///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (c) 2008-2014 Stanislav Shwartsman // Written by Stanislav Shwartsman [sshwarts at sourceforge net] // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA // ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Eb(bxInstruction_c *i) { bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); TMP8L = read_virtual_byte(i->seg(), eaddr); BX_CPU_CALL_METHOD(i->execute2(), (i)); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Ew(bxInstruction_c *i) { bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); TMP16 = read_virtual_word(i->seg(), eaddr); BX_CPU_CALL_METHOD(i->execute2(), (i)); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Ed(bxInstruction_c *i) { bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); TMP32 = read_virtual_dword(i->seg(), eaddr); BX_CPU_CALL_METHOD(i->execute2(), (i)); } #if BX_SUPPORT_X86_64 BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Eq(bxInstruction_c *i) { bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); TMP64 = read_virtual_qword_64(i->seg(), eaddr); BX_CPU_CALL_METHOD(i->execute2(), (i)); } #endif BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Wb(bxInstruction_c *i) { #if BX_CPU_LEVEL >= 6 bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit8u val_8 = read_virtual_byte(i->seg(), eaddr); BX_WRITE_XMM_REG_LO_BYTE(BX_VECTOR_TMP_REGISTER, val_8); BX_CPU_CALL_METHOD(i->execute2(), (i)); #endif } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Ww(bxInstruction_c *i) { #if BX_CPU_LEVEL >= 6 bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit16u val_16 = read_virtual_word(i->seg(), eaddr); BX_WRITE_XMM_REG_LO_WORD(BX_VECTOR_TMP_REGISTER, val_16); BX_CPU_CALL_METHOD(i->execute2(), (i)); #endif } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Wss(bxInstruction_c *i) { #if BX_CPU_LEVEL >= 6 bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit32u val_32 = read_virtual_dword(i->seg(), eaddr); BX_WRITE_XMM_REG_LO_DWORD(BX_VECTOR_TMP_REGISTER, val_32); BX_CPU_CALL_METHOD(i->execute2(), (i)); #endif } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Wsd(bxInstruction_c *i) { #if BX_CPU_LEVEL >= 6 bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); Bit64u val_64 = read_virtual_qword(i->seg(), eaddr); BX_WRITE_XMM_REG_LO_QWORD(BX_VECTOR_TMP_REGISTER, val_64); BX_CPU_CALL_METHOD(i->execute2(), (i)); #endif } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Wdq(bxInstruction_c *i) { #if BX_CPU_LEVEL >= 6 bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); if (BX_CPU_THIS_PTR mxcsr.get_MM()) read_virtual_xmmword(i->seg(), eaddr, &BX_READ_XMM_REG(BX_TMP_REGISTER)); else read_virtual_xmmword_aligned(i->seg(), eaddr, &BX_READ_XMM_REG(BX_VECTOR_TMP_REGISTER)); BX_CPU_CALL_METHOD(i->execute2(), (i)); #endif } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::LOADU_Wdq(bxInstruction_c *i) { #if BX_CPU_LEVEL >= 6 bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); read_virtual_xmmword(i->seg(), eaddr, &BX_READ_XMM_REG(BX_VECTOR_TMP_REGISTER)); BX_CPU_CALL_METHOD(i->execute2(), (i)); #endif } #if BX_SUPPORT_AVX BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Vector(bxInstruction_c *i) { bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); unsigned len = i->getVL(); #if BX_SUPPORT_EVEX if (len == BX_VL512) { read_virtual_zmmword(i->seg(), eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER)); } else #endif { if (len == BX_VL256) read_virtual_ymmword(i->seg(), eaddr, &BX_READ_YMM_REG(BX_VECTOR_TMP_REGISTER)); else