///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (c) 2008-2011 Stanislav Shwartsman // Written by Stanislav Shwartsman [sshwarts at sourceforge net] // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA // ///////////////////////////////////////////////////////////////////////// #ifndef BX_INSTR_H #define BX_INSTR_H class bxInstruction_c; typedef void BX_INSF_TYPE; #if BX_DISASM // print the instruction that is about to be executed #define BX_DEBUG_DISASM_INSTRUCTION() \ if (BX_CPU_THIS_PTR trace) { debug_disasm_instruction(BX_CPU_THIS_PTR prev_rip); } #else #define BX_DEBUG_DISASM_INSTRUCTION() /* do nothing */ #endif #define BX_NEXT_INSTR(i) { \ BX_CPU_THIS_PTR prev_rip = RIP; /* commit new RIP */ \ BX_INSTR_AFTER_EXECUTION(BX_CPU_ID, i); \ BX_TICK1_IF_SINGLE_PROCESSOR(); \ if (BX_CPU_THIS_PTR async_event) return; \ ++i; \ BX_DEBUG_DISASM_INSTRUCTION(); \ BX_INSTR_BEFORE_EXECUTION(BX_CPU_ID, i); \ RIP += i->ilen(); \ return BX_CPU_CALL_METHOD(i->execute, (i)); \ } #define BX_NEXT_TRACE(i) { return; } // #if BX_USE_CPU_SMF typedef BX_INSF_TYPE (BX_CPP_AttrRegparmN(1) *BxExecutePtr_tR)(bxInstruction_c *); typedef bx_address (BX_CPP_AttrRegparmN(1) *BxResolvePtr_tR)(bxInstruction_c *); typedef void (BX_CPP_AttrRegparmN(1) *BxRepIterationPtr_tR)(bxInstruction_c *); #else typedef BX_INSF_TYPE (BX_CPU_C::*BxExecutePtr_tR)(bxInstruction_c *) BX_CPP_AttrRegparmN(1); typedef bx_address (BX_CPU_C::*BxResolvePtr_tR)(bxInstruction_c *) BX_CPP_AttrRegparmN(1); typedef void (BX_CPU_C::*BxRepIterationPtr_tR)(bxInstruction_c *) BX_CPP_AttrRegparmN(1); #endif // extern bx_address bx_asize_mask[]; const char *get_bx_opcode_name(Bit16u ia_opcode); // class bxInstruction_c { public: // Function pointers; a function to resolve the modRM address // given the current state of the CPU and the instruction data, // and a function to execute the instruction after resolving // the memory address (if any). BxExecutePtr_tR execute; BxExecutePtr_tR execute2; BxResolvePtr_tR ResolveModrm; struct { // 15.12 AVX vl (0=no VL, 1=128 bit, 2=256 bit) // 11..0 opcode Bit16u ia_opcode; // 7...4 (unused) // 3...0 ilen (0..15) Bit8u ilen; // 7...6 repUsed (0=none, 2=0xF2, 3=0xF3) // 5...5 extend8bit // 4...4 mod==c0 (modrm) // 3...3 os64 // 2...2 os32 // 1...1 as64 // 0...0 as32 Bit8u metaInfo1; } metaInfo; #define BX_INSTR_METADATA_SEG 0 #define BX_INSTR_METADATA_B1 1 #define BX_INSTR_METADATA_NNN 2 #define BX_INSTR_METADATA_RM 3 #define BX_INSTR_METADATA_BASE 4 #define BX_INSTR_METADATA_INDEX 5 #define BX_INSTR_METADATA_SCALE 6 #define BX_INSTR_METADATA_MODRM 7 /* modrm for FPU only */ #define BX_INSTR_METADATA_VVV 7 // using 5-bit field for registers (16 regs in 64-bit, RIP, NIL) Bit8u metaData[8]; union { // Form (longest case): [opcode+modrm+sib/displacement32/immediate32] struct { union { Bit32u Id; Bit16u Iw; Bit8u Ib; }; union { Bit16u displ16u; // for 16-bit modrm forms Bit32u displ32u; // for 32-bit modrm forms Bit16u Iw2; Bit8u Ib2; }; } modRMForm; #if BX_SUPPORT_X86_64 struct { Bit64u Iq; // for MOV Rx,imm64 } IqForm; #endif }; #ifdef BX_INSTR_STORE_OPCODE_BYTES Bit8u opcode_bytes[16]; BX_CPP_INLINE const Bit8u* get_opcode_bytes(void) const { return opcode_bytes; } BX_CPP_INLINE void set_opcode_bytes(const Bit8u *opcode) { memcpy(opcode_bytes, opcode, ilen()); } #endif BX_CPP_INLINE unsigned seg(void) const { return metaData[BX_INSTR_METADATA_SEG]; } BX_CPP_INLINE void setSeg(unsigned val) { metaData[BX_INSTR_METADATA_SEG] = val; } BX_CPP_INLINE unsigned b1(void) const { return metaData[BX_INSTR_METADATA_B1]; } BX_CPP_INLINE void setB1(unsigned b1) { metaData[BX_INSTR_METADATA_B1] = b1 & 0xff; } BX_CPP_INLINE void setModRM(unsigned modrm) { metaData[BX_INSTR_METADATA_MODRM] = modrm; } BX_CPP_INLINE unsigned modrm() const { return metaