///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001-2018 The Bochs Project // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR #if BX_SUPPORT_SVM #include "svm.h" #endif void BX_CPP_AttrRegparmN(1) BX_CPU_C::ARPL_EwGw(bxInstruction_c *i) { Bit16u op2_16, op1_16; if (! protected_mode()) { BX_DEBUG(("ARPL: not recognized in real or virtual-8086 mode")); exception(BX_UD_EXCEPTION, 0); } /* op1_16 is a register or memory reference */ if (i->modC0()) { op1_16 = BX_READ_16BIT_REG(i->dst()); } else { bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); /* pointer, segment address pair */ op1_16 = read_RMW_virtual_word(i->seg(), eaddr); } op2_16 = BX_READ_16BIT_REG(i->src()); if ((op1_16 & 0x03) < (op2_16 & 0x03)) { op1_16 = (op1_16 & 0xfffc) | (op2_16 & 0x03); /* now write back to destination */ if (i->modC0()) { BX_WRITE_16BIT_REG(i->dst(), op1_16); } else { write_RMW_linear_word(op1_16); } assert_ZF(); } else { clear_ZF(); } BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::LAR_GvEw(bxInstruction_c *i) { /* for 16 bit operand size mode */ Bit16u raw_selector; bx_descriptor_t descriptor; bx_selector_t selector; Bit32u dword1, dword2; #if BX_SUPPORT_X86_64 Bit32u dword3 = 0; #endif if (! protected_mode()) { BX_ERROR(("LAR: not recognized in real or virtual-8086 mode")); exception(BX_UD_EXCEPTION, 0); } if (i->modC0()) { raw_selector = BX_READ_16BIT_REG(i->src()); } else { bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); /* pointer, segment address pair */ raw_selector = read_virtual_word(i->seg(), eaddr); } /* if selector null, clear ZF and done */ if ((raw_selector & 0xfffc) == 0) { clear_ZF(); BX_NEXT_INSTR(i); } parse_selector(raw_selector, &selector); if (!fetch_raw_descriptor2(&selector, &dword1, &dword2)) { BX_DEBUG(("LAR: failed to fetch descriptor")); clear_ZF(); BX_NEXT_INSTR(i); } parse_descriptor(dword1, dword2, &descriptor); if (descriptor.valid==0) { BX_DEBUG(("LAR: descriptor not valid")); clear_ZF(); BX_NEXT_INSTR(i); } /* if source selector is visible at CPL & RPL, * within the descriptor table, and of type accepted by LAR instruction, * then load register with segment limit and set ZF */ if (descriptor.segment) { /* normal segment */ if (IS_CODE_SEGMENT(descriptor.type) && IS_CODE_SEGMENT_CONFORMING(descriptor.type)) { /* ignore DPL for conforming segments */ } else { if (descriptor.dpl < CPL || descriptor.dpl < selector.rpl) { clear_ZF(); BX_NEXT_INSTR(i); } } } else { /* system or gate segment */ switch (descriptor.type) { case BX_SYS_SEGMENT_AVAIL_286_TSS: case BX_SYS_SEGMENT_BUSY_286_TSS: case BX_286_CALL_GATE: case BX_TASK_GATE: if (long_mode()) { BX_DEBUG(("LAR: descriptor type in not accepted in long mode")); clear_ZF(); BX_NEXT_INSTR(i); } /* fall through */ case BX_SYS_SEGMENT_LDT: case BX_SYS_SEGMENT_AVAIL_386_TSS: case BX_SYS_SEGMENT_BUSY_386_TSS: case BX_386_CALL_GATE: #if BX_SUPPORT_X86_64 if (long64_mode() || (descriptor.type == BX_386_CALL_GATE && long_mode()) ) { if (!fetch_raw_descriptor2_64(&selector, &dword1, &dword2, &dword3)) { BX_ERROR(("LAR: failed to fetch 64-bit descriptor")); clear_ZF(); BX_NEXT_INSTR(i); } } #endif break; default: /* rest not accepted types to LAR */ BX_DEBUG(("LAR: not accepted descriptor type")); clear_ZF(); BX_NEXT_INSTR(i); } if (descriptor.dpl < CPL || descriptor.dpl < selector.rpl) { clear_ZF(); BX_NEXT_INSTR(i); } } assert_ZF(); if (i->os32L()) { /* masked by 00FxFF00, where x is undefined */ BX_WRITE_32BIT_REGZ(i->dst(), dword2 & 0x00ffff00); } else { BX_WRITE_16BIT_REG(i->dst(), dword2 & 0xff00); } BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::LSL_GvEw(bxInstruction_c *i) { /* for 16 bit operand size mode */ Bit16u raw_selector; Bit32u limit32; bx_selector_t selector; Bit32u dword1, dword2; #if BX_SUPPORT_X86_64 Bit32u dword3 = 0; #endif if (! protected_mode()) { BX_ERROR(("LSL: not recognized in real or virtual-8086 mode")); exception(BX_UD_EXCEPTION, 0); } if (i->modC0()) { raw_selector = BX_READ_16BIT_REG(i->src()); } else { bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); /* pointer, segment address pair */ raw_selector = read_virtual_word(i->seg(), eaddr); } /* if selector null, clear ZF and done */ if ((raw_selector & 0xfffc) == 0) { clear_ZF(); BX_NEXT_INSTR(i); } parse_selector(raw_selector, &selector); if (!fetch_raw_descriptor2(&selector, &dword1, &dword2)) { BX_DEBUG(("LSL: failed to fetch descriptor")); clear_ZF(); BX_NEXT_INSTR(i); } Bit32u descriptor_dpl = (dword2 >> 13) & 0x03; if ((dword2 & 0x00001000) == 0) { // system segment Bit32u type = (dword2 >> 8) & 0x0000000f; switch (type) { case BX_SYS_SEGMENT_AVAIL_286_TSS: case BX_SYS_SEGMENT_BUSY_286_TSS: if (long_mode()) { clear_ZF(); BX_NEXT_INSTR(i); } /* fall through */ case BX_SYS_SEGMENT_LDT: case BX_SYS_SEGMENT_AVAIL_386_TSS: case BX_SYS_SEGMENT_BUSY_386_TSS: #if BX_SUPPORT_X86_64 if (long64_mode()) { if (!fetch_raw_descriptor2_64(&selector, &dword1, &dword2, &dword3)) { BX_ERROR(("LSL: failed to fetch 64-bit descriptor")); clear_ZF(); BX_NEXT_INSTR(i); } } #endif if (descriptor_dpl < CPL || descriptor_dpl < selector.rpl) { clear_ZF(); BX_NEXT_INSTR(i); } limit32 = (dword1 & 0x0000ffff) | (dword2 & 0x000f0000); if (dword2 & 0x00800000) limit32 = (limit32 << 12) | 0x00000fff; break; default: /* rest not accepted types to LSL */ clear_ZF(); BX_NEXT_INSTR(i); } } else { // data & code segment limit32 = (dword1 & 0x0000ffff) | (dword2 & 0x000f0000); if (dword2 & 0x00800000) limit32 = (limit32 << 12) | 0x00000fff; if ((dword2 & 0x00000c00) != 0x00000c00) { // non-conforming code segment if (descriptor_dpl < CPL || descriptor_dpl < selector.rpl) { clear_ZF(); BX_NEXT_INSTR(i); } } } /* all checks pass, limit32 is now byte granular, write to op1 */ assert_ZF(); if (i->os32L()) { BX_WRITE_32BIT_REGZ(i->dst(), limit32); } else { // chop off upper 16 bits BX_WRITE_16BIT_REG(i->dst(), (Bit16u) limit32); } BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SLDT_Ew(bxInstruction_c *i) { if (! protected_mode()) { BX_ERROR(("SLDT: not recognized in real or virtual-8086 mode")); exception(BX_UD_EXCEPTION, 0); } #if BX_CPU_LEVEL >= 5 if (CPL!=0 && BX_CPU_THIS_PTR cr4.get_UMIP()) { BX_ERROR(("SLDT: CPL != 0 causes #GP when CR4.UMIP set")); exception(BX_GP_EXCEPTION, 0); } #endif #if BX_SUPPORT_VMX >= 2 if (BX_CPU_THIS_PTR in_vmx_guest) if (BX_CPU_THIS_PTR vmcs.vmexec_ctrls2.DESCRIPTOR_TABLE_VMEXIT()) VMexit_Instruction(i, VMX_VMEXIT_LDTR_TR_ACCESS, BX_READ); #endif #if BX_SUPPORT_SVM if (BX_CPU_THIS_PTR in_svm_guest) { if (SVM_INTERCEPT(SVM_INTERCEPT0_LDTR_READ)) Svm_Vmexit(SVM_VMEXIT_LDTR_READ); } #endif Bit16u val16 = BX_CPU_THIS_PTR ldtr.selector.value; if (i->modC0()) { if (i->os32L()) { BX_WRITE_32BIT_REGZ(i->dst(), val16); } else { BX_WRITE_16BIT_REG(i->dst(), val16); } } else { bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); /* pointer, segment address pair */ write_virtual_word(i->seg(), eaddr, val16); } BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::STR_Ew(bxInstruction_c *i) { if (! protected_mode()) { BX_ERROR(("STR: not recognized in real or virtual-8086 mode")); exception(BX_UD_EXCEPTION, 0); } #if BX_CPU_LEVEL >= 5 if (CPL!=0 && BX_CPU_THIS_PTR cr4.get_UMIP()) { BX_ERROR(("STR: CPL != 0 causes #GP when CR4.UMIP set")); exception(BX_GP_EXCEPTION, 0); } #endif #if BX_SUPPORT_VMX >= 2 if (BX_CPU_THIS_PTR in_vmx_guest) if (BX_CPU_THIS_PTR vmcs.vmexec_ctrls2.DESCRIPTOR_TABLE_VMEXIT()) VMexit_Instruction(i, VMX_VMEXIT_LDTR_TR_ACCESS, BX_READ); #endif #if BX_SUPPORT_SVM if (BX_CPU_THIS_PTR in_svm_guest) { if (SVM_INTERCEPT(SVM_INTERCEPT0_TR_READ)) Svm_Vmexit(SVM_VMEXIT_TR_READ); } #endif Bit16u val16 = BX_CPU_THIS_PTR tr.selector.value; if (i->modC0()) { if (i->os32L()) { BX_WRITE_32BIT_REGZ(i->dst(), val16); } else { BX_WRITE_16BIT_REG(i->dst(), val16); } } else { bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); /* pointer, segment address pair */ write_virtual_word(i->seg(), eaddr, val16); } BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::LLDT_Ew(bxInstruction_c *i) { /* protected mode */ bx_descriptor_t descriptor; bx_selector_t selector; Bit16u raw_selector; Bit32u dword1, dword2; #if BX_SUPPORT_X86_64 Bit32u dword3 = 0; #endif if (! protected_mode()) { BX_ERROR(("LLDT: not recognized in real or virtual-8086 mode")); exception(BX_UD_EXCEPTION, 0); } if (CPL != 0) { BX_ERROR(("LLDT: The current priveledge level is not 0")); exception(BX_GP_EXCEPTION, 0); } #if BX_SUPPORT_VMX >= 2 if (BX_CPU_THIS_PTR in_vmx_guest) if (BX_CPU_THIS_PTR vmcs.vmexec_ctrls2.DESCRIPTOR_TABLE_VMEXIT()) VMexit_Instruction(i, VMX_VMEXIT_LDTR_TR_ACCESS, BX_WRITE); #endif #if BX_SUPPORT_SVM if (BX_CPU_THIS_PTR in_svm_guest) { if (SVM_INTERCEPT(SVM_INTERCEPT0_LDTR_WRITE)) Svm_Vmexit(SVM_VMEXIT_LDTR_WRITE); } #endif if (i->modC0()) { raw_selector = BX_READ_16BIT_REG(i->src()); } else { bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); /* pointer, segment address pair */ raw_selector = read_virtual_word(i->seg(), eaddr); } /* if selector is NULL, invalidate and done */ if ((raw_selector & 0xfffc) == 0) { BX_CPU_THIS_PTR ldtr.selector.value = raw_selector; BX_CPU_THIS_PTR ldtr.cache.valid = 0; BX_NEXT_INSTR(i); } /* parse fields in selector */ parse_selector(raw_selector, &selector); // #GP(selector) if the selector operand does not point into GDT