read_virtual_xmmword(i->seg(), eaddr, &BX_READ_XMM_REG(BX_VECTOR_TMP_REGISTER)); } BX_CPU_CALL_METHOD(i->execute2(), (i)); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Half_Vector(bxInstruction_c *i) { bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); unsigned len = i->getVL(); #if BX_SUPPORT_EVEX if (len == BX_VL512) { read_virtual_ymmword(i->seg(), eaddr, &BX_READ_YMM_REG(BX_VECTOR_TMP_REGISTER)); } else #endif { if (len == BX_VL256) { read_virtual_xmmword(i->seg(), eaddr, &BX_READ_XMM_REG(BX_VECTOR_TMP_REGISTER)); } else { Bit64u val_64 = read_virtual_qword(i->seg(), eaddr); BX_WRITE_XMM_REG_LO_QWORD(BX_VECTOR_TMP_REGISTER, val_64); } } BX_CPU_CALL_METHOD(i->execute2(), (i)); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Quarter_Vector(bxInstruction_c *i) { bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); unsigned len = i->getVL(); #if BX_SUPPORT_EVEX if (len == BX_VL512) { read_virtual_xmmword(i->seg(), eaddr, &BX_READ_XMM_REG(BX_VECTOR_TMP_REGISTER)); } else #endif { if (len == BX_VL256) { Bit64u val_64 = read_virtual_qword(i->seg(), eaddr); BX_WRITE_XMM_REG_LO_QWORD(BX_VECTOR_TMP_REGISTER, val_64); } else { Bit32u val_32 = read_virtual_dword(i->seg(), eaddr); BX_WRITE_XMM_REG_LO_DWORD(BX_VECTOR_TMP_REGISTER, val_32); } } BX_CPU_CALL_METHOD(i->execute2(), (i)); } BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_Oct_Vector(bxInstruction_c *i) { bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); unsigned len = i->getVL(); #if BX_SUPPORT_EVEX if (len == BX_VL512) { Bit64u val_64 = read_virtual_qword(i->seg(), eaddr); BX_WRITE_XMM_REG_LO_QWORD(BX_VECTOR_TMP_REGISTER, val_64); } else #endif { if (len == BX_VL256) { Bit32u val_32 = read_virtual_dword(i->seg(), eaddr); BX_WRITE_XMM_REG_LO_DWORD(BX_VECTOR_TMP_REGISTER, val_32); } else { Bit16u val_16 = read_virtual_word(i->seg(), eaddr); BX_WRITE_XMM_REG_LO_WORD(BX_VECTOR_TMP_REGISTER, val_16); } } BX_CPU_CALL_METHOD(i->execute2(), (i)); } #endif #if BX_SUPPORT_EVEX #include "simd_int.h" // load vector of words, support masked fault suppression, no broadcast BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_MASK_VectorW(bxInstruction_c *i) { Bit32u opmask = (i->opmask() != 0) ? BX_READ_32BIT_OPMASK(i->opmask()) : 0xffffffff; if (opmask == 0) { BX_CPU_CALL_METHOD(i->execute2(), (i)); // for now let execute method to deal with zero/merge masking semantics return; } bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); avx_masked_load16(i, eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER), opmask); BX_CPU_CALL_METHOD(i->execute2(), (i)); } // load vector of dwords, support broadcast, no fault suppression BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_BROADCAST_VectorD(bxInstruction_c *i) { bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); unsigned len = i->getVL(); if (i->getEvexb()) { Bit32u val_32 = read_virtual_dword(i->seg(), eaddr); simd_pbroadcastd(&BX_AVX_REG(BX_VECTOR_TMP_REGISTER), val_32, len * 4); } else { if (len == BX_VL512) read_virtual_zmmword(i->seg(), eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER)); if (len == BX_VL256) read_virtual_ymmword(i->seg(), eaddr, &BX_READ_YMM_REG(BX_VECTOR_TMP_REGISTER)); else read_virtual_xmmword(i->seg(), eaddr, &BX_READ_XMM_REG(BX_VECTOR_TMP_REGISTER)); } BX_CPU_CALL_METHOD(i->execute2(), (i)); } // load vector of dwords, support broadcast and masked fault suppression BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_BROADCAST_MASK_VectorD(bxInstruction_c *i) { Bit32u opmask = (i->opmask() != 0) ? BX_READ_16BIT_OPMASK(i->opmask()) : 0xffff; if (opmask == 0) { BX_CPU_CALL_METHOD(i->execute2(), (i)); // for now let execute method to deal with zero/merge masking semantics return; } bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); unsigned len = i->getVL(); if (i->getEvexb()) { Bit32u val_32 = read_virtual_dword(i->seg(), eaddr); simd_pbroadcastd(&BX_AVX_REG(BX_VECTOR_TMP_REGISTER), val_32, len * 4); } else { avx_masked_load32(i, eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER), opmask); } BX_CPU_CALL_METHOD(i->execute2(), (i)); } // load vector of qwords, support broadcast, no fault suppression BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_BROADCAST_VectorQ(bxInstruction_c *i) { bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); unsigned len = i->getVL(); if (i->getEvexb()) { Bit64u val_64 = read_virtual_qword(i->seg(), eaddr); simd_pbroadcastq(&BX_AVX_REG(BX_VECTOR_TMP_REGISTER), val_64, len * 2); } else { if (len == BX_VL512) read_virtual_zmmword(i->seg(), eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER)); if (len == BX_VL256) read_virtual_ymmword(i->seg(), eaddr, &BX_READ_YMM_REG(BX_VECTOR_TMP_REGISTER)); else read_virtual_xmmword(i->seg(), eaddr, &BX_READ_XMM_REG(BX_VECTOR_TMP_REGISTER)); } BX_CPU_CALL_METHOD(i->execute2(), (i)); } // load vector of qwords, support broadcast and masked fault suppression BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_BROADCAST_MASK_VectorQ(bxInstruction_c *i) { Bit32u opmask = (i->opmask() != 0) ? BX_READ_8BIT_OPMASK(i->opmask()) : 0xff; if (opmask == 0) { BX_CPU_CALL_METHOD(i->execute2(), (i)); // for now let execute method to deal with zero/merge masking semantics return; } bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); unsigned len = i->getVL(); if (i->getEvexb()) { Bit64u val_64 = read_virtual_qword(i->seg(), eaddr); simd_pbroadcastq(&BX_AVX_REG(BX_VECTOR_TMP_REGISTER), val_64, len * 2); } else { avx_masked_load64(i, eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER), opmask); } BX_CPU_CALL_METHOD(i->execute2(), (i)); } // load half vector of dwords, support broadcast, no fault suppression BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_BROADCAST_Half_VectorD(bxInstruction_c *i) { bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); unsigned len = i->getVL(); if (i->getEvexb()) { Bit32u val_32 = read_virtual_dword(i->seg(), eaddr); simd_pbroadcastd(&BX_AVX_REG(BX_VECTOR_TMP_REGISTER), val_32, len * 2); } else { if (len == BX_VL512) { read_virtual_ymmword(i->seg(), eaddr, &BX_READ_YMM_REG(BX_VECTOR_TMP_REGISTER)); } if (len == BX_VL256) { read_virtual_xmmword(i->seg(), eaddr, &BX_READ_XMM_REG(BX_VECTOR_TMP_REGISTER)); } else { Bit64u val_64 = read_virtual_qword(i->seg(), eaddr); BX_WRITE_XMM_REG_LO_QWORD(BX_VECTOR_TMP_REGISTER, val_64); } } BX_CPU_CALL_METHOD(i->execute2(), (i)); } // load half vector of dwords, support broadcast and masked fault suppression BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::LOAD_BROADCAST_MASK_Half_VectorD(bxInstruction_c *i) { unsigned len = i->getVL(); Bit32u opmask = (i->opmask() != 0) ? BX_READ_16BIT_OPMASK(i->opmask()) : 0xffff; opmask &= (1 << (DWORD_ELEMENTS(len) - 1)) - 1; if (opmask == 0) { BX_CPU_CALL_METHOD(i->execute2(), (i)); // for now let execute method to deal with zero/merge masking semantics return; } bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i)); if (i->getEvexb()) { Bit32u val_32 = read_virtual_dword(i->seg(), eaddr); simd_pbroadcastd(&BX_AVX_REG(BX_VECTOR_TMP_REGISTER), val_32, len * 2); } else { avx_masked_load32(i, eaddr, &BX_READ_AVX_REG(BX_VECTOR_TMP_REGISTER), opmask); } BX_CPU_CALL_METHOD(i->execute2(), (i)); } #endif