at the beginning L = GetNextSelectedLI(ASM_WND, -1); while (L >= 0) { int iExist = -1; int i=0; while (i < BreakCount && iExist < 0) { if (BrkLAddr[i] == AsmLA[L]) iExist = i; ++i; } if (iExist >= 0) { // existing, remove bx_dbg_del_lbreak(BrkIdx[iExist]); i = iExist; // also compress it out of the local list while (++i < BreakCount) { BrkLAddr[i-1] = BrkLAddr[i]; BrkIdx[i-1] = BrkIdx[i]; } --BreakCount; } else { bx_address nbrk = (bx_address) AsmLA[L]; // Set a "regular" bochs linear breakpoint to that address int BpId = bx_dbg_lbreakpoint_command(bkRegular, nbrk); if (BpId >= 0) { // insertion sort the new Brkpt into the local list i = BreakCount - 1; while (i >= 0 && BrkLAddr[i] > nbrk) { BrkLAddr[i+1] = BrkLAddr[i]; BrkIdx[i+1] = BrkIdx[i]; --i; } BrkLAddr[i+1] = nbrk; BrkIdx[i+1] = BpId; ++BreakCount; } } if (OneEntry >= 0) // do not loop, if only doing one entry L = -1; else // start the next ASM search at current item L L = GetNextSelectedLI(ASM_WND, L); } Invalidate(ASM_WND); // redraw the ASM window -- colors may have changed } void DelWatchpoint(bx_watchpoint *wp_array, unsigned *TotEntries, int i) { while (++i < (int) *TotEntries) wp_array[i-1] = wp_array[i]; -- *TotEntries; } void SetWatchpoint(unsigned *num_watchpoints, bx_watchpoint *watchpoint) { int iExist1 = -1; int i = (int) *num_watchpoints; if (AtBreak == FALSE || SA_valid == FALSE) return; // the list is unsorted -- test all of them while (--i >= 0) { if (watchpoint[i].addr == SelectedDataAddress) { iExist1 = i; i = 0; } } if (iExist1 >= 0) { // existing watchpoint, remove by copying the list down DelWatchpoint(watchpoint, num_watchpoints, iExist1); } else { // Set a watchpoint to last clicked address -- the list is not sorted if (*num_watchpoints >= BX_DBG_MAX_WATCHPONTS) { DispMessage("Too many of that type of watchpoint. Max: 16", "Table Overflow"); } else { watchpoint[*num_watchpoints].len = 1; watchpoint[*num_watchpoints].addr = (bx_phy_address) SelectedDataAddress; ++(*num_watchpoints); } } Invalidate(DUMP_WND); // redraw the MemDump window -- colors may have changed } void ChangeReg() { // Change a register -- search for the first selected register int L = GetNextSelectedLI(REG_WND, -1); if (AtBreak == FALSE || L == -1 || L >= TOT_REG_NUM) return; int i = RitemToRnum[L]; if (i > EFER_Rnum) // TODO: extend this to more reg -- need display names for all return; // if (i > EFER_Rnum) // *tmpcb = 0; // else sprintf (tmpcb,"0x" FMT_LL "X", rV[i]); if (AskText("Change Register Value",RDispName[i],tmpcb)) { Bit64u val = cvt64(tmpcb,TRUE); // input either hex or decimal #if BX_SUPPORT_X86_64 if (i >= EAX_Rnum && i <= EIP_Rnum) // must use RAX-RIP when setting 32b registers i -= EAX_Rnum - RAX_Rnum; #endif RegObject[CurrentCPU][i]->set(val); // the set function should be a bool, not a void // bx_bool worked = RegObject[CurrentCPU][i]->set(val); // if (worked == FALSE) // DispMessage ("Bochs does not allow you to set that register","Selection Error"); // else LoadRegList(); // update the register window } } // user wants to edit some memory void SetMemLine(int L) { // get base address of "line" of data -- each line (L) is 16 bytes char addrstr[64]; Bit64u h = DumpStart + (L<<4); if (AtBreak == FALSE || L >= 256) return; if (LinearDump == FALSE) sprintf(addrstr,"Physical Address: 0x" FMT_LL "X",h); else sprintf(addrstr,"Linear Address: 0x" FMT_LL "X",h); unsigned char *u = (unsigned char *)(DataDump + (L<<4)); // important that it be unsigned! sprintf(tmpcb,"%02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X", *u,u[1],u[2],u[3],u[4],u[5],u[6],u[7],u[8],u[9],u[10],u[11],u[12],u[13],u[14],u[15]); if (AskText("Change Memory Values",addrstr,tmpcb)) { Bit8u newval; int err=0; char *x = tmpcb; upr(x); // force input string to uppercase if (LinearDump) // is h is a LINEAR address? Convert to physical! { // use the ReadBx function to calculate the lin->phys offset if (ReadBxLMem(h,0,(Bit8u *)addrstr) == FALSE) // "read" 0 bytes err = 2; else h -= l_p_offset; // convert h to a physmem address } while (*x != 0 && err == 0) { char *s = x; // verify that the next 2 chars are hex digits if ((*x < '0' || *x > '9') && (*x < 'A' || *x > 'F')) err = 1; else { ++x; if ((*x < '0' || *x > '9') && (*x < 'A' || *x > 'F')) err = 1; else { ++x; if (*x != ' ' && *x != 0) // followed by a space or 0 err = 1; } } if (err == 0) { // convert the hex to a byte, and try to store the byte in bochs physmem sscanf (s,"%2X", (unsigned int*)&newval); if (bx_mem.dbg_set_mem( (bx_phy_address) h, 1, &newval) == FALSE) err = 2; else *u++ = newval; // update DataDump array so it will refresh on the screen ++h; // bump to the next mem address while (*x == ' ') // scan past whitespace ++x; } } if (err != 0) { if (err == 1) DispMessage ("Improper char hex format","Input Format Error"); else DispMessage ("Illegal memory address error?","Memory Error"); } ShowData(); // refresh the data dump, even if there were errors } } // Alt, Shift, Control keys are "down" if negative // Normal return value is 0, return != 0 has OS-specific meaning. int HotKey (int ww, int Alt, int Shift, int Control) { if (Alt < 0){ if (ww == '1') doNewWSize(0); else if (ww == '2') doNewWSize(1); else if (ww == '4') doNewWSize(2); else if (ww == '8') doNewWSize(3); else if (ww == '6') doNewWSize(4); else if (ww == VK_F2) TogglePAGE(); #if BX_SUPPORT_FPU else if (ww == VK_F3) ToggleSeeReg(CMD_FPUR); // MMX/FPU toggle #endif else if (ww == VK_F6) // AltF6 = Read Watchpt { if (DumpHasFocus != FALSE) SetWatchpoint(&num_read_watchpoints,read_watchpoint); } else if (ww == VK_F7) // Alt+F7 memdump hex toggle { int i = DumpInAsciiMode; i ^= 2; if (i != 0) { DumpInAsciiMode = i; i &= 2; SetMenuCheckmark (i, CHK_CMD_MHEX); GrayMenuItem (i, CMD_MASCII); PrevDAD = 0; // force columns to resize if (DViewMode == VIEW_MEMDUMP && DumpInitted != FALSE) { if (AtBreak == FALSE) doDumpRefresh = TRUE; else ShowData(); } } } return 0; } switch (ww) { case VK_ESCAPE: CommandHistoryIdx = 0; ClearInputWindow(); ShowMemData(FALSE); // force a "normal" MemDump window break; case VK_UP: // History from nextmost previous command SelectHistory(-1); break; case VK_DOWN: // Next History command SelectHistory(+1); break; case VK_PRIOR: // Page up on the MemDump window by 2K if (DumpInitted != FALSE) InitDataDump(LinearDump, DumpStart - 2048); break; case VK_NEXT: // Page down on the MemDump window by 2K if (DumpInitted != FALSE) InitDataDump(LinearDump, DumpStart + 2048); break; case VK_F2: if (Control < 0) ToggleGDT(); else if (Shift < 0) ToggleIDT(); else ToggleStack(); break; case VK_F3: // ^F3 = param tree, F3 = toggle syntax if (Control < 0) TogglePTree(); else { bx_disassemble.toggle_syntax_mode(); if (AtBreak != FALSE) { // do the standard ASM window fill sequence Bit64u h = CurrentAsmLA; CanDoLA(&h); FillAsm(h, DefaultAsmLines); } else BottomAsmLA = ~0; // force an ASM autoload } break; case VK_F4: if (Shift < 0) // Debug register toggle ToggleSeeReg(CMD_DREG); else if (Control >= 0) // Refresh { BottomAsmLA = ~0; // force an ASM autoload ResizeColmns = TRUE; // force everything to repaint doDumpRefresh = TRUE; // force a data window reload on a break if (AtBreak != FALSE) // can't refresh the windows until a break! { doUpdate(); // refresh the ASM and Register windows RefreshDataWin(); // and whichever data window is up } } else { if (CpuSupportSSE) ToggleSeeReg(CMD_XMMR); // SSE toggle } break; case VK_F5: if (Shift < 0) // ShiftF5 = Modechange brk toggle { // toggle mode_break on cpu0, use that value to reset all CPUs bx_bool nmb = BX_CPU(0)->mode_break ^ TRUE; int j = TotCPUs; while (--j >= 0) BX_CPU(j)->mode_break = nmb; SetMenuCheckmark ((int) nmb, CHK_CMD_MODEB); } else { // can't continue until everything is ready if (AtBreak != FALSE && debug_cmd_ready == FALSE) { // The VGAW *MUST* be refreshed periodically -- it's best to use the timer. // Which means that the sim cannot be directly run from this msglp thread. *debug_cmd = 'c'; // send a fake "continue" command to the internal debugger debug_cmd[1] = 0; debug_cmd_ready = TRUE; AtBreak = FALSE; StatusChange = TRUE; } } break; case VK_F7: if (Control < 0) InitDataDump(0,(Bit64u) 1); // ^F7 = PhysDump else if (Shift < 0) // ShiftF7 = ascii toggle { int i = DumpInAsciiMode; i ^= 1; if (i != 0) { DumpInAsciiMode = i; i &= 1; SetMenuCheckmark (i, CHK_CMD_MASCII); GrayMenuItem (i, CMD_MHEX); PrevDAD = 0; // force columns to resize if (DViewMode == VIEW_MEMDUMP && DumpInitted != FALSE) { if (AtBreak == FALSE) doDumpRefresh = TRUE; else ShowData(); } } } else InitDataDump(1,(Bit64u) 1); // F7 = LinDump break; case VK_F6: if (Control < 0) // ^F6 = Breakpoint window ToggleBrkpt(); else if (Shift < 0) // ShiftF6 = Write Watchpt { if (DumpHasFocus == FALSE) SetBreak(-1); // set or delete breakpoint(s) at the selected address(es) else SetWatchpoint(&num_write_watchpoints,write_watchpoint); } else { if (DumpHasFocus == FALSE) // F6 = Brkpt SetBreak(-1); // set or delete breakpoint(s) at the selected address(es) else SetWatchpoint(&num_write_watchpoints,write_watchpoint); } break; case VK_F8: // can't continue until everything is ready if (AtBreak != FALSE && debug_cmd_ready == FALSE) { *debug_cmd = 'p'; // send a fake "proceed" command to the internal debugger debug_cmd[1] = 0; debug_cmd_ready = TRUE; AtBreak = FALSE; StatusChange = TRUE; } break; case VK_F11: if (AtBreak != FALSE && debug_cmd_ready == FALSE) { bx_dbg_stepN_command(CurrentCPU, 1); // singlestep StatusChange = TRUE; OnBreak(); } break; case VK_F9: doStepN(); // ask user for a step # break; case 'C': // ^c = break if (Control < 0) { SIM->debug_break(); } break; case 'D': if (Control < 0) doDisAsm(); break; case 'F': if (Control < 0) doFind(); break; case VK_RIGHT: // Win32: send a few virtual movement keys back into the Input window case VK_LEFT: case VK_END: case VK_HOME: case VK_DELETE: return -1; case VK_RETURN: // can't run a command until everything is ready if (AtBreak != FALSE && debug_cmd_ready == FALSE) { *tmpcb = 0; GetInputEntry(tmpcb); StatusChange = TRUE; if (*tmpcb == 0) // Hitting on a blank line means SINGLESTEP { bx_dbg_stepN_command(CurrentCPU, 1); // singlestep OnBreak(); } else { // deal with the command history: if (strlen(tmpcb) > 79) DispMessage ("Running command, but history has an 80 char Max.", "Command history overflow"); else { strcpy (CmdHistory[CmdHInsert], tmpcb); CmdHInsert = (CmdHInsert + 1) & 63; // circular buffer, 0 to 63 } strcpy (debug_cmd,tmpcb); // send the command into the bochs internal debugger debug_cmd_ready = TRUE; AtBreak = FALSE; ClearInputWindow(); // prepare for the next command CommandHistoryIdx = 0; // and reset the history queue to the new end } } } // end the switch // if (Control >= 0 && ww >= ' ' && ww < 0x7f) -- might be interesting to catch printable chars // return 1; return 0; } void ActivateMenuItem (int cmd) { int i; switch(cmd) { case CMD_CONT: // run/go/continue if (AtBreak != FALSE && debug_cmd_ready == FALSE) { // The VGAW *MUST* be refreshed periodically -- it's best to use the timer. // Which means that the sim cannot be directly run from this msglp thread. *debug_cmd = 'c'; // send a fake "continue" command to the internal debugger debug_cmd[1] = 0; debug_cmd_ready = TRUE; AtBreak = FALSE; StatusChange = TRUE; } break; case CMD_STEP1: // step 1 if (AtBreak != FALSE && debug_cmd_ready == FALSE) { bx_dbg_stepN_command(CurrentCPU, 1); // singlestep StatusChange = TRUE; OnBreak(); } break; case CMD_STEPN: // step N doStepN(); break; case CMD_BREAK: // break/stop the sim // SIM->debug_break() only "break"s the internal debugger SIM->debug_break(); break; case CMD_BRKPT: // set or delete breakpoint(s) at the selected address(es) SetBreak(-1); break; case CMD_WPTWR: // set or delete a data write watchpoint SetWatchpoint(&num_write_watchpoints,write_watchpoint); break; case CMD_WPTRD: // set or delete a data read watchpoint SetWatchpoint(&num_read_watchpoints,read_watchpoint); break; case CMD_FIND: // find -- Control-F doFind(); break; case CMD_RFRSH: // force an update/refresh BottomAsmLA = ~0; // force an ASM autoload ResizeColmns = TRUE; // force everything to repaint doDumpRefresh = TRUE; // force a data window reload on a break if (AtBreak != FALSE) // can't refresh the windows until a break! { doUpdate(); // refresh the ASM and Register windows RefreshDataWin(); // and whichever data window is up } break; case CMD_PHYDMP: // "physical mem" data dump InitDataDump(0,(Bit64u) 1); break; case CMD_LINDMP: // "linear memory" data dump InitDataDump(1,(Bit64u) 1); break; case CMD_STACK: // toggle display of Stack ToggleStack(); break; case CMD_GDTV: // toggle display of GDT ToggleGDT(); break; case CMD_IDTV: // toggle display of IDT ToggleIDT(); break; case CMD_PAGEV: // display paging info TogglePAGE(); break; case CMD_VBRK: // display breakpoint/watchpoint info ToggleBrkpt(); break; case CMD_CMEM: // view current MemDump -- acts like "cancel" CommandHistoryIdx = 0; ClearInputWindow(); ShowMemData(FALSE); // force a "normal" MemDump window break; case CMD_PTREE: TogglePTree(); break; case CMD_DISASM: // disassemble starting at a particular address doDisAsm(); break; case CMD_MODEB: // toggle the simulation's Mode-Change-Break flag { // toggle mode_break on cpu0, use that value to reset all CPUs bx_bool nmb = BX_CPU(0)->mode_break ^ TRUE; i = TotCPUs; while (--i >= 0) BX_CPU(i)->mode_break = nmb; SetMenuCheckmark ((int) nmb, CHK_CMD_MODEB); break; } case CMD_ONECPU: // toggle whether to show SMP CPUs if (AtBreak == FALSE) break; SingleCPU ^= TRUE; TotCPUs = 1; if (SingleCPU == FALSE) TotCPUs = BX_SMP_PROCESSORS; SetMenuCheckmark ((int) SingleCPU, CHK_CMD_ONECPU); VSizeChange(); break; case CMD_DADEF: // set default # of disassembly lines in a list if (AtBreak == FALSE) break; sprintf (tmpcb,"%d",DefaultAsmLines); if (AskText("Disassembly default linecount","Max. 2048:",tmpcb) == FALSE) return; sscanf (tmpcb,"%u",&i); if (i > 0 && i <= 2048) DefaultAsmLines = i; if (i > 1000 && FWflag == FALSE) // friendly warning ShowFW(); break; case CMD_ATTI: // Toggle ASM Syntax bx_disassemble.toggle_syntax_mode(); if (AtBreak != FALSE) { // do the standard ASM window fill sequence Bit64u h = CurrentAsmLA; CanDoLA(&h); FillAsm(h, DefaultAsmLines); } else BottomAsmLA = ~0; // force an ASM autoload break; case CMD_IOWIN: // toggle display of internal debugger Input and Output windows if (AtBreak == FALSE) break; ShowIOWindows ^= TRUE; SetMenuCheckmark ((int) ShowIOWindows, CHK_CMD_IOWIN); VSizeChange(); break; case CMD_SBTN: // Toggle showing top pushbutton-row if (AtBreak == FALSE) break; ShowButtons ^= TRUE; SetMenuCheckmark ((int) ShowButtons, CHK_CMD_SBTN); VSizeChange(); break; case CMD_UCASE: // Toggle showing everything in uppercase UprCase ^= 1; SetMenuCheckmark ((int) UprCase, CHK_CMD_UCASE); MakeRDnames(); if (AtBreak != FALSE) { LoadRegList(); // do the standard ASM window fill sequence Bit64u h = CurrentAsmLA; CanDoLA(&h); FillAsm(h, DefaultAsmLines); } else BottomAsmLA = ~0; // force an ASM autoload break; case CMD_MHEX: // Toggle showing hex in Dump window i = DumpInAsciiMode; i ^= 2; if (i != 0) { DumpInAsciiMode = i; i &= 2; SetMenuCheckmark (i, CHK_CMD_MHEX); GrayMenuItem (i, CMD_MASCII); PrevDAD = 0; // force columns to resize if (DViewMode == VIEW_MEMDUMP && DumpInitted != FALSE) { if (AtBreak == FALSE) doDumpRefresh = TRUE; else ShowData(); } } break; case CMD_MASCII: // Toggle showing ASCII in Dump window i = DumpInAsciiMode; i ^= 1; if (i != 0) { DumpInAsciiMode = i; i &= 1; SetMenuCheckmark (i, CHK_CMD_MASCII); GrayMenuItem (i, CMD_MHEX); PrevDAD = 0; // force columns to resize if (DViewMode == VIEW_MEMDUMP && DumpInitted != FALSE) { if (AtBreak == FALSE) doDumpRefresh = TRUE; else ShowData(); } } break; case CMD_LEND: // Toggle Endianness for the MemDumps isLittleEndian ^= TRUE; SetMenuCheckmark ((int) isLittleEndian, CHK_CMD_LEND); if (DViewMode == VIEW_MEMDUMP && DumpInitted != FALSE) { if (AtBreak == FALSE) doDumpRefresh = TRUE; else ShowData(); } break; case CMD_WS_1: // set memory dump "wordsize" // "Align" = "wordsize" -- from 1 to 16 doNewWSize(0); break; case CMD_WS_2: doNewWSize(1); break; case CMD_WS_4: doNewWSize(2); break; case CMD_WS_8: doNewWSize(3); break; case CMD_WS16: doNewWSize(4); break; case CMD_IGNSA: // Toggle ID disassembly output ignoring ignSSDisasm ^= TRUE; SetMenuCheckmark ((int) ignSSDisasm, CHK_CMD_IGNSA); break; case CMD_IGNNT: // Toggle NextT ignoring ignoreNxtT ^= TRUE; SetMenuCheckmark ((int) ignoreNxtT, CHK_CMD_IGNNT); break; case CMD_RCLR: // Toggle Register Coloring SeeRegColors ^= TRUE; SetMenuCheckmark ((int) SeeRegColors, CHK_CMD_RCLR); if (AtBreak != FALSE) LoadRegList(); break; case CMD_EREG: // Show Registers of various types case CMD_SREG: case CMD_SYSR: case CMD_CREG: case CMD_FPUR: case CMD_XMMR: case CMD_DREG: case CMD_TREG: ToggleSeeReg(cmd); break; case CMD_ABOUT: // "About" box DispMessage ("Bochs Enhanced Debugger, Version 1.2\r\nCopyright (C) Chourdakis Michael.\r\nModified by Bruce Ewing", "About"); break; case CMD_FONT: // font ResizeColmns = TRUE; // column widths are font dependent if (NewFont() != FALSE) VSizeChange(); } } void InitDebugDialog() { DoAllInit(); // non-os-specific init stuff OSInit(); } #endif