/*---------------------------------------------------------------------------+ | poly_tan.c | | $Id: poly_tan.c,v 1.4 2001-10-06 03:53:46 bdenney Exp $ | | | Compute the tan of a FPU_REG, using a polynomial approximation. | | | | Copyright (C) 1992,1993,1994,1997,1999 | | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, | | Australia. E-mail billm@melbpc.org.au | | | | | +---------------------------------------------------------------------------*/ #include "exception.h" #include "reg_constant.h" #include "fpu_emu.h" #include "fpu_system.h" #include "control_w.h" #include "poly.h" //#define DEBUG_POLY_TAN // *********** #define HiPOWERop 3 /* odd poly, positive terms */ static const u64 oddplterm[HiPOWERop] = { BX_CONST64(0x0000000000000000), BX_CONST64(0x0051a1cf08fca228), BX_CONST64(0x0000000071284ff7) }; #define HiPOWERon 2 /* odd poly, negative terms */ static const u64 oddnegterm[HiPOWERon] = { BX_CONST64(0x1291a9a184244e80), BX_CONST64(0x0000583245819c21) }; #define HiPOWERep 2 /* even poly, positive terms */ static const u64 evenplterm[HiPOWERep] = { BX_CONST64(0x0e848884b539e888), BX_CONST64(0x00003c7f18b887da) }; #define HiPOWERen 2 /* even poly, negative terms */ static const u64 evennegterm[HiPOWERen] = { BX_CONST64(0xf1f0200fd51569cc), BX_CONST64(0x003afb46105c4432) }; static const u64 twothirds = BX_CONST64(0xaaaaaaaaaaaaaaab); /*--- poly_tan() ------------------------------------------------------------+ | | +---------------------------------------------------------------------------*/ void poly_tan(FPU_REG *st0_ptr, int invert) { s32 exponent; Xsig argSq, argSqSq, accumulatoro, accumulatore, accum, argSignif; exponent = exponent(st0_ptr); #ifdef PARANOID if ( signnegative(st0_ptr) ) /* Can't hack a number < 0.0 */ { arith_invalid(0); return; } /* Need a positive number */ #endif /* PARANOID */ if ( (exponent >= 0) || ((exponent == -1) && (st0_ptr->sigh > 0xc90fdaa2)) ) { EXCEPTION(0x250); } else { argSignif.lsw = 0; XSIG_LL(accum) = XSIG_LL(argSignif) = significand(st0_ptr); if ( exponent < -1 ) { /* shift the argument right by the required places */ if ( FPU_shrx(&XSIG_LL(accum), -1-exponent) >= 0x80000000U ) XSIG_LL(accum) ++; /* round up */ } } XSIG_LL(argSq) = XSIG_LL(accum); argSq.lsw = accum.lsw; mul_Xsig_Xsig(&argSq, &argSq); XSIG_LL(argSqSq) = XSIG_LL(argSq); argSqSq.lsw = argSq.lsw; mul_Xsig_Xsig(&argSqSq, &argSqSq); /* Compute the negative terms for the numerator polynomial */ accumulatoro.msw = accumulatoro.midw = accumulatoro.lsw = 0; polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddnegterm, HiPOWERon-1); mul_Xsig_Xsig(&accumulatoro, &argSq); negate_Xsig(&accumulatoro); /* Add the positive terms */ polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddplterm, HiPOWERop-1); /* Compute the positive terms for the denominator polynomial */ accumulatore.msw = accumulatore.midw = accumulatore.lsw = 0; polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evenplterm, HiPOWERep-1); mul_Xsig_Xsig(&accumulatore, &argSq); negate_Xsig(&accumulatore); /* Add the negative terms */ polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evennegterm, HiPOWERen-1); /* Multiply by arg^2 */ mul64_Xsig(&accumulatore, &XSIG_LL(argSignif)); mul64_Xsig(&accumulatore, &XSIG_LL(argSignif)); /* de-normalize and divide by 2 */ shr_Xsig(&accumulatore, -2*(1+exponent) + 1); negate_Xsig(&accumulatore); /* This does 1 - accumulator */ /* Now find the ratio. */ if ( accumulatore.msw == 0 ) { /* accumulatoro must contain 1.0 here, (actually, 0) but it really doesn't matter what value we use because it will have negligible effect in later calculations */ XSIG_LL(accum) = BX_CONST64(0x8000000000000000); accum.lsw = 0; } else { div_Xsig(&accumulatoro, &accumulatore, &accum); } /* Multiply by 1/3 * arg^3 */ mul64_Xsig(&accum, &XSIG_LL(argSignif)); mul64_Xsig(&accum, &XSIG_LL(argSignif)); mul64_Xsig(&accum, &XSIG_LL(argSignif)); mul64_Xsig(&accum, &twothirds); shr_Xsig(&accum, -2*(exponent+1)); /* tan(arg) = arg + accum */ add_two_Xsig(&accum, &argSignif, &exponent); if ( invert ) { /* accum now contains tan(pi/2 - arg). Use tan(arg) = 1.0 / tan(pi/2 - arg) */ accumulatoro.lsw = accumulatoro.midw = 0; accumulatoro.msw = 0x80000000; div_Xsig(&accumulatoro, &accum, &accum); exponent = - exponent; } /* Transfer the result */ exponent += round_Xsig(&accum); FPU_settag0(TAG_Valid); significand(st0_ptr) = XSIG_LL(accum); setexponent16(st0_ptr, exponent + EXTENDED_Ebias); /* Result is positive. */ }