///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001-2020 The Bochs Project // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA // ///////////////////////////////////////////////////////////////////////// // // Intro to siminterface by Bryce Denney: // // Before I can describe what this file is for, I have to make the // distinction between a configuration interface (CI) and the VGA display // window (VGAW). I will try to avoid the term 'GUI' because it is unclear // if that means CI or VGAW, and because not all interfaces are graphical // anyway. // // The traditional Bochs screen is a window with a large VGA display panel and // a series of buttons (floppy, cdrom, snapshot, power). Over the years, we // have collected many implementations of the VGAW for different environments // and platforms; each implementation is in a separate file under gui/*: // x.cc, win32.cc, macintosh.cc, etc. The files gui.h and gui.cc // define the platform independent part of the VGAW, leaving about 15 methods // of the bx_gui_c class undefined. The platform dependent file must // implement the remaining 15 methods. // // The configuration interface is relatively new, started by Bryce Denney in // June 2001. The CI is intended to allow the user to edit a variety of // configuration and runtime options. Some options, such as memory size or // enabling the ethernet card, should only be changed before the simulation // begins; others, such as floppy disk image, instructions per second, and // logging options can be safely changed at runtime. The CI allows the user to // make these changes. Before the CI existed, only a few things could be // changed at runtime, all linked to clicking on the VGAW buttons. // // At the time that the CI was conceived, we were still debating what form the // user interface part would take: stdin/stdout menus, a graphical application // with menus and dialogs running in a separate thread, or even a tiny web // server that you can connect to with a web browser. As a result the // interface to the CI was designed so that the user interface of the CI // could be replaced easily at compile time, or maybe even at runtime via // a plugin architecture. To this end, we kept a clear separation between // the user interface code and the siminterface, the code that interfaces with // the simulator. The same siminterface is used all the time, while // different implementations of the CI can be switched in reasonably easily. // Only the CI code uses library specific graphics and I/O functions; the // siminterface deals in portable abstractions and callback functions. // The first CI implementation was a series of text mode menus implemented in // textconfig.cc. // // The configuration interface MUST use the siminterface methods to access the // simulator. It should not modify settings in some device with code like // bx_floppy.s.media[2].heads = 17. If such access is needed, then a // siminterface method should be written to make the change on the CI's behalf. // This separation is enforced by the fact that the CI does not even include // bochs.h. You'll notice that textconfig.cc includes osdep.h, textconfig.h, // and siminterface.h, so it doesn't know what bx_floppy or bx_cpu_c are. // I'm sure some people will say is overly restrictive and/or annoying. When I // set it up this way, we were still talking about making the CI in a seperate // process, where direct method calls would be impossible. Also, we have been // considering turning devices into plugin modules which are dynamically // linked. Any direct references to something like bx_floppy.s.media[2].heads // would have to be reworked before a plugin interface was possible as well. // // The siminterface is the glue between the CI and the simulator. There is // just one global instance of the siminterface object, which can be referred // to by the global variable bx_simulator_interface_c *SIM. The base class // bx_simulator_interface_c, contains only virtual functions and it defines the // interface that the CI is allowed to use. In siminterface.cc, a class // called bx_real_sim_c is defined with bx_simulator_interface_c as its parent // class. Bx_real_sim_c implements each of the functions. The separation into // parent class and child class leaves the possibility of making a different // child class that talks to the simulator in a different way (networking for // example). If