///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (c) 2006-2012 Stanislav Shwartsman // Written by Stanislav Shwartsman [sshwarts at sourceforge net] // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA #include #include "bochs.h" #include "cpu/cpu.h" #include "disasm/disasm.h" // maximum size of an instruction #define MAX_OPCODE_LENGTH 16 // maximum physical addresses an instruction can generate #define MAX_DATA_ACCESSES 1024 // Use this variable to turn on/off collection of instrumentation data // If you are not using the debugger to turn this on/off, then possibly // start this at 1 instead of 0. static bx_bool active = 1; static disassembler bx_disassembler; static struct instruction_t { bx_bool ready; // is current instruction ready to be printed unsigned opcode_length; Bit8u opcode[MAX_OPCODE_LENGTH]; bx_bool is32, is64; unsigned num_data_accesses; struct { bx_address laddr; // linear address bx_phy_address paddr; // physical address unsigned rw; // BX_READ, BX_WRITE or BX_RW unsigned size; // 1 .. 32 } data_access[MAX_DATA_ACCESSES]; bx_bool is_branch; bx_bool is_taken; bx_address target_linear; } *instruction; static logfunctions *instrument_log = new logfunctions (); #define LOG_THIS instrument_log-> void bx_instr_init_env(void) {} void bx_instr_exit_env(void) {} void bx_instr_initialize(unsigned cpu) { assert(cpu < BX_SMP_PROCESSORS); if (instruction == NULL) instruction = new struct instruction_t[BX_SMP_PROCESSORS]; fprintf(stderr, "Initialize cpu %d\n", cpu); } void bx_instr_reset(unsigned cpu, unsigned type) { instruction[cpu].ready = 0; instruction[cpu].num_data_accesses = 0; instruction[cpu].is_branch = 0; } void bx_print_instruction(unsigned cpu, const instruction_t *i) { char disasm_tbuf[512]; // buffer for instruction disassembly unsigned length = i->opcode_length, n; bx_disassembler.disasm(i->is32, i->is64, 0, 0, i->opcode, disasm_tbuf); if(length != 0) { fprintf(stderr, "----------------------------------------------------------\n"); fprintf(stderr, "CPU %d: %s\n", cpu, disasm_tbuf); fprintf(stderr, "LEN %d\tBYTES: ", length); for(n=0;n < length;n++) fprintf(stderr, "%02x", i->opcode[n]); if(i->is_branch) { fprintf(stderr, "\tBRANCH "); if(i->is_taken) fprintf(stderr, "TARGET " FMT_ADDRX " (TAKEN)", i->target_linear); else fprintf(stderr, "(NOT TAKEN)"); } fprintf(stderr, "\n"); for(n=0;n < i->num_data_accesses;n++) { fprintf(stderr, "MEM ACCESS[%u]: 0x" FMT_ADDRX " (linear) 0x" FMT_PHY_ADDRX " (physical) %s SIZE: %d\n", n, i->data_access[n].laddr, i->data_access[n].paddr, i->data_access[n].rw == BX_READ ? "RD":"WR", i->data_access[n].size); } fprintf(stderr, "\n"); } } void bx_instr_before_execution(unsigned cpu, bxInstruction_c *bx_instr) { if (!active) return; instruction_t *i = &instruction[cpu]; if (i->ready) bx_print_instruction(cpu, i); // prepare instruction_t structure for new instruction i->ready = 1; i->num_data_accesses = 0; i->is_branch = 0; i->is32 = BX_CPU(cpu)->sregs[BX_SEG_REG_CS].cache.u.segment.d_b; i->is64 = BX_CPU(cpu)->long64_mode(); i->opcode_length = bx_instr->ilen(); memcpy(i->opcode, bx_instr->get_opcode_bytes(), i->opcode_length); } void bx_instr_after_execution(unsigned cpu, bxInstruction_c *bx_instr) { if (!active) return; instruction_t *i = &instruction[cpu]; if (i->ready) { bx_print_instruction(cpu, i); i->ready = 0; } } static void branch_taken(unsigned cpu, bx_address new_eip) { if (!active || !instruction[cpu].ready) return; instruction[cpu].is_branch = 1; instruction[cpu].is_taken = 1; // find linear address instruction[cpu].target_linear = BX_CPU(cpu)->get_laddr(BX_SEG_REG_CS, new_eip); } void bx_instr_cnear_branch_taken(unsigned cpu, bx_address branch_eip, bx_address new_eip) { branch_taken(cpu, new_eip); } void bx_instr_cnear_branch_not_taken(unsigned cpu, bx_address branch_eip) { if (!active || !instruction[cpu].ready) return; instruction[cpu].is_branch = 1; instruction[cpu].is_taken = 0; } void bx_instr_ucnear_branch(unsigned cpu, unsigned what, bx_address branch_eip, bx_address new_eip) { branch_taken(cpu, new_eip); } void bx_instr_far_branch(unsigned cpu, unsigned what, Bit16u new_cs, bx_address new_eip) { branch_taken(cpu, new_eip); } void bx_instr_interrupt(unsigned cpu, unsigned vector) { if(active) { fprintf(stderr, "CPU %u: interrupt %02xh\n", cpu, vector); } } void bx_instr_exception(unsigned cpu, unsigned vector, unsigned error_code) { if(active) { fprintf(stderr, "CPU %u: exception %02xh, error_code = %x\n", cpu, vector, error_code); } } void bx_instr_hwinterrupt(unsigned cpu, unsigned vector, Bit16u cs, bx_address eip) { if(active) { fprintf(stderr, "CPU %u: hardware interrupt %02xh\n", cpu, vector); } } void bx_instr_lin_access(unsigned cpu, bx_address lin, bx_phy_address phy, unsigned len, unsigned rw) { if(!active || !instruction[cpu].ready) return; unsigned index = instruction[cpu].num_data_accesses; if (index < MAX_DATA_ACCESSES) { instruction[cpu].data_access[index].laddr = lin; instruction[cpu].data_access[index].paddr = phy; instruction[cpu].data_access[index].rw = rw; instruction[cpu].data_access[index].size = len; instruction[cpu].num_data_accesses++; index++; } }