///////////////////////////////////////////////////////////////////////// // $Id: misc_mem.cc,v 1.94 2006-06-06 16:46:08 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2002 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // I/O memory handlers API Copyright (C) 2003 by Frank Cornelis // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #include "bochs.h" #include "cpu/cpu.h" #include "iodev/iodev.h" #define LOG_THIS BX_MEM(0)-> #if BX_PROVIDE_CPU_MEMORY Bit32u BX_MEM_C::get_memory_in_k(void) { return(BX_MEM_THIS megabytes * 1024); } Bit32u BX_MEM_C::get_num_allocated_pages(void) { return(BX_MEM_THIS len / 4096); } BX_MEM_C::BX_MEM_C() { char mem[6]; snprintf(mem, 6, "MEM0"); put(mem); settype(MEMLOG); vector = NULL; actual_vector = NULL; len = 0; megabytes = 0; memory_handlers = NULL; } void BX_CPP_AttrRegparmN(2) BX_MEM_C::alloc_vector_aligned (size_t bytes, size_t alignment) { if (actual_vector != NULL) { BX_INFO (("freeing existing memory vector")); delete [] actual_vector; actual_vector = NULL; vector = NULL; } Bit64u test_mask = alignment - 1; actual_vector = new Bit8u [(unsigned int)(bytes+test_mask)]; // round address forward to nearest multiple of alignment. Alignment // MUST BE a power of two for this to work. Bit64u masked = ((Bit64u)(actual_vector + test_mask)) & ~test_mask; vector = (Bit8u *)masked; // sanity check: no lost bits during pointer conversion BX_ASSERT (sizeof(masked) >= sizeof(vector)); // sanity check: after realignment, everything fits in allocated space BX_ASSERT (vector+bytes <= actual_vector+bytes+test_mask); BX_INFO (("allocated memory at %p. after alignment, vector=%p", actual_vector, vector)); } BX_MEM_C::~BX_MEM_C() { if (BX_MEM_THIS vector != NULL) { delete [] actual_vector; actual_vector = NULL; vector = NULL; delete [] memory_handlers; memory_handlers = NULL; } else { BX_DEBUG(("Memory not freed as it wasn't allocated !")); } } void BX_MEM_C::init_memory(int memsize) { unsigned idx; BX_DEBUG(("Init $Id: misc_mem.cc,v 1.94 2006-06-06 16:46:08 sshwarts Exp $")); // you can pass 0 if memory has been allocated already through // the constructor, or the desired size of memory if it hasn't if (BX_MEM_THIS vector == NULL) { // memory not already allocated, do now... alloc_vector_aligned (memsize+ BIOSROMSZ + EXROMSIZE + 4096, BX_MEM_VECTOR_ALIGN); BX_MEM_THIS len = memsize; BX_MEM_THIS megabytes = memsize / (1024*1024); BX_MEM_THIS memory_handlers = new struct memory_handler_struct *[1024 * 1024]; BX_MEM_THIS rom = &BX_MEM_THIS vector[memsize]; BX_MEM_THIS bogus = &BX_MEM_THIS vector[memsize + BIOSROMSZ + EXROMSIZE]; #if BX_DEBUGGER unsigned pages = get_num_allocated_pages(); BX_MEM_THIS dbg_dirty_pages = new Bit8u[pages]; memset(BX_MEM_THIS dbg_dirty_pages, 0, pages); #endif memset(BX_MEM_THIS rom, 0xff, BIOSROMSZ + EXROMSIZE); memset(BX_MEM_THIS bogus, 0xff, 4096); for (idx = 0; idx < 1024 * 1024; idx++) BX_MEM_THIS memory_handlers[idx] = NULL; for (idx = 0; idx < 65; idx++) BX_MEM_THIS rom_present[idx] = 0; BX_INFO(("%.2fMB", (float)(BX_MEM_THIS megabytes))); } BX_MEM_THIS pci_enabled = SIM->get_param_bool(BXPN_I440FX_SUPPORT)->get(); BX_MEM_THIS smram_available = 0; BX_MEM_THIS smram_enable = 0; BX_MEM_THIS smram_restricted = 0; // accept only memory size which is multiply of 1M BX_ASSERT((BX_MEM_THIS len & 0xfffff) == 0); #if BX_SUPPORT_SAVE_RESTORE bx_list_c *list = new bx_list_c(SIM->get_sr_root(), "memory", "Memory State"); new bx_shadow_data_c(list, "ram", BX_MEM_THIS vector, BX_MEM_THIS len); #endif } #if BX_SUPPORT_APIC void put_8bit(Bit8u **pp, Bit8u value) { Bit8u *p = *pp; *p++ = value; *pp = p; } void put_16bit(Bit8u **pp, Bit16u value) { Bit8u *p = *pp; *p++ = value & 0xff; *p++ = (value >> 8) & 0xff; *pp = p; } void put_32bit(Bit8u **pp, Bit32u value) { Bit8u *p = *pp; *p++ = value & 0xff; *p++ = (value >> 8) & 0xff; *p++ = (value >> 16) & 0xff; *p++ = (value >> 24) & 0xff; *pp = p; } void put_string(Bit8u **pp, const char *str) { Bit8u *p = *pp; while (*str) *p++ = *str++; *pp = p; } Bit8u mp_checksum(const Bit8u *p, int len) { Bit8u sum = 0; for (int i = 0; i < len; i++) sum += p[i]; return (Bit8u)(-sum); } #endif // // Values for type: // 0 : System Bios // 1 : VGA Bios // 2 : Optional ROM Bios // void BX_MEM_C::load_ROM(const char *path, bx_phy_address romaddress, Bit8u type) { struct stat stat_buf; int fd, ret, i, start_idx, end_idx; unsigned long size, max_size, offset; bx_bool is_bochs_bios = 0; if (*path == '\0') { if (type == 2) { BX_PANIC(( "ROM: Optional ROM image undefined")); } else if (type == 1) { BX_PANIC(( "ROM: VGA BIOS image undefined")); } else { BX_PANIC(( "ROM: System BIOS image undefined")); } return; } // read in ROM BIOS image file fd = open(path, O_RDONLY #ifdef O_BINARY | O_BINARY #endif ); if (fd < 0) { if (type < 2) { BX_PANIC(( "ROM: couldn't open ROM image file '%s'.", path)); } else { BX_ERROR(( "ROM: couldn't open ROM image file '%s'.", path)); } return; } ret = fstat(fd, &stat_buf); if (ret) { if (type < 2) { BX_PANIC(( "ROM: couldn't stat ROM image file '%s'.", path)); } else { BX_ERROR(( "ROM: couldn't stat ROM image file '%s'.", path)); } return; } size = (unsigned long)stat_buf.st_size; if (type > 0) { max_size = 0x10000; } else { max_size = BIOSROMSZ; } if (size > max_size) { close(fd); BX_PANIC(("ROM: ROM image too large")); return; } if (type == 0) { if (romaddress > 0) { if ((romaddress + size) != 0x100000 && (romaddress + size)) { close(fd); BX_PANIC(("ROM: System BIOS must end at 0xfffff")); return; } } else { romaddress = (bx_phy_address)-size; } offset = romaddress & BIOS_MASK; if ((romaddress & 0xf0000) < 0xf0000) { BX_MEM_THIS rom_present[64] = 1; } is_bochs_bios = (strstr(path, "BIOS-bochs-latest") != NULL); } else { if ((size % 512) != 0) { close(fd); BX_PANIC(("ROM: ROM image size must be multiple of 512 (size = %ld)", size)); return; } if ((romaddress % 2048) != 0) { close(fd); BX_PANIC(("ROM: ROM image must start at a 2k boundary")); return; } if ((romaddress < 0xc0000) || (((romaddress + size - 1) > 0xdffff) && (romaddress < 0xe0000))) { close(fd); BX_PANIC(("ROM: ROM address space out of range")); return; } if (romaddress < 0xe0000) { offset = (romaddress & EXROM_MASK) + BIOSROMSZ; start_idx = ((romaddress - 0xc0000) >> 11); end_idx = start_idx + (size >> 11) + (((size % 2048) > 0) ? 