///////////////////////////////////////////////////////////////////////// // $Id: instr.h,v 1.10 2008-04-05 17:57:21 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (c) 2008 Stanislav Shwartsman // Written by Stanislav Shwartsman [sshwarts at sourceforge net] // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // ///////////////////////////////////////////////////////////////////////// #ifndef BX_INSTR_H # define BX_INSTR_H 1 class bxInstruction_c; // #if BX_USE_CPU_SMF typedef void (*BxExecutePtr_t)(bxInstruction_c *); typedef void (BX_CPP_AttrRegparmN(1) *BxExecutePtr_tR)(bxInstruction_c *); #else typedef void (BX_CPU_C::*BxExecutePtr_t)(bxInstruction_c *); typedef void (BX_CPU_C::*BxExecutePtr_tR)(bxInstruction_c *) BX_CPP_AttrRegparmN(1); #endif // // class bxInstruction_c { public: // Function pointers; a function to resolve the modRM address // given the current state of the CPU and the instruction data, // and a function to execute the instruction after resolving // the memory address (if any). BxExecutePtr_tR ResolveModrm; BxExecutePtr_tR execute; struct { // 7...2 (unused) // 1...1 stop trace (used with trace cache) // 0...0 opcode extension: 0-none, 1-0x0f used Bit8u metaInfo4; // 7...0 b1 - opcode byte Bit8u metaInfo3; // 7...4 (unused) // 3...0 ilen (0..15) Bit8u metaInfo2; // 7...7 extend8bit // 6...6 as64 // 5...5 os64 // 4...4 as32 // 3...3 os32 // 2...2 mod==c0 (modrm) // 1...0 repUsed (0=none, 2=0xF2, 3=0xF3) Bit8u metaInfo1; } metaInfo; #define BX_INSTR_METADATA_SEG 0 #define BX_INSTR_METADATA_DEST 1 #define BX_INSTR_METADATA_NNN 2 #define BX_INSTR_METADATA_RM 3 #define BX_INSTR_METADATA_BASE 4 #define BX_INSTR_METADATA_INDEX 5 #define BX_INSTR_METADATA_SCALE 6 #define BX_INSTR_METADATA_MODRM 7 // using 5-bit field for registers (16 regs in 64-bit, RIP, NIL) Bit8u metaData[8]; union { // Form (longest case): [opcode+modrm+sib/displacement32/immediate32] struct { union { Bit32u Id; Bit16u Iw; Bit8u Ib; }; union { Bit16u displ16u; // for 16-bit modrm forms Bit32u displ32u; // for 32-bit modrm forms }; } modRMForm; struct { union { Bit32u Id; Bit16u Iw; Bit8u Ib; }; union { Bit32u Id2; // Not used (for alignment) Bit16u Iw2; Bit8u Ib2; }; } IxIxForm; #if BX_SUPPORT_X86_64 struct { Bit64u Iq; // for MOV Rx,imm64 } IqForm; #endif }; BX_CPP_INLINE unsigned modC0() { // This is a cheaper way to test for modRM instructions where // the mod field is 0xc0. FetchDecode flags this condition since // it is quite common to be tested for. return metaInfo.metaInfo1 & (1<<2); } BX_CPP_INLINE unsigned assertModC0() { return metaInfo.metaInfo1 |= (1<<2); } BX_CPP_INLINE void setOpcodeReg(unsigned opreg) { // The opcodeReg form (low 3 bits of the opcode byte (extended // by REX.B on x86-64) to be used with IxIxForm or IqForm. metaData[BX_INSTR_METADATA_RM] = opreg; } BX_CPP_INLINE unsigned opcodeReg() { return metaData[BX_INSTR_METADATA_RM]; } BX_CPP_INLINE void setModRM(unsigned modrm) { metaData[BX_INSTR_METADATA_MODRM] = modrm; } BX_CPP_INLINE unsigned modrm() { return metaData[BX_INSTR_METADATA_MODRM]; } BX_CPP_INLINE void setNnn(unsigned nnn) { metaData[BX_INSTR_METADATA_NNN] = nnn; } BX_CPP_INLINE unsigned nnn() { return metaData[BX_INSTR_METADATA_NNN]; } BX_CPP_INLINE void setRm(unsigned rm) { metaData[BX_INSTR_METADATA_RM] = rm; } BX_CPP_INLINE unsigned rm() { return metaData[BX_INSTR_METADATA_RM]; } BX_CPP_INLINE void setSibScale(unsigned scale) { metaData[BX_INSTR_METADATA_SCALE] = scale; } BX_CPP_INLINE unsigned sibScale() { return metaData[BX_INSTR_METADATA_SCALE]; } BX_CPP_INLINE void setSibIndex(unsigned index) { metaData[BX_INSTR_METADATA_INDEX] = index; } BX_CPP_INLINE unsigned sibIndex() { return metaData[BX_INSTR_METADATA_INDEX]; } BX_CPP_INLINE void setSibBase(unsigned base) { metaData[BX_INSTR_METADATA_BASE] = base; } BX_CPP_INLINE unsigned sibBase() { return metaData[BX_INSTR_METADATA_BASE]; } BX_CPP_INLINE Bit32u displ32u() { return modRMForm.displ32u; } BX_CPP_INLINE Bit16u displ16u() { return modRMForm.displ16u; } BX_CPP_INLINE Bit32u Id() { return modRMForm.Id; } BX_CPP_INLINE Bit16u Iw() { return modRMForm.Iw; } BX_CPP_INLINE Bit8u Ib() { return modRMForm.Ib; } BX_CPP_INLINE Bit16u Iw2() { return IxIxForm.Iw2; } // Legacy BX_CPP_INLINE Bit8u Ib2() { return IxIxForm.Ib2; } // Legacy #if BX_SUPPORT_X86_64 BX_CPP_INLINE Bit64u Iq() { return IqForm.Iq; } #endif // Info in the metaInfo field. // Note: the 'L' at the end of certain flags, means the value returned // is for Logical comparisons, eg if (i->os32L() && i->as32L()). If you // want a bx_bool value, use os32B() etc. This makes for smaller // code, when a strict 0 or 1 is not necessary. BX_CPP_INLINE void init(unsigned os32, unsigned as32, unsigned os64, unsigned as64) { metaInfo.metaInfo1 = (os32<<3) | (as32<<4) | (os64<<5) | (as64<<6); metaInfo.metaInfo4 = 0; metaData[BX_INSTR_METADATA_SEG] = BX_SEG_REG_NULL; } BX_CPP_INLINE unsigned seg(void) { return metaData[BX_INSTR_METADATA_SEG]; } BX_CPP_INLINE void setSeg(unsigned val) { metaData[BX_INSTR_METADATA_SEG] = val; } BX_CPP_INLINE unsigned os32L(void) { return metaInfo.metaInfo1 & (1<<3); } BX_CPP_INLINE void setOs32B(unsigned bit) { metaInfo.metaInfo1 = (metaInfo.metaInfo1 & ~(1<<3)) | (bit<<3); } BX_CPP_INLINE void assertOs32(void) { metaInfo.metaInfo1 |= (1<<3); } BX_CPP_INLINE unsigned as32L(void) { return metaInfo.metaInfo1 & (1<<4); } BX_CPP_INLINE void setAs32B(unsigned bit) { metaInfo.metaInfo1 = (metaInfo.metaInfo1 & ~(1<<4)) | (bit<<4); } #if BX_SUPPORT_X86_64 BX_CPP_INLINE unsigned os64L(void) { return metaInfo.metaInfo1 & (1<<5); } BX_CPP_INLINE void assertOs64(void) { metaInfo.metaInfo1 |= (1<<5); } #else BX_CPP_INLINE unsigned os64L(void) { return 0; } #endif #if BX_SUPPORT_X86_64 BX_CPP_INLINE unsigned as64L(void) { return metaInfo.metaInfo1 & (1<<6); } BX_CPP_INLINE void setAs64B(unsigned bit) { metaInfo.metaInfo1 = (metaInfo.metaInfo1 & ~(1<<6)) | (bit<<6); } #else BX_CPP_INLINE unsigned as64L(void) { return 0; } #endif #if BX_SUPPORT_X86_64 BX_CPP_INLINE unsigned extend8bitL(void) { return metaInfo.metaInfo1 & (1<<7); } BX_CPP_INLINE void assertExtend8bit(void) { metaInfo.metaInfo1 |= (1<<7); } #endif BX_CPP_INLINE unsigned ilen(void) { return metaInfo.metaInfo2; } BX_CPP_INLINE void setILen(unsigned ilen) { metaInfo.metaInfo2 = ilen; } BX_CPP_INLINE unsigned repUsedL(void) { return metaInfo.metaInfo1 & 3; } BX_CPP_INLINE unsigned repUsedValue(void) { return metaInfo.metaInfo1 & 3; } BX_CPP_INLINE void setRepUsed(unsigned value) { metaInfo.metaInfo1 = (metaInfo.metaInfo1 & ~3) | (value); } BX_CPP_INLINE unsigned b1(void) { return metaInfo.metaInfo3; } BX_CPP_INLINE void setB1(unsigned b1) { metaInfo.metaInfo3 = b1 & 0xff; } BX_CPP_INLINE void setOpcodeExtension(void) { metaInfo.metaInfo4 |= 1; } BX_CPP_INLINE unsigned hasOpcodeExtension(void) { return metaInfo.metaInfo4 & 1; } #if BX_SUPPORT_TRACE_CACHE BX_CPP_INLINE void setStopTraceAttr(void) { metaInfo.metaInfo4 |= (1<<1); } BX_CPP_INLINE unsigned getStopTraceAttr(void) { return metaInfo.metaInfo4 & (1<<1); } #endif }; // #endif