you were writing a user interface in a separate process, you // could define a subclass of bx_simulator_interface_c called // bx_siminterface_proxy_c which opens up a network port and turns all method // calls into network sends and receives. Because the interface is defined // entirely by the base class, the code that calls the methods would not know // the difference. // // An important part of the siminterface implementation is the use of parameter // classes, or bx_param_*. The parameter classes are described below, where // they are declared. Search for "parameter classes" below for details. // // Also this header file declares data structures for certain events that pass // between the siminterface and the CI. Search for "event structures" below. ////////////////////////////////////////////////////// // BX_USE_TEXTCONFIG should be set to 1 when the text mode configuration interface // is compiled in. This gives each type of parameter a text_print and text_ask // method (defined in gui/textconfig.cc) so that you can call text_ask() on any // kind of parameter to ask the user to edit the value. // // I have been considering whether to use the same strategy for the // wxWidgets interface, but I'm not sure if I like it. One problem is // that in order to declare member functions that are useful for // wxWidgets, the wxWidgets header files would have to be included // before the param object definitions. That means that all the // wxWidgets headers would have be included when compiling every // single bochs file. One of the things I like about the separation // between the simulator and CI is that the two parts can be // compiled without any knowledge of the other. Bochs doesn't include // , and the wxWidgets CI (wxmain.cc) doesn't need to include . // Aside from making compiles faster, this enforces the use of the siminterface // so it keeps the interface clean (important when we may have multiple UI // implementations for example). This argues for keeping UI-specific // structures out of the simulator interface. It certainly works ok for the // text interface, but that's because FILE* is standard and portable. ////////////////////////////////////////////////////// // base value for generated new parameter id #define BXP_NEW_PARAM_ID 1001 enum { #define bx_define_cpudb(model) bx_cpudb_##model, #include "cpudb.h" bx_cpudb_model_last }; #undef bx_define_cpudb #if BX_SUPPORT_SMP #define BX_SMP_PROCESSORS (bx_cpu_count) #else #define BX_SMP_PROCESSORS 1 #endif typedef enum { BX_TOOLBAR_UNDEFINED, BX_TOOLBAR_FLOPPYA, BX_TOOLBAR_FLOPPYB, BX_TOOLBAR_CDROM1, BX_TOOLBAR_RESET, BX_TOOLBAR_POWER, BX_TOOLBAR_SAVE_RESTORE, BX_TOOLBAR_COPY, BX_TOOLBAR_PASTE, BX_TOOLBAR_SNAPSHOT, BX_TOOLBAR_CONFIG, BX_TOOLBAR_MOUSE_EN, BX_TOOLBAR_USER } bx_toolbar_buttons; // Log level defines typedef enum { LOGLEV_DEBUG = 0, LOGLEV_INFO, LOGLEV_ERROR, LOGLEV_PANIC, N_LOGLEV } bx_log_levels; // Log action defines typedef enum { ACT_IGNORE = 0, ACT_REPORT, ACT_WARN, ACT_ASK, ACT_FATAL, N_ACT } bx_log_actions; #define BX_NULL_PREFIX "[ ]" // normally all action choices are available for all event types. The exclude // expression allows some choices to be eliminated if they don't make any // sense. For example, it would be stupid to ignore a panic. #define BX_LOG_OPTS_EXCLUDE(type, choice) ( \ /* can't die, ask or warn, on debug or info events */ \ (type <= LOGLEV_INFO && (choice >= ACT_WARN)) \ /* can't ignore panics */ \ || (type == LOGLEV_PANIC && choice == ACT_IGNORE) \ ) // floppy / cdrom media status #define BX_EJECTED 0 #define BX_INSERTED 1 // boot devices (using the same values as the rombios) enum { BX_BOOT_NONE, BX_BOOT_FLOPPYA, BX_BOOT_DISKC, BX_BOOT_CDROM, BX_BOOT_NETWORK }; // loader hack #define Load32bitOSNone 0 #define Load32bitOSLinux 1 #define Load32bitOSNullKernel 2 // being developed for plex86 #define Load32bitOSLast 2 /////////////////////////////////////////////////////////////////// // event structures for communication between simulator and CI /////////////////////////////////////////////////////////////////// // Because the CI (configuration interface) might be in a different // thread or even a different process, we pass events encoded in data // structures to it instead of just calling functions. Each type of // event is declared as a different structure, and then all those // structures are squished into a union in BxEvent. (BTW, this is // almost exactly how X windows event structs work.) // // These are simple structs, unblemished by C++ methods and tricks. // No matter what event type it is, we allocate a BxEvent for each // one, as opposed to trying to save a few bytes on small events by // allocating only the bytes necessary for it. This makes it easy and // fast to store events in a queue, like this // BxEvent event_queue[MAX_EVENTS]; // // Events come in two varieties: synchronous and asynchronous. We // have to worry about sync and async events because the CI and the // simulation may be running in different threads. An async event is // the simplest. Whichever thread originates the event just builds // the data structure, sends it, and then continues with its business. // Async events can go in either direction. Synchronous events // require the other thread to "respond" before the originating thread // can continue. It's like a function with a return value; you can't // continue until you get the return value back. // // Examples: // // async event: In the wxWidgets implementation, both the CI and the // VGAW operate in the wxWidgets GUI thread. When the user presses a // key, wxWidgets sends a wxKeyEvent to the VGAW event handler code in // wx.cc. The VGAW handler then builds a BxEvent with // type=BX_ASYNC_EVT_KEY, and fills in the bx_key and raw_scancode // fields. The asynchronous event is placed on the event_queue for // the simulator, then the VGAW handler returns. (With wxWidgets and // many other graphical libaries, the event handler must return // quickly because the window will not be updated until it's done.) // Some time later, the simulator reaches the point where it checks // for new events from the user (actually controlled by // bx_devices_c::timer() in iodev/devices.cc) and calls // bx_gui->handle_events(). Then all the events in the queue are // processed by the simulator. There is no "response" sent back to // the originating thread. // // sync event: Sometimes the simulator reaches a point where it needs // to ask the user how to proceed. In this case, the simulator sends // a synchronous event because it requires a response before it can // continue. It builds an event structure, perhaps with type // BX_SYNC_EVT_ASK_PARAM, sends it to the user interface // using the event handler function defined by set_notify_callback(), // and pauses the simulation. The user interface asks the user the // question, and puts the answer into the BxEvent.retcode field. The // event handler function returns the modified BxEvent with retcode // filled in, and the simulation continues. The details of this // transaction can be complicated if the simulation and CI are not // in the same thread, but the behavior is as described. // ///// types and definitions used in event structures #define BX_EVT_IS_ASYNC(type) ((type) > __ALL_EVENTS_BELOW_ARE_ASYNC__) typedef enum { __ALL_EVENTS_BELOW_ARE_SYNCHRONOUS__ = 2000, BX_SYNC_EVT_GET_PARAM, // CI -> simulator -> CI BX_SYNC_EVT_ASK_PARAM, // simulator -> CI -> simulator BX_SYNC_EVT_TICK, // simulator -> CI, wait for response. BX_SYNC_EVT_LOG_DLG, // simulator -> CI, wait for response. BX_SYNC_EVT_GET_DBG_COMMAND, // simulator -> CI, wait for response. BX_SYNC_EVT_MSG_BOX, // simulator -> CI, wait for response. __ALL_EVENTS_BELOW_ARE_ASYNC__, BX_ASYNC_EVT_KEY, // vga window -> simulator BX_ASYNC_EVT_MOUSE, // vga window -> simulator BX_ASYNC_EVT_SET_PARAM, // CI -> simulator BX_ASYNC_EVT_LOG_MSG, // simulator -> CI BX_ASYNC_EVT_DBG_MSG, // simulator -> CI BX_ASYNC_EVT_VALUE_CHANGED, // simulator -> CI BX_ASYNC_EVT_TOOLBAR, // CI -> simulator BX_ASYNC_EVT_STATUSBAR, // simulator -> CI BX_ASYNC_EVT_REFRESH, // simulator -> CI BX_ASYNC_EVT_QUIT_SIM // simulator -> CI } BxEventType; typedef union { Bit32s s32; char *charptr; } AnyParamVal; // Define substructures which make up the interior of BxEvent. The // substructures, such as BxKeyEvent or BxMouseEvent, should never be // allocated on their own. They are only intended to be used within // the union in the BxEvent structure. // Event type: BX_SYNC_EVT_TICK // // A tick event is synchronous, sent from the simulator to the GUI. The // event doesn't do anything visible. Primarily it gives the GUI a chance // to tell the simulator to quit, if necessary. There may be other uses // for the tick in the future, such as giving some kind of regular // status report or mentioning