1 : 0); } else { offset = romaddress & BIOS_MASK; start_idx = 64; end_idx = 64; } for (i = start_idx; i < end_idx; i++) { if (BX_MEM_THIS rom_present[i]) { close(fd); BX_PANIC(("ROM: address space 0x%x already in use", (i * 2048) + 0xc0000)); return; } else { BX_MEM_THIS rom_present[i] = 1; } } } while (size > 0) { ret = read(fd, (bx_ptr_t) &BX_MEM_THIS rom[offset], size); if (ret <= 0) { BX_PANIC(( "ROM: read failed on BIOS image: '%s'",path)); } size -= ret; offset += ret; } close(fd); offset -= (unsigned long)stat_buf.st_size; if ((romaddress != 0xe0000) || ((rom[offset] == 0x55) && (rom[offset] == 0xaa))) { Bit8u checksum = 0; for (i = 0; i < stat_buf.st_size; i++) { checksum += BX_MEM_THIS rom[offset + i]; } if (checksum != 0) { if (type == 1) { BX_PANIC(( "ROM: checksum error in VGABIOS image: '%s'", path)); } else if (is_bochs_bios) { BX_ERROR(( "ROM: checksum error in BIOS image: '%s'", path)); } } } #if BX_SUPPORT_APIC if (is_bochs_bios) { Bit8u* pcmp_ptr = &BX_MEM_THIS rom[0xFB000 & BIOS_MASK]; Bit8u* p = pcmp_ptr; put_string(&p, "PCMP"); // signature put_16bit(&p, 0); // table length put_8bit(&p, 4); // version put_8bit(&p, 0); // checksum put_string(&p, "BOCHSCPU"); // OEM ID put_string(&p, "0.1 "); // vendor ID put_32bit(&p, 0); // OEM table pointer put_16bit(&p, 0); // OEM table size put_16bit(&p, 20); // entry count put_32bit(&p, 0xfee00000); // local APIC addr put_16bit(&p, 0); // ext table length put_8bit(&p, 0); // ext table checksum put_8bit(&p, 0); // reserved for (i = 0; i < BX_SMP_PROCESSORS; i++) { put_8bit(&p, 0); // entry type = processor put_8bit(&p, (Bit8u)i); // APIC id put_8bit(&p, BX_LAPIC_VERSION_ID & 0xff); // local APIC version number put_8bit(&p, (i==0)?3:1); // cpu flags: enabled, cpu0 = bootstrap cpu put_8bit(&p, 0); // cpu signature put_8bit(&p, 0); put_8bit(&p, 0); put_8bit(&p, 0); put_16bit(&p, 0x301); // feature flags: FPU, CX8, APIC put_16bit(&p, 0); put_16bit(&p, 0); // reserved put_16bit(&p, 0); put_16bit(&p, 0); put_16bit(&p, 0); } put_8bit(&p, 1); // entry type = bus put_8bit(&p, 0); // bus ID put_string(&p, "ISA "); Bit8u ioapic_id = BX_SMP_PROCESSORS; put_8bit(&p, 2); // entry type = I/O APIC put_8bit(&p, ioapic_id); // apic id put_8bit(&p, BX_IOAPIC_VERSION_ID & 0xff); // I/O APIC version number put_8bit(&p, 1); // enabled put_32bit(&p, 0xfec00000); // I/O APIC addr for (i = 0; i < 16; i++) { put_8bit(&p, 3); // entry type = I/O interrupt put_8bit(&p, 0); // interrupt type = vectored interrupt put_8bit(&p, 0); // flags: po=0, el=0 put_8bit(&p, 0); put_8bit(&p, 0); // source bus ID = ISA put_8bit(&p, i); // source bus IRQ put_8bit(&p, ioapic_id); // dest I/O APIC ID put_8bit(&p, i); // dest I/O APIC interrupt in } Bit16u len = (Bit16u)(p - pcmp_ptr); pcmp_ptr[4] = (Bit8u)len; pcmp_ptr[5] = (Bit8u)(len >> 8); pcmp_ptr[7] = mp_checksum(pcmp_ptr, len); Bit8u *fl_mp_ptr = &BX_MEM_THIS rom[0xFB000 & BIOS_MASK] + ((len + 15) & ~15); p = fl_mp_ptr; put_string(&p, "_MP_"); put_32bit(&p, 0xFB000); // pointer to MP config table put_8bit(&p, 1); // length in 16 byte units put_8bit(&p, 4); // MP spec revision put_8bit(&p, 0); // checksum put_8bit(&p, 0); // MP feature bytes 1-5 put_8bit(&p, 0); put_8bit(&p, 0); put_8bit(&p, 0); put_8bit(&p, 0); fl_mp_ptr[10] = mp_checksum(fl_mp_ptr, (int)(p - fl_mp_ptr)); } #endif BX_INFO(("rom at 0x%05x/%u ('%s')", (unsigned) romaddress, (unsigned) stat_buf.st_size, path)); } void BX_MEM_C::load_RAM(const char *path, bx_phy_address ramaddress, Bit8u type) { struct stat stat_buf; int fd, ret; unsigned long size, offset; if (*path == '\0') { BX_PANIC(( "RAM: Optional RAM image undefined")); return; } // read in RAM BIOS image file fd = open(path, O_RDONLY #ifdef O_BINARY | O_BINARY #endif ); if (fd < 0) { BX_PANIC(( "RAM: couldn't open RAM image file '%s'.", path)); return; } ret = fstat(fd, &stat_buf); if (ret) { BX_PANIC(( "RAM: couldn't stat RAM image file '%s'.", path)); return; } size = (unsigned long)stat_buf.st_size; offset = ramaddress; while (size > 0) { ret = read(fd, (bx_ptr_t) &BX_MEM_THIS vector[offset], size); if (ret <= 0) { BX_PANIC(( "RAM: read failed on RAM image: '%s'",path)); } size -= ret; offset += ret; } close(fd); BX_INFO(("ram at 0x%05x/%u ('%s')", (unsigned) ramaddress, (unsigned) stat_buf.st_size, path)); } #endif // #if BX_PROVIDE_CPU_MEMORY #if ( BX_DEBUGGER || BX_DISASM || BX_GDBSTUB) bx_bool BX_MEM_C::dbg_fetch_mem(bx_phy_address addr, unsigned len, Bit8u *buf) { bx_bool ret = 1; for (; len>0; len--) { // Reading standard PCI/ISA Video Mem / SMMRAM if ((addr & 0xfffe0000) == 0x000a0000) { if (BX_MEM_THIS smram_enable) *buf = vector[addr]; else *buf = DEV_vga_mem_read(addr); } #if BX_SUPPORT_PCI else if (pci_enabled && ((addr & 0xfffc0000) == 0x000c0000)) { switch (DEV_pci_rd_memtype (addr)) { case 0x0: // Read from ROM if ((addr & 0xfffe0000) == 0x000e0000) { *buf = rom[addr & BIOS_MASK]; } else { *buf = rom[(addr & EXROM_MASK) + BIOSROMSZ]; } break; case 0x1: // Read from ShadowRAM *buf = vector[addr]; break; default: BX_PANIC(("dbg_fetch_mem: default case")); } } #endif // #if BX_SUPPORT_PCI else if (addr < BX_MEM_THIS len) { if ((addr & 0xfffc0000) != 0x000c0000) { *buf = vector[addr]; } else if ((addr & 0xfffe0000) == 0x000e0000) { *buf = rom[addr & BIOS_MASK]; } else { *buf = rom[(addr & EXROM_MASK) + BIOSROMSZ]; } } else if (addr >= (bx_phy_address)~BIOS_MASK) { *buf = rom[addr & BIOS_MASK]; } else { *buf = 0xff; ret = 0; // error, beyond limits of memory } buf++; addr++; } return ret; } #endif #if BX_DEBUGGER || BX_GDBSTUB bx_bool BX_MEM_C::dbg_set_mem(bx_phy_address addr, unsigned len, Bit8u *buf) { if ((addr + len - 1) > BX_MEM_THIS len) { return(0); // error, beyond limits of memory } for (; len>0; len--) { // Write to standard PCI/ISA Video Mem / SMMRAM if ((addr & 0xfffe0000) == 0x000a0000) { if (BX_MEM_THIS smram_enable) vector[addr] = *buf; else DEV_vga_mem_write(addr, *buf); } #if BX_SUPPORT_PCI else if (pci_enabled && ((addr & 0xfffc0000) == 0x000c0000)) { switch (DEV_pci_wr_memtype (addr)) { case 0x0: // Ignore write to ROM break; case 0x1: // Write to ShadowRAM vector[addr] = *buf; break; default: BX_PANIC(("dbg_fetch_mem: default case")); } } #endif // #if BX_SUPPORT_PCI else if ((addr & 0xfffc0000) != 0x000c0000 && (addr < ~BIOS_MASK)) { vector[addr] = *buf; } buf++; addr++; } return(1); } #endif bx_bool BX_MEM_C::dbg_crc32(bx_phy_address addr1, bx_phy_address addr2, Bit32u *crc) { *crc = 0; if (addr1 > addr2) return(0); if (addr2 >= BX_MEM_THIS len) return(0); // error, specified address past last phy mem addr unsigned len = 1 + addr2 - addr1; *crc = crc32(vector + addr1, len); return(1); } // // Return a host address corresponding to the guest physical memory // address (with A20 already applied), given that the calling // code will perform an 'op' operation. This address will be // used for direct access to guest memory as an acceleration by // a few instructions, like REP {MOV, INS, OUTS, etc}. // Values of 'op' are { BX_READ, BX_WRITE, BX_RW }. // // The other assumption is that the calling code _only_ accesses memory // directly within the page that encompasses the address requested. // // // Memory map inside the 1st megabyte: // // 0x00000 - 0x7ffff DOS area (512K) // 0x80000 - 0x9ffff Optional fixed memory hole (128K) // 0xa0000 - 0xbffff Standard PCI/ISA Video Mem / SMMRAM (128K) // 0xc0000 - 0xdffff Expansion Card BIOS and Buffer Area (128K) // 0xe0000 - 0xeffff Lower BIOS Area (64K) // 0xf0000 - 0xfffff Upper BIOS Area (64K) // Bit8u *BX_MEM_C::getHostMemAddr(BX_CPU_C *cpu, bx_phy_address a20Addr, unsigned op, unsigned access_type) { BX_ASSERT(cpu != 0); // getHostMemAddr could be used only inside the CPU #if BX_SUPPORT_APIC bx_generic_apic_c *local_apic = &cpu->local_apic; if (local_apic->get_base() == (a20Addr & ~0xfff)) return(NULL); // Vetoed! APIC address space #endif // allow direct access to SMRAM memory space for code and veto data if (access_type == CODE_ACCESS) { // reading from SMRAM memory space if ((a20Addr & 0xfffe0000) == 0x000a0000 && (BX_MEM_THIS smram_available)) { if (BX_MEM_THIS smram_enable || cpu->smm_mode()) return (Bit8u *) & vector[a20Addr]; } } struct memory_handler_struct *memory_handler = memory_handlers[a20Addr >> 20]; while (memory_handler) { if (memory_handler->begin <= a20Addr && memory_handler->end >= a20Addr) { return(NULL); // Vetoed! memory handler for i/o apic, vram, mmio and PCI PnP } memory_handler = memory_handler->next; } if (op == BX_READ) { if ((a20Addr & 0xfffe0000) == 0x000a0000) return(NULL); // Vetoed! Mem mapped IO (VGA) #if BX_SUPPORT_PCI else if (pci_enabled && ((a20Addr & 0xfffc0000) == 0x000c0000)) { switch (DEV_pci_rd_memtype (a20Addr)) { case 0x0: // Read from ROM if ((a20Addr & 0xfffe0000) == 0x000e0000) { return (Bit8u *) & rom[a20Addr & BIOS_MASK]; } else { return (Bit8u *) & rom[(a20Addr & EXROM_MASK) + BIOSROMSZ]; } break; case 0x1: // Read from ShadowRAM return (Bit8u *) & vector[a20Addr]; default: BX_PANIC(("getHostMemAddr(): default case")); return(NULL); } } #endif else if(a20Addr < BX_MEM_THIS len) { if ((a20Addr & 0xfffc0000) != 0x000c0000) { return (Bit8u *) & vector[a20Addr]; } else if ((a20Addr & 0xfffe0000) == 0x000e0000) { return (Bit8u *) & rom[a20Addr & BIOS_MASK]; } else { return( (Bit8u *) & rom[(a20Addr & EXROM_MASK) + BIOSROMSZ]); } } else if (a20Addr >= (bx_phy_address)~BIOS_MASK) { return (Bit8u *) & rom[a20Addr & BIOS_MASK]; } else { // Error, requested addr is out of bounds. return (Bit8u *) & bogus[a20Addr & 0x0fff]; } } else { // op == {BX_WRITE, BX_RW} Bit8u *retAddr; if (a20Addr >= BX_MEM_THIS len) return(NULL); // Error, requested addr is out of bounds. else if ((a20Addr & 0xfffe0000) == 0x000a0000) return(NULL); // Vetoed! Mem mapped IO (VGA) else if (a20Addr >= (bx_phy_address)~BIOS_MASK) return(NULL); // Vetoed! ROMs #if BX_SUPPORT_PCI else if (pci_enabled && ((a20Addr & 0xfffc0000) == 0x000c0000)) { // Veto direct writes to this area. Otherwise, there is a chance // for Guest2HostTLB and memory consistency problems, for example // when some 16K block marked as write-only using PAM registers. return(NULL); } #endif else { if ((a20Addr & 0xfffc0000) != 0x000c0000) { retAddr = (Bit8u *) & vector[a20Addr]; } else { return(NULL); // Vetoed! ROMs } } #if BX_SUPPORT_ICACHE pageWriteStampTable.decWriteStamp(a20Addr); #endif return retAddr; } } /* * One needs to provide both a read_handler and a write_handler. * XXX: maybe we should check for overlapping memory handlers */ bx_bool BX_MEM_C::registerMemoryHandlers(void *param, memory_handler_t read_handler, memory_handler_t write_handler, bx_phy_address begin_addr, bx_phy_address end_addr) { if (end_addr < begin_addr) return false; if (!read_handler || !write_handler) return false; BX_INFO(("Register memory access handlers: %08x-%08x", begin_addr, end_addr)); for (unsigned page_idx = begin_addr >> 20; page_idx <= end_addr >> 20; page_idx++) { struct memory_handler_struct *memory_handler = new struct memory_handler_struct; memory_handler->next = memory_handlers[page_idx]; memory_handlers[page_idx] = memory_handler; memory_handler->read_handler = read_handler; memory_handler->write_handler = write_handler; memory_handler->param = param; memory_handler->begin = begin_addr; memory_handler->end = end_addr; } return true; } bx_bool BX_MEM_C::unregisterMemoryHandlers(memory_handler_t read_handler, memory_handler_t write_handler, bx_phy_address begin_addr, bx_phy_address end_addr) { bx_bool ret = true; BX_INFO(("Memory access handlers unregistered: %08x-%08x", begin_addr, end_addr)); for (unsigned page_idx = begin_addr >> 20; page_idx <= end_addr >> 20; page_idx++) { struct memory_handler_struct *memory_handler = memory_handlers[page_idx]; struct memory_handler_struct *prev = NULL; while (memory_handler && memory_handler->read_handler != read_handler && memory_handler->write_handler != write_handler && memory_handler->begin != begin_addr && memory_handler->end != end_addr) { prev = memory_handler; memory_handler = memory_handler->next; } if (!memory_handler) { ret = false; // we should have found it continue; // anyway, try the other pages } if (prev) prev->next = memory_handler->next; else memory_handlers[page_idx] = memory_handler->next; delete memory_handler; } return ret; } void BX_MEM_C::enable_smram(bx_bool enable, bx_bool restricted) { BX_MEM_THIS smram_available = 1; BX_MEM_THIS smram_enable = (enable > 0); BX_MEM_THIS smram_restricted = (restricted > 0); } void BX_MEM_C::disable_smram(void) { BX_MEM_THIS smram_available = 0; BX_MEM_THIS smram_enable = 0; BX_MEM_THIS smram_restricted = 0; } // check if SMRAM is aavailable for CPU data accesses bx_bool BX_MEM_C::is_smram_accessible(void) { return(BX_MEM_THIS smram_available) && (BX_MEM_THIS smram_enable || !BX_MEM_THIS smram_restricted); }