///////////////////////////////////////////////////////////////////////// // $Id: crc32.cc,v 1.2 2009-01-16 18:18:58 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (c) 2008 Stanislav Shwartsman // Written by Stanislav Shwartsman [sshwarts at sourceforge net] // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA // ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR // 3-byte opcodes #if (BX_SUPPORT_SSE >= 4) || (BX_SUPPORT_SSE >= 3 && BX_SUPPORT_SSE_EXTENSION > 0) #define CRC32_POLYNOMIAL BX_CONST64(0x11edc6f41) #if (BX_SUPPORT_SSE > 4) || (BX_SUPPORT_SSE >= 4 && BX_SUPPORT_SSE_EXTENSION > 0) // primitives for CRC32 usage BX_CPP_INLINE Bit8u BitReflect8(Bit8u val8) { return ((val8 & 0x80) >> 7) | ((val8 & 0x40) >> 5) | ((val8 & 0x20) >> 3) | ((val8 & 0x10) >> 1) | ((val8 & 0x08) << 1) | ((val8 & 0x04) << 3) | ((val8 & 0x02) << 5) | ((val8 & 0x01) << 7); } BX_CPP_INLINE Bit16u BitReflect16(Bit16u val16) { return ((Bit16u)(BitReflect8(val16 & 0xff)) << 8) | BitReflect8(val16 >> 8); } BX_CPP_INLINE Bit32u BitReflect32(Bit32u val32) { return ((Bit32u)(BitReflect16(val32 & 0xffff)) << 16) | BitReflect16(val32 >> 16); } static Bit32u mod2_64bit(Bit64u divisor, Bit64u dividend) { Bit64u remainder = dividend >> 32; for (int bitpos=31; bitpos>=0; bitpos--) { // copy one more bit from the dividend remainder = (remainder << 1) | ((dividend >> bitpos) & 1); // if MSB is set, then XOR divisor and get new remainder if (((remainder >> 32) & 1) == 1) { remainder ^= divisor; } } return remainder; } #endif // (BX_SUPPORT_SSE > 4) || (BX_SUPPORT_SSE >= 4 && BX_SUPPORT_SSE_EXTENSION > 0) void BX_CPP_AttrRegparmN(1) BX_CPU_C::CRC32_GdEb(bxInstruction_c *i) { #if (BX_SUPPORT_SSE > 4) || (BX_SUPPORT_SSE >= 4 && BX_SUPPORT_SSE_EXTENSION > 0) Bit8u op1; if (i->modC0()) { op1 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL()); } else { bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); op1 = read_virtual_byte(i->seg(), eaddr); } Bit32u op2 = BX_READ_32BIT_REG(i->nnn()); op2 = BitReflect32(op2); Bit64u tmp1 = ((Bit64u) BitReflect8 (op1)) << 32; Bit64u tmp2 = ((Bit64u) op2) << 8; Bit64u tmp3 = tmp1 ^ tmp2; op2 = mod2_64bit(CRC32_POLYNOMIAL, tmp3); /* now write result back to destination */ BX_WRITE_32BIT_REGZ(i->nnn(), BitReflect32(op2)); #else BX_INFO(("CRC32_GdEb: required SSE4_2 support, use --enable-sse and --enable-sse-extension options")); exception(BX_UD_EXCEPTION, 0, 0); #endif } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CRC32_GdEw(bxInstruction_c *i) { #if (BX_SUPPORT_SSE > 4) || (BX_SUPPORT_SSE >= 4 && BX_SUPPORT_SSE_EXTENSION > 0) Bit32u op2 = BX_READ_32BIT_REG(i->nnn()); op2 = BitReflect32(op2); Bit16u op1; if (i->modC0()) { op1 = BX_READ_16BIT_REG(i->rm()); } else { bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); op1 = read_virtual_word(i->seg(), eaddr); } Bit64u tmp1 = ((Bit64u) BitReflect16(op1)) << 32; Bit64u tmp2 = ((Bit64u) op2) << 16; Bit64u tmp3 = tmp1 ^ tmp2; op2 = mod2_64bit(CRC32_POLYNOMIAL, tmp3); /* now write result back to destination */ BX_WRITE_32BIT_REGZ(i->nnn(), BitReflect32(op2)); #else BX_INFO(("CRC32_GdEw: required SSE4_2 support, use --enable-sse and --enable-sse-extension options")); exception(BX_UD_EXCEPTION, 0, 0); #endif } void BX_CPP_AttrRegparmN(1) BX_CPU_C::CRC32_GdEd(bxInstruction_c *i) { #if (BX_SUPPORT_SSE > 4) || (BX_SUPPORT_SSE >= 4 && BX_SUPPORT_SSE_EXTENSION > 0) Bit32u op2 = BX_READ_32BIT_REG(i->nnn()); op2 = BitReflect32(op2); Bit32u op1; if (i->modC0()) { op1 = BX_READ_32BIT_REG(i->rm()); } else { bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); op1 = read_virtual_dword(i->seg(), eaddr); } Bit64u tmp1 = ((Bit64u) BitReflect32(op1)) << 32; Bit64u tmp2 = ((Bit64u) op2) << 32; Bit64u tmp3 = tmp1 ^ tmp2; op2 = mod2_64bit(CRC32_POLYNOMIAL, tmp3); /* now write result back to destination */ BX_WRITE_32BIT_REGZ(i->nnn(), BitReflect32(op2)); #else BX_INFO(("CRC32_GdEd: required SSE4_2 support, use --enable-sse and --enable-sse-extension options")); exception(BX_UD_EXCEPTION, 0, 0); #endif } #if BX_SUPPORT_X86_64 void BX_CPP_AttrRegparmN(1) BX_CPU_C::CRC32_GdEq(bxInstruction_c *i) { #if (BX_SUPPORT_SSE > 4) || (BX_SUPPORT_SSE >= 4 && BX_SUPPORT_SSE_EXTENSION > 0) Bit32u op2 = BX_READ_32BIT_REG(i->nnn()); op2 = BitReflect32(op2); Bit64u op1; if (i->modC0()) { op1 = BX_READ_64BIT_REG(i->rm()); } else { bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); op1 = read_virtual_qword_64(i->seg(), eaddr); } Bit64u tmp1 = ((Bit64u) BitReflect32(op1 & 0xffffffff)) << 32; Bit64u tmp2 = ((Bit64u) op2) << 32; Bit64u tmp3 = tmp1 ^ tmp2; op2 = mod2_64bit(CRC32_POLYNOMIAL, tmp3); tmp1 = ((Bit64u) BitReflect32(op1 >> 32)) << 32; tmp2 = ((Bit64u) op2) << 32; tmp3 = tmp1 ^ tmp2; op2 = mod2_64bit(CRC32_POLYNOMIAL, tmp3); /* now write result back to destination */ BX_WRITE_32BIT_REGZ(i->nnn(), BitReflect32(op2)); #else BX_INFO(("CRC32_GdEq: required SSE4_2 support, use --enable-sse and --enable-sse-extension options")); exception(BX_UD_EXCEPTION, 0, 0); #endif } #endif // BX_SUPPORT_X86_64 #endif // (BX_SUPPORT_SSE >= 4) || (BX_SUPPORT_SSE >= 3 && BX_SUPPORT_SSE_EXTENSION > 0)