watched values that changed, but so far // it's just for that one thing. There is no data associated with a // tick event. // Event type: BX_ASYNC_EVT_KEY // // A key event can be sent from the VGA window to the Bochs simulator. // It is asynchronous. typedef struct { // what was pressed? This is a BX_KEY_* value. For key releases, // BX_KEY_RELEASED is ORed with the base BX_KEY_*. Bit32u bx_key; bx_bool raw_scancode; } BxKeyEvent; // Event type: BX_ASYNC_EVT_MOUSE // // A mouse event can be sent from the VGA window to the Bochs // simulator. It is asynchronous. typedef struct { // type is BX_EVT_MOUSE Bit16s dx, dy, dz; // mouse motion delta Bit8u buttons; // which buttons are pressed. // bit 0: 1=left button down, 0=up // bit 1: 1=right button down, 0=up // bit 2: 1=middle button down, 0=up } BxMouseEvent; // Event type: BX_SYNC_EVT_GET_PARAM, BX_ASYNC_EVT_SET_PARAM // // Parameter set/get events are initiated by the CI, since Bochs can // always access the parameters directly. So far, I haven't used // these event types. In the CI I just call // SIM->get_param(parameter_id) to get a pointer to the bx_param_c // object and then call the get/set methods. This is okay for // configuration since bochs is not running. However it could be // dangerous for the GUI thread to poke around in Bochs structures // while the thread is running. For these cases, I may have to be // more careful and actually build get/set events and place them on // Bochs's event queue to be processed during SIM->periodic() or // something. typedef struct { // type is BX_EVT_GET_PARAM, BX_EVT_SET_PARAM class bx_param_c *param; // pointer to param structure AnyParamVal val; } BxParamEvent; // Event type: BX_SYNC_EVT_ASK_PARAM // Synchronous event sent from the simulator to the CI. This tells the // CI to ask the user to choose the value of a parameter. The CI may // need to discover the type of parameter so that it can use the right // kind of graphical display. The BxParamEvent is used for these events // too. // FIXME: at the moment the GUI implements the ASK_PARAM event for just // a few parameter types. I need to implement the event for all parameter // types. // Event type: BX_ASYNC_EVT_VALUE_CHANGED // // Asynchronous event sent from the simulator to the CI, telling it that // some value that it (hopefully) cares about has changed. This isn't // being used yet, but a good example is in a debugger interface, you might // want to maintain a reasonably current display of the PC or some other // simulation state. The CI would set some kind of event mask (which // doesn't exist now of course) and then when certain values change, the // simulator would send this event so that the CI can update. We may need // some kind of "flow control" since the simulator will be able to produce // new events much faster than the gui can accept them. // Event type: BX_ASYNC_EVT_LOG_MSG // // Asynchronous event from the simulator to the CI. When a BX_PANIC, // BX_ERROR, BX_INFO, or BX_DEBUG is found in the simulator code, this // event type can be used to inform the CI of the condition. There is // no point in sending messages to the CI that will not be displayed; these // would only slow the simulation. So we will need some mechanism for // choosing what kinds of events will be delivered to the CI. Normally, // you wouldn't want to look at the log unless something is going wrong. // At that point, you might want to open up a window to watch the debug // messages from one or two devices only. // // Idea: Except for panics that require user attention to continue, it // might be most efficient to just append log messages to a file. // When the user wants to look at the log messages, the gui can reopen // the file (read only), skip to the end, and look backward for a // reasonable number of lines to display (200?). This allows it to // skip over huge bursts of log entries without allocating memory, // synchronizing threads, etc. for each. typedef struct { Bit8u level; Bit8u mode; const char *prefix; const char *msg; } BxLogMsgEvent; // Event type: BX_ASYNC_EVT_DBG_MSG // // Also uses BxLogMsgEvent, but this is a message to be displayed in // the debugger history window. // Event type: BX_SYNC_EVT_LOG_DLG // // This is a synchronous version of BX_ASYNC_EVT_LOG_MSG, which is used // when the "action=ask" setting is used. If the simulator runs into a // panic, it sends a synchronous BX_SYNC_EVT_LOG_DLG to the CI to be // displayed. The CI shows a dialog that asks if the user wants to // continue, quit, etc. and sends the answer back to the simulator. // This event also uses BxLogMsgEvent. enum { BX_LOG_ASK_CHOICE_CONTINUE, BX_LOG_ASK_CHOICE_CONTINUE_ALWAYS, BX_LOG_ASK_CHOICE_DIE, BX_LOG_ASK_CHOICE_DUMP_CORE, BX_LOG_ASK_CHOICE_ENTER_DEBUG, BX_LOG_ASK_N_CHOICES, BX_LOG_NOTIFY_FAILED }; enum { BX_LOG_DLG_ASK, BX_LOG_DLG_WARN, BX_LOG_DLG_QUIT }; // Event type: BX_SYNC_EVT_GET_DBG_COMMAND // // This is a synchronous event sent from the simulator to the debugger // requesting the next action. In a text mode debugger, this would prompt // the user for the next command. When a new command is ready, the // synchronous event is sent back with its fields filled in. typedef struct { char *command; // null terminated string. allocated by debugger interface // with new operator, freed by simulator with delete. } BxDebugCommand; // Event type: BX_ASYNC_EVT_TOOLBAR // Asynchronous event from the VGAW to the simulator, sent when the user // clicks on a toolbar button. This may one day become something more // general, like a command event, but at the moment it's only needed for // the toolbar events. typedef struct { bx_toolbar_buttons button; bx_bool on; // for toggling buttons, on=true means the toolbar button is // pressed. on=false means it is not pressed. } BxToolbarEvent; // Event type: BX_ASYNC_EVT_STATUSAR typedef struct { int element; char *text; bx_bool active; bx_bool w; } BxStatusbarEvent; // The BxEvent structure should be used for all events. Every event has // a type and a spot for a return code (only used for synchronous events). typedef struct { BxEventType type; // what kind is this? Bit32s retcode; // success or failure. only used for synchronous events. union { BxKeyEvent key; BxMouseEvent mouse; BxParamEvent param; BxLogMsgEvent logmsg; BxToolbarEvent toolbar; BxStatusbarEvent statbar; BxDebugCommand debugcmd; } u; } BxEvent; #include "paramtree.h" // These are the different start modes. enum { // Just start the simulation without running the configuration interface // at all, unless something goes wrong. BX_QUICK_START = 200, // Run the configuration interface. The default action will be to load a // configuration file. This makes sense if a config file could not be // loaded, either because it wasn't found or because it had errors. BX_LOAD_START, // Run the configuration interface. The default action will be to // edit the configuration. BX_EDIT_START, // Run the configuration interface, but make the default action be to // start the simulation. BX_RUN_START }; enum { BX_DDC_MODE_DISABLED, BX_DDC_MODE_BUILTIN, BX_DDC_MODE_FILE }; enum { BX_MOUSE_TYPE_NONE, BX_MOUSE_TYPE_PS2, BX_MOUSE_TYPE_IMPS2, #if BX_SUPPORT_BUSMOUSE BX_MOUSE_TYPE_INPORT, BX_MOUSE_TYPE_BUS, #endif BX_MOUSE_TYPE_SERIAL, BX_MOUSE_TYPE_SERIAL_WHEEL, BX_MOUSE_TYPE_SERIAL_MSYS }; enum { BX_MOUSE_TOGGLE_CTRL_MB, BX_MOUSE_TOGGLE_CTRL_F10, BX_MOUSE_TOGGLE_CTRL_ALT, BX_MOUSE_TOGGLE_F12 }; #define BX_FDD_NONE 0 // floppy not present #define BX_FDD_525DD 1 // 360K 5.25" #define BX_FDD_525HD 2 // 1.2M 5.25" #define BX_FDD_350DD 3 // 720K 3.5" #define BX_FDD_350HD 4 // 1.44M 3.5" #define BX_FDD_350ED 5 // 2.88M 3.5" #define BX_FLOPPY_NONE 10 // media not present #define BX_FLOPPY_1_2 11 // 1.2M 5.25" #define BX_FLOPPY_1_44 12 // 1.44M 3.5" #define BX_FLOPPY_2_88 13 // 2.88M 3.5" #define BX_FLOPPY_720K 14 // 720K 3.5" #define BX_FLOPPY_360K 15 // 360K 5.25" #define BX_FLOPPY_160K 16 // 160K 5.25" #define BX_FLOPPY_180K 17 // 180K 5.25" #define BX_FLOPPY_320K 18 // 320K 5.25" #define BX_FLOPPY_LAST 18 // last legal value of floppy type #define BX_FLOPPY_AUTO 19 // autodetect image size #define BX_FLOPPY_UNKNOWN 20 // image size doesn't match one of the types above #define BX_ATA_DEVICE_NONE 0 #define BX_ATA_DEVICE_DISK 1 #define BX_ATA_DEVICE_CDROM 2 #define BX_ATA_BIOSDETECT_AUTO 0 #define BX_ATA_BIOSDETECT_CMOS 1 #define BX_ATA_BIOSDETECT_NONE 2 enum { BX_SECT_SIZE_512, BX_SECT_SIZE_1024, BX_SECT_SIZE_4096 }; enum { BX_ATA_TRANSLATION_NONE, BX_ATA_TRANSLATION_LBA, BX_ATA_TRANSLATION_LARGE, BX_ATA_TRANSLATION_RECHS, BX_ATA_TRANSLATION_AUTO }; #define BX_ATA_TRANSLATION_LAST BX_ATA_TRANSLATION_AUTO enum { BX_HDIMAGE_MODE_FLAT, BX_HDIMAGE_MODE_CONCAT, BX_HDIMAGE_MODE_EXTDISKSIM, BX_HDIMAGE_MODE_DLL_HD, BX_HDIMAGE_MODE_SPARSE, BX_HDIMAGE_MODE_VMWARE3, BX_HDIMAGE_MODE_VMWARE4, BX_HDIMAGE_MODE_UNDOABLE, BX_HDIMAGE_MODE_GROWING, BX_HDIMAGE_MODE_VOLATILE, BX_HDIMAGE_MODE_VVFAT, BX_HDIMAGE_MODE_VPC, BX_HDIMAGE_MODE_VBOX }; #define BX_HDIMAGE_MODE_LAST BX_HDIMAGE_MODE_VBOX #define BX_HDIMAGE_MODE_UNKNOWN -1 enum { BX_CLOCK_SYNC_NONE, BX_CLOCK_SYNC_REALTIME, BX_CLOCK_SYNC_SLOWDOWN, BX_CLOCK_SYNC_BOTH }; #define BX_CLOCK_SYNC_LAST BX_CLOCK_SYNC_BOTH enum { BX_PCI_CHIPSET_I430FX, BX_PCI_CHIPSET_I440FX, BX_PCI_CHIPSET_I440BX }; enum { BX_CPUID_SUPPORT_NOSSE, BX_CPUID_SUPPORT_SSE, BX_CPUID_SUPPORT_SSE2, BX_CPUID_SUPPORT_SSE3, BX_CPUID_SUPPORT_SSSE3, BX_CPUID_SUPPORT_SSE4_1, BX_CPUID_SUPPORT_SSE4_2, #if BX_SUPPORT_AVX BX_CPUID_SUPPORT_AVX, BX_CPUID_SUPPORT_AVX2, #if BX_SUPPORT_EVEX BX_CPUID_SUPPORT_AVX512 #endif #endif }; enum { BX_CPUID_SUPPORT_LEGACY_APIC, BX_CPUID_SUPPORT_XAPIC, #if BX_CPU_LEVEL >= 6 BX_CPUID_SUPPORT_XAPIC_EXT, BX_CPUID_SUPPORT_X2APIC #endif }; #define BX_CLOCK_TIME0_LOCAL 1 #define BX_CLOCK_TIME0_UTC 2 enum { BX_SOUNDDRV_DUMMY, #if BX_HAVE_SOUND_ALSA BX_SOUNDDRV_ALSA, #endif #if BX_HAVE_SOUND_OSS BX_SOUNDDRV_OSS, #endif #if BX_HAVE_SOUND_OSX BX_SOUNDDRV_OSX, #endif #if BX_HAVE_SOUND_SDL BX_SOUNDDRV_SDL, #endif #if BX_HAVE_SOUND_WIN BX_SOUNDDRV_WIN, #endif BX_SOUNDDRV_FILE }; BOCHSAPI extern const char *floppy_devtype_names[]; BOCHSAPI extern const char *floppy_type_names[]; BOCHSAPI extern int floppy_type_n_sectors[]; BOCHSAPI extern const char *media_status_names[]; BOCHSAPI extern const char *bochs_bootdisk_names[]; BOCHSAPI extern const char *hdimage_mode_names[]; BOCHSAPI extern const char *sound_driver_names[]; //////////////////////////////////////////////////////////////////// // base class simulator interface, contains just virtual functions. // I'm not longer sure that having a base class is going to be of any // use... -Bryce #include enum ci_command_t { CI_START, CI_RUNTIME_CONFIG, CI_SHUTDOWN }; enum ci_return_t { CI_OK, // normal return value CI_ERR_NO_TEXT_CONSOLE // err: can't work because there's no text console }; typedef int (*config_interface_callback_t)(void *userdata, ci_command_t command); typedef BxEvent* (*bxevent_handler)(void *theclass, BxEvent *event); typedef void (*rt_conf_handler_t)(void *this_ptr); typedef Bit32s (*addon_option_parser_t)(const char *context, int num_params, char *params[]); typedef Bit32s (*addon_option_save_t)(FILE *fp); // bx_gui->set_display_mode() changes the mode between the configuration // interface and the simulation. This is primarily intended for display // libraries which have a full-screen mode such as SDL or term. The display // mode is set to DISP_MODE_CONFIG before displaying any configuration // menus, for panics that requires user input, when entering the debugger, etc. // It is set to DISP_MODE_SIM when the Bochs simulation resumes. The constants // are defined here so that configuration interfaces can use them with the // bx_simulator_interface_c::set_display_mode() method. enum disp_mode_t { DISP_MODE_CONFIG=100, DISP_MODE_SIM }; class BOCHSAPI bx_simulator_interface_c { public: bx_simulator_interface_c() {} virtual ~bx_simulator_interface_c() {} virtual void set_quit_context(jmp_buf *context) {} virtual int get_init_done() { return 0; } virtual int set_init_done(int n) {return 0;} virtual void reset_all_param() {} // new param methods virtual bx_param_c *get_param(const char *pname, bx_param_c *base=NULL) {return NULL;} virtual bx_param_num_c *get_param_num(const char *pname, bx_param_c *base=NULL) {return NULL;} virtual bx_param_string_c *get_param_string(const char *pname, bx_param_c *base=NULL) {return NULL;} virtual bx_param_bool_c *get_param_bool(const char *pname, bx_param_c *base=NULL) {return NULL;} virtual bx_param_enum_c *get_param_enum(const char *pname, bx_param_c *base=NULL) {return NULL;} virtual unsigned gen_param_id() {return 0;} virtual int get_n_log_modules() {return -1;} virtual const char *get_logfn_name(int mod) {return NULL;} virtual int get_logfn_id(const char *name) {return -1;} virtual const char *get_prefix(int mod) {return NULL;} virtual int get_log_action(int mod, int level) {return -1;} virtual void set_log_action(int mod, int level, int action) {} virtual int get_default_log_action(int level) {return -1;} virtual void set_default_log_action(int level, int action) {} virtual const char *get_action_name(int action) {return NULL;} virtual int is_action_name(const char *val) {return -1;} virtual const char *get_log_level_name(int level) {return NULL;} virtual int get_max_log_level() {return -1;} // exiting is somewhat complicated! The preferred way to exit bochs is // to call BX_EXIT(exitcode). That is defined to call // SIM->quit_sim(exitcode). The quit_sim function first calls // the cleanup functions in bochs so that it can destroy windows // and free up memory, then sends a notify message to the CI // telling it that bochs has stopped. virtual void quit_sim(int code) {} virtual int get_exit_code() { return 0; } virtual int get_default_rc(char *path, int len) {return -1;} virtual int read_rc(const char *path) {return -1;} virtual int write_rc(const char *rc, int overwrite) {return -1;} virtual int get_log_file(char *path, int len) {return -1;} virtual int set_log_file(const char *path) {return -1;} virtual int get_log_prefix(char *prefix, int len) {return -1;} virtual int set_log_prefix(const char *prefix) {return -1;} virtual int get_debugger_log_file(char *path, int len) {return -1;} virtual int set_debugger_log_file(const char *path) {return -1;} virtual int hdimage_get_mode(const char *mode) {return -1;} // The CI calls set_notify_callback to register its event handler function. // This event handler function is called whenever the simulator needs to // send an event to the CI. For example, if the simulator hits a panic and // wants to ask the user how to proceed, it would call the CI event handler // to ask the CI to display a dialog. // // NOTE: At present, the standard VGAW buttons (floppy, snapshot, power, // etc.) are displayed and handled by gui.cc, not by the CI or siminterface. // gui.cc uses its own callback functions to implement the behavior of // the buttons. Some of these implementations call the siminterface. virtual void set_notify_callback(bxevent_handler func, void *arg) {} virtual void get_notify_callback(bxevent_handler *func, void **arg) {} // send an event from the simulator to the CI. virtual BxEvent* sim_to_ci_event(BxEvent *event) {return NULL;} // called from simulator to display a gui dialog in particular situations. // 1. When it hits serious errors, to ask if the user wants to continue or not. // 2. When it hits errors, to warn the user before continuing simulation // 3. When it hits critical errors, inform the user before terminating simulation. virtual int log_dlg(const char *prefix, int level, const char *msg, int mode) {return -1;} // called from simulator when writing a message to log file virtual void log_msg(const char *prefix, int level, const char *msg) {} // set this to 1 if the gui has a log viewer virtual void set_log_viewer(bx_bool val) {} virtual bx_bool has_log_viewer() const {return 0;} // tell the CI to ask the user for the value of a parameter. virtual int ask_param(bx_param_c *param) {return -1;} virtual int ask_param(const char *pname) {return -1;} // ask the user for a pathname virtual int ask_filename(const char *filename, int maxlen, const char *prompt, const char *the_default, int flags) {return -1;} // yes/no dialog virtual int ask_yes_no(const char *title, const char *prompt, bx_bool the_default) {return -1;} // simple message box virtual void message_box(const char *title, const char *message) {} // called at a regular interval, currently by the bx_devices_c::timer() virtual void periodic() {} virtual int create_disk_image(const char *filename, int sectors, bx_bool overwrite) {return -3;} // Tell the configuration interface (CI) that some parameter values have // changed. The CI will reread the parameters and change its display if it's // appropriate. Maybe later: mention which params have changed to save time. virtual void refresh_ci() {} // forces a vga update. This was added so that a debugger can force // a vga update when single stepping, without having to wait thousands // of cycles for the normal vga refresh triggered by the vga timer handler.. virtual void refresh_vga() {} // forces a call to bx_gui.handle_events. This was added so that a debugger // can force the gui events to be handled, so that interactive things such // as a toolbar click will be processed. virtual void handle_events() {} // return first hard disk in ATA interface virtual bx_param_c *get_first_cdrom() {return NULL;} // return first cdrom in ATA interface virtual bx_param_c *get_first_hd() {return NULL;} // return 1 if device is connected to a PCI slot virtual bx_bool is_pci_device(const char *name) {return 0;} // return 1 if device is connected to the AGP slot virtual bx_bool is_agp_device(const char *name) {return 0;} #if BX_DEBUGGER // for debugger: same behavior as pressing control-C virtual void debug_break() {} virtual void debug_interpret_cmd(char *cmd) {} virtual char *debug_get_next_command() {return NULL;} virtual void debug_puts(const char *text) {} #endif virtual void register_configuration_interface( const char* name, config_interface_callback_t callback, void *userdata) {} virtual int configuration_interface(const char* name, ci_command_t command) {return -1; } virtual int begin_simulation(int argc, char *argv[]) {return -1;} virtual int register_runtime_config_handler(void *dev, rt_conf_handler_t handler) {return 0;} virtual void unregister_runtime_config_handler(int id) {} virtual void update_runtime_options() {} typedef bx_bool (*is_sim_thread_func_t)(); is_sim_thread_func_t is_sim_thread_func; virtual void set_sim_thread_func(is_sim_thread_func_t func) { is_sim_thread_func = func; } virtual bx_bool is_sim_thread() {return 1;} virtual bx_bool is_wx_selected() const {return 0;} virtual void set_debug_gui(bx_bool val) {} virtual bx_bool has_debug_gui() const {return 0;} // provide interface to bx_gui->set_display_mode() method for config // interfaces to use. virtual void set_display_mode(disp_mode_t newmode) {} virtual bx_bool test_for_text_console() {return 1;} // add-on config option support virtual bx_bool register_addon_option(const char *keyword, addon_option_parser_t parser, addon_option_save_t save_func) {return 0;} virtual bx_bool unregister_addon_option(const char *keyword) {return 0;} virtual bx_bool is_addon_option(const char *keyword) {return 0;} virtual Bit32s parse_addon_option(const char *context, int num_params, char *params []) {return -1;} virtual Bit32s save_addon_options(FILE *fp) {return -1;} // statistics virtual void init_statistics() {} virtual void cleanup_statistics() {} virtual bx_list_c *get_statistics_root() {return NULL;} // save/restore support virtual void init_save_restore() {} virtual void cleanup_save_restore() {} virtual bx_bool save_state(const char *checkpoint_path) {return 0;} virtual bx_bool restore_config() {return 0;} virtual bx_bool restore_logopts() {return 0;} virtual bx_bool restore_hardware() {return 0;} virtual bx_list_c *get_bochs_root() {return NULL;} virtual bx_bool restore_bochs_param(bx_list_c *root, const char *sr_path, const char *restore_name) { return 0; } // special config parameter and options functions for plugins virtual bx_bool opt_plugin_ctrl(const char *plugname, bx_bool load) {return 0;} virtual void init_std_nic_options(const char *name, bx_list_c *menu) {} virtual void init_usb_options(const char *usb_name, const char *pname, int maxports) {} virtual int parse_param_from_list(const char *context, const char *param, bx_list_c *base) {return 0;} virtual int parse_nic_params(const char *context, const char *param, bx_list_c *base) {return 0;} virtual int parse_usb_port_params(const char *context, bx_bool devopt, const char *param, int maxports, bx_list_c *base) {return 0;} virtual int split_option_list(const char *msg, const char *rawopt, char **argv, int max_argv) {return 0;} virtual int write_param_list(FILE *fp, bx_list_c *base, const char *optname, bx_bool multiline) {return 0;} virtual int write_usb_options(FILE *fp, int maxports, bx_list_c *base) {return 0;} #if BX_USE_GUI_CONSOLE virtual int bx_printf(const char *fmt, ...) {return 0;} virtual char* bx_gets(char *s, int size, FILE *stream) {return NULL;} #endif }; BOCHSAPI extern bx_simulator_interface_c *SIM; extern void bx_init_siminterface(); #if defined(__WXMSW__) || defined(WIN32) // Just to provide HINSTANCE, etc. in files that have not included bochs.h. // I don't like this at all, but I don't see a way around it. #include #endif // define structure to hold data that is passed into our main function. typedef struct BOCHSAPI { // standard argc,argv int argc; char **argv; #ifdef WIN32 char initial_dir[MAX_PATH]; #endif #ifdef __WXMSW__ // these are only used when compiling with wxWidgets. This gives us a // place to store the data that was passed to WinMain. HINSTANCE hInstance; HINSTANCE hPrevInstance; LPSTR m_lpCmdLine; int nCmdShow; #endif } bx_startup_flags_t; BOCHSAPI extern bx_startup_flags_t bx_startup_flags; BOCHSAPI extern bx_bool bx_user_quit; BOCHSAPI extern Bit8u bx_cpu_count;