if (selector.ti != 0) { BX_ERROR(("LLDT: selector.ti != 0")); exception(BX_GP_EXCEPTION, raw_selector & 0xfffc); } /* fetch descriptor; call handles out of limits checks */ #if BX_SUPPORT_X86_64 if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) { fetch_raw_descriptor_64(&selector, &dword1, &dword2, &dword3, BX_GP_EXCEPTION); } else #endif { fetch_raw_descriptor(&selector, &dword1, &dword2, BX_GP_EXCEPTION); } parse_descriptor(dword1, dword2, &descriptor); /* if selector doesn't point to an LDT descriptor #GP(selector) */ if (descriptor.valid == 0 || descriptor.segment || descriptor.type != BX_SYS_SEGMENT_LDT) { BX_ERROR(("LLDT: doesn't point to an LDT descriptor!")); exception(BX_GP_EXCEPTION, raw_selector & 0xfffc); } /* #NP(selector) if LDT descriptor is not present */ if (! IS_PRESENT(descriptor)) { BX_ERROR(("LLDT: LDT descriptor not present!")); exception(BX_NP_EXCEPTION, raw_selector & 0xfffc); } #if BX_SUPPORT_X86_64 if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) { descriptor.u.segment.base |= (Bit64u(dword3) << 32); BX_DEBUG(("64 bit LDT base = 0x%08x%08x", GET32H(descriptor.u.segment.base), GET32L(descriptor.u.segment.base))); if (!IsCanonical(descriptor.u.segment.base)) { BX_ERROR(("LLDT: non-canonical LDT descriptor base!")); exception(BX_GP_EXCEPTION, raw_selector & 0xfffc); } } #endif BX_CPU_THIS_PTR ldtr.selector = selector; BX_CPU_THIS_PTR ldtr.cache = descriptor; BX_CPU_THIS_PTR ldtr.cache.valid = SegValidCache; BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::LTR_Ew(bxInstruction_c *i) { bx_descriptor_t descriptor; bx_selector_t selector; Bit16u raw_selector; Bit32u dword1, dword2; #if BX_SUPPORT_X86_64 Bit32u dword3 = 0; #endif if (! protected_mode()) { BX_ERROR(("LTR: not recognized in real or virtual-8086 mode")); exception(BX_UD_EXCEPTION, 0); } if (CPL != 0) { BX_ERROR(("LTR: The current priveledge level is not 0")); exception(BX_GP_EXCEPTION, 0); } #if BX_SUPPORT_VMX >= 2 if (BX_CPU_THIS_PTR in_vmx_guest) if (BX_CPU_THIS_PTR vmcs.vmexec_ctrls2.DESCRIPTOR_TABLE_VMEXIT()) VMexit_Instruction(i, VMX_VMEXIT_LDTR_TR_ACCESS, BX_WRITE); #endif #if BX_SUPPORT_SVM if (BX_CPU_THIS_PTR in_svm_guest) { if (SVM_INTERCEPT(SVM_INTERCEPT0_TR_WRITE)) Svm_Vmexit(SVM_VMEXIT_TR_WRITE); } #endif if (i->modC0()) { raw_selector = BX_READ_16BIT_REG(i->src()); } else { bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); /* pointer, segment address pair */ raw_selector = read_virtual_word(i->seg(), eaddr); } /* if selector is NULL, invalidate and done */ if ((raw_selector & BX_SELECTOR_RPL_MASK) == 0) { BX_ERROR(("LTR: loading with NULL selector!")); exception(BX_GP_EXCEPTION, 0); } /* parse fields in selector, then check for null selector */ parse_selector(raw_selector, &selector); if (selector.ti) { BX_ERROR(("LTR: selector.ti != 0")); exception(BX_GP_EXCEPTION, raw_selector & 0xfffc); } /* fetch descriptor; call handles out of limits checks */ #if BX_SUPPORT_X86_64 if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) { fetch_raw_descriptor_64(&selector, &dword1, &dword2, &dword3, BX_GP_EXCEPTION); } else #endif { fetch_raw_descriptor(&selector, &dword1, &dword2, BX_GP_EXCEPTION); } parse_descriptor(dword1, dword2, &descriptor); /* #GP(selector) if object is not a TSS or is already busy */ if (descriptor.valid==0 || descriptor.segment || (descriptor.type!=BX_SYS_SEGMENT_AVAIL_286_TSS && descriptor.type!=BX_SYS_SEGMENT_AVAIL_386_TSS)) { BX_ERROR(("LTR: doesn't point to an available TSS descriptor!")); exception(BX_GP_EXCEPTION, raw_selector & 0xfffc); } #if BX_SUPPORT_X86_64 if (long_mode() && descriptor.type!=BX_SYS_SEGMENT_AVAIL_386_TSS) { BX_ERROR(("LTR: doesn't point to an available TSS386 descriptor in long mode!")); exception(BX_GP_EXCEPTION, raw_selector & 0xfffc); } #endif /* #NP(selector) if TSS descriptor is not present */ if (! IS_PRESENT(descriptor)) { BX_ERROR(("LTR: TSS descriptor not present!")); exception(BX_NP_EXCEPTION, raw_selector & 0xfffc); } #if BX_SUPPORT_X86_64 if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) { descriptor.u.segment.base |= (Bit64u(dword3) << 32); BX_DEBUG(("64 bit TSS base = 0x%08x%08x", GET32H(descriptor.u.segment.base), GET32L(descriptor.u.segment.base))); if (!IsCanonical(descriptor.u.segment.base)) { BX_ERROR(("LTR: non-canonical TSS descriptor base!")); exception(BX_GP_EXCEPTION, raw_selector & 0xfffc); } } #endif BX_CPU_THIS_PTR tr.selector = selector; BX_CPU_THIS_PTR tr.cache = descriptor; BX_CPU_THIS_PTR tr.cache.valid = SegValidCache; // tr.cache.type should not have busy bit, or it would not get // through the conditions above. BX_ASSERT((BX_CPU_THIS_PTR tr.cache.type & 2) == 0); BX_CPU_THIS_PTR tr.cache.type |= 2; // mark as busy /* mark as busy, should be done tomically using RMW */ if (!(dword2 & 0x0200)) { dword2 |= 0x0200; /* set busy bit */ system_write_dword(BX_CPU_THIS_PTR gdtr.base + selector.index*8 + 4, dword2); } BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::VERR_Ew(bxInstruction_c *i) { /* for 16 bit operand size mode */ Bit16u raw_selector; bx_descriptor_t descriptor; bx_selector_t selector; Bit32u dword1, dword2; if (! protected_mode()) { BX_ERROR(("VERR: not recognized in real or virtual-8086 mode")); exception(BX_UD_EXCEPTION, 0); } if (i->modC0()) { raw_selector = BX_READ_16BIT_REG(i->src()); } else { bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); /* pointer, segment address pair */ raw_selector = read_virtual_word(i->seg(), eaddr); } /* if selector null, clear ZF and done */ if ((raw_selector & 0xfffc) == 0) { BX_DEBUG(("VERR: null selector")); clear_ZF(); BX_NEXT_INSTR(i); } /* if source selector is visible at CPL & RPL, * within the descriptor table, and of type accepted by VERR instruction, * then load register with segment limit and set ZF */ parse_selector(raw_selector, &selector); if (!fetch_raw_descriptor2(&selector, &dword1, &dword2)) { /* not within descriptor table */ BX_DEBUG(("VERR: not within descriptor table")); clear_ZF(); BX_NEXT_INSTR(i); } parse_descriptor(dword1, dword2, &descriptor); if (descriptor.segment==0) { /* system or gate descriptor */ BX_DEBUG(("VERR: system descriptor")); clear_ZF(); /* inaccessible */ BX_NEXT_INSTR(i); } if (descriptor.valid==0) { BX_DEBUG(("VERR: valid bit cleared")); clear_ZF(); /* inaccessible */ BX_NEXT_INSTR(i); } /* normal data/code segment */ if (IS_CODE_SEGMENT(descriptor.type)) { /* code segment */ /* ignore DPL for readable conforming segments */ if (IS_CODE_SEGMENT_CONFORMING(descriptor.type) && IS_CODE_SEGMENT_READABLE(descriptor.type)) { BX_DEBUG(("VERR: conforming code, OK")); assert_ZF(); /* accessible */ BX_NEXT_INSTR(i); } if (!IS_CODE_SEGMENT_READABLE(descriptor.type)) { BX_DEBUG(("VERR: code not readable")); clear_ZF(); /* inaccessible */ BX_NEXT_INSTR(i); } /* readable, non-conforming code segment */ if ((descriptor.dplmodC0()) { raw_selector = BX_READ_16BIT_REG(i->src()); } else { bx_address eaddr = BX_CPU_RESOLVE_ADDR(i); /* pointer, segment address pair */ raw_selector = read_virtual_word(i->seg(), eaddr); } /* if selector null, clear ZF and done */ if ((raw_selector & 0xfffc) == 0) { BX_DEBUG(("VERW: null selector")); clear_ZF(); BX_NEXT_INSTR(i); } /* if source selector is visible at CPL & RPL, * within the descriptor table, and of type accepted by VERW instruction, * then load register with segment limit and set ZF */ parse_selector(raw_selector, &selector); if (!fetch_raw_descriptor2(&selector, &dword1, &dword2)) { /* not within descriptor table */ BX_DEBUG(("VERW: not within descriptor table")); clear_ZF(); BX_NEXT_INSTR(i); } parse_descriptor(dword1, dword2, &descriptor); /* rule out system segments & code segments */ if (descriptor.segment==0 || IS_CODE_SEGMENT(descriptor.type)) { BX_DEBUG(("VERW: system seg or code")); clear_ZF(); BX_NEXT_INSTR(i); } if (descriptor.valid==0) { BX_DEBUG(("VERW: valid bit cleared")); clear_ZF(); BX_NEXT_INSTR(i); } /* data segment */ if (IS_DATA_SEGMENT_WRITEABLE(descriptor.type)) { /* writable */ if ((descriptor.dpl= 5 if (CPL!=0 && BX_CPU_THIS_PTR cr4.get_UMIP()) { BX_ERROR(("SGDT: CPL != 0 causes #GP when CR4.UMIP set")); exception(BX_GP_EXCEPTION, 0); } #endif #if BX_SUPPORT_VMX >= 2 if (BX_CPU_THIS_PTR in_vmx_guest) if (BX_CPU_THIS_PTR vmcs.vmexec_ctrls2.DESCRIPTOR_TABLE_VMEXIT()) VMexit_Instruction(i, VMX_VMEXIT_GDTR_IDTR_ACCESS, BX_READ); #endif #if BX_SUPPORT_SVM if (BX_CPU_THIS_PTR in_svm_guest) { if (SVM_INTERCEPT(SVM_INTERCEPT0_GDTR_READ)) Svm_Vmexit(SVM_VMEXIT_GDTR_READ); } #endif Bit16u limit_16 = BX_CPU_THIS_PTR gdtr.limit; Bit32u base_32 = (Bit32u) BX_CPU_THIS_PTR gdtr.base; Bit32u eaddr = (Bit32u) BX_CPU_RESOLVE_ADDR_32(i); write_virtual_word_32(i->seg(), eaddr, limit_16); write_virtual_dword_32(i->seg(), (eaddr+2) & i->asize_mask(), base_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SIDT_Ms(bxInstruction_c *i) { #if BX_CPU_LEVEL >= 5 if (CPL!=0 && BX_CPU_THIS_PTR cr4.get_UMIP()) { BX_ERROR(("SIDT: CPL != 0 causes #GP when CR4.UMIP set")); exception(BX_GP_EXCEPTION, 0); } #endif BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64); #if BX_SUPPORT_VMX >= 2 if (BX_CPU_THIS_PTR in_vmx_guest) if (BX_CPU_THIS_PTR vmcs.vmexec_ctrls2.DESCRIPTOR_TABLE_VMEXIT()) VMexit_Instruction(i, VMX_VMEXIT_GDTR_IDTR_ACCESS, BX_READ); #endif #if BX_SUPPORT_SVM if (BX_CPU_THIS_PTR in_svm_guest) { if (SVM_INTERCEPT(SVM_INTERCEPT0_IDTR_READ)) Svm_Vmexit(SVM_VMEXIT_IDTR_READ); } #endif Bit16u limit_16 = BX_CPU_THIS_PTR idtr.limit; Bit32u base_32 = (Bit32u) BX_CPU_THIS_PTR idtr.base; Bit32u eaddr = (Bit32u) BX_CPU_RESOLVE_ADDR_32(i); write_virtual_word_32(i->seg(), eaddr, limit_16); write_virtual_dword_32(i->seg(), (eaddr+2) & i->asize_mask(), base_32); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::LGDT_Ms(bxInstruction_c *i) { BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64); // CPL is always 0 is real mode if (/* !real_mode() && */ CPL!=0) { BX_ERROR(("LGDT: CPL != 0 causes #GP")); exception(BX_GP_EXCEPTION, 0); } #if BX_SUPPORT_VMX >= 2 if (BX_CPU_THIS_PTR in_vmx_guest) if (BX_CPU_THIS_PTR vmcs.vmexec_ctrls2.DESCRIPTOR_TABLE_VMEXIT()) VMexit_Instruction(i, VMX_VMEXIT_GDTR_IDTR_ACCESS, BX_WRITE); #endif #if BX_SUPPORT_SVM if (BX_CPU_THIS_PTR in_svm_guest) { if (SVM_INTERCEPT(SVM_INTERCEPT0_GDTR_WRITE)) Svm_Vmexit(SVM_VMEXIT_GDTR_WRITE); } #endif Bit32u eaddr = (Bit32u) BX_CPU_RESOLVE_ADDR_32(i); Bit16u limit_16 = read_virtual_word_32(i->seg(), eaddr); Bit32u base_32 = read_virtual_dword_32(i->seg(), (eaddr + 2) & i->asize_mask()); if (i->os32L() == 0) base_32 &= 0x00ffffff; /* ignore upper 8 bits */ BX_CPU_THIS_PTR gdtr.limit = limit_16; BX_CPU_THIS_PTR gdtr.base = base_32; BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::LIDT_Ms(bxInstruction_c *i) { BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64); // CPL is always 0 is real mode if (/* !real_mode() && */ CPL!=0) { BX_ERROR(("LIDT: CPL != 0 causes #GP")); exception(BX_GP_EXCEPTION, 0); } #if BX_SUPPORT_VMX >= 2 if (BX_CPU_THIS_PTR in_vmx_guest) if (BX_CPU_THIS_PTR vmcs.vmexec_ctrls2.DESCRIPTOR_TABLE_VMEXIT()) VMexit_Instruction(i, VMX_VMEXIT_GDTR_IDTR_ACCESS, BX_WRITE); #endif #if BX_SUPPORT_SVM if (BX_CPU_THIS_PTR in_svm_guest) { if (SVM_INTERCEPT(SVM_INTERCEPT0_IDTR_WRITE)) Svm_Vmexit(SVM_VMEXIT_IDTR_WRITE); } #endif Bit32u eaddr = (Bit32u) BX_CPU_RESOLVE_ADDR_32(i); Bit16u limit_16 = read_virtual_word_32(i->seg(), eaddr); Bit32u base_32 = read_virtual_dword_32(i->seg(), (eaddr + 2) & i->asize_mask()); if (i->os32L() == 0) base_32 &= 0x00ffffff; /* ignore upper 8 bits */ BX_CPU_THIS_PTR idtr.limit = limit_16; BX_CPU_THIS_PTR idtr.base = base_32; BX_NEXT_INSTR(i); } #if BX_SUPPORT_X86_64 void BX_CPP_AttrRegparmN(1) BX_CPU_C::SGDT64_Ms(bxInstruction_c *i) { if (CPL!=0 && BX_CPU_THIS_PTR cr4.get_UMIP()) { BX_ERROR(("SGDT: CPL != 0 causes #GP when CR4.UMIP set")); exception(BX_GP_EXCEPTION, 0); } BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64); #if BX_SUPPORT_VMX >= 2 if (BX_CPU_THIS_PTR in_vmx_guest) if (BX_CPU_THIS_PTR vmcs.vmexec_ctrls2.DESCRIPTOR_TABLE_VMEXIT()) VMexit_Instruction(i, VMX_VMEXIT_GDTR_IDTR_ACCESS, BX_READ); #endif #if BX_SUPPORT_SVM if (BX_CPU_THIS_PTR in_svm_guest) { if (SVM_INTERCEPT(SVM_INTERCEPT0_GDTR_READ)) Svm_Vmexit(SVM_VMEXIT_GDTR_READ); } #endif Bit16u limit_16 = BX_CPU_THIS_PTR gdtr.limit; Bit64u base_64 = BX_CPU_THIS_PTR gdtr.base; bx_address eaddr = BX_CPU_RESOLVE_ADDR_64(i); write_linear_word(i->seg(), get_laddr64(i->seg(), eaddr), limit_16); write_linear_qword(i->seg(), get_laddr64(i->seg(), (eaddr+2) & i->asize_mask()), base_64); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::SIDT64_Ms(bxInstruction_c *i) { if (CPL!=0 && BX_CPU_THIS_PTR cr4.get_UMIP()) { BX_ERROR(("SIDT: CPL != 0 causes #GP when CR4.UMIP set")); exception(BX_GP_EXCEPTION, 0); } BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64); #if BX_SUPPORT_VMX >= 2 if (BX_CPU_THIS_PTR in_vmx_guest) if (BX_CPU_THIS_PTR vmcs.vmexec_ctrls2.DESCRIPTOR_TABLE_VMEXIT()) VMexit_Instruction(i, VMX_VMEXIT_GDTR_IDTR_ACCESS, BX_READ); #endif #if BX_SUPPORT_SVM if (BX_CPU_THIS_PTR in_svm_guest) { if (SVM_INTERCEPT(SVM_INTERCEPT0_IDTR_READ)) Svm_Vmexit(SVM_VMEXIT_IDTR_READ); } #endif Bit16u limit_16 = BX_CPU_THIS_PTR idtr.limit; Bit64u base_64 = BX_CPU_THIS_PTR idtr.base; bx_address eaddr = BX_CPU_RESOLVE_ADDR_64(i); write_linear_word(i->seg(), get_laddr64(i->seg(), eaddr), limit_16); write_linear_qword(i->seg(), get_laddr64(i->seg(), (eaddr+2) & i->asize_mask()), base_64); BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::LGDT64_Ms(bxInstruction_c *i) { BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64); if (CPL!=0) { BX_ERROR(("LGDT64_Ms: CPL != 0 in long mode")); exception(BX_GP_EXCEPTION, 0); } #if BX_SUPPORT_VMX >= 2 if (BX_CPU_THIS_PTR in_vmx_guest) if (BX_CPU_THIS_PTR vmcs.vmexec_ctrls2.DESCRIPTOR_TABLE_VMEXIT()) VMexit_Instruction(i, VMX_VMEXIT_GDTR_IDTR_ACCESS, BX_WRITE); #endif #if BX_SUPPORT_SVM if (BX_CPU_THIS_PTR in_svm_guest) { if (SVM_INTERCEPT(SVM_INTERCEPT0_GDTR_WRITE)) Svm_Vmexit(SVM_VMEXIT_GDTR_WRITE); } #endif bx_address eaddr = BX_CPU_RESOLVE_ADDR_64(i); Bit64u base_64 = read_linear_qword(i->seg(), get_laddr64(i->seg(), (eaddr + 2) & i->asize_mask())); if (! IsCanonical(base_64)) { BX_ERROR(("LGDT64_Ms: loaded base64 address is not in canonical form!")); exception(BX_GP_EXCEPTION, 0); } Bit16u limit_16 = read_linear_word(i->seg(), get_laddr64(i->seg(), eaddr)); BX_CPU_THIS_PTR gdtr.limit = limit_16; BX_CPU_THIS_PTR gdtr.base = base_64; BX_NEXT_INSTR(i); } void BX_CPP_AttrRegparmN(1) BX_CPU_C::LIDT64_Ms(bxInstruction_c *i) { BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64); if (CPL != 0) { BX_ERROR(("LIDT64_Ms: CPL != 0 in long mode")); exception(BX_GP_EXCEPTION, 0); } #if BX_SUPPORT_VMX >= 2 if (BX_CPU_THIS_PTR in_vmx_guest) if (BX_CPU_THIS_PTR vmcs.vmexec_ctrls2.DESCRIPTOR_TABLE_VMEXIT()) VMexit_Instruction(i, VMX_VMEXIT_GDTR_IDTR_ACCESS, BX_WRITE); #endif #if BX_SUPPORT_SVM if (BX_CPU_THIS_PTR in_svm_guest) { if (SVM_INTERCEPT(SVM_INTERCEPT0_IDTR_WRITE)) Svm_Vmexit(SVM_VMEXIT_IDTR_WRITE); } #endif bx_address eaddr = BX_CPU_RESOLVE_ADDR_64(i); Bit64u base_64 = read_linear_qword(i->seg(), get_laddr64(i->seg(), (eaddr + 2) & i->asize_mask())); if (! IsCanonical(base_64)) { BX_ERROR(("LIDT64_Ms: loaded base64 address is not in canonical form!")); exception(BX_GP_EXCEPTION, 0); } Bit16u limit_16 = read_linear_word(i->seg(), get_laddr64(i->seg(), eaddr)); BX_CPU_THIS_PTR idtr.limit = limit_16; BX_CPU_THIS_PTR idtr.base = base_64; BX_NEXT_INSTR(i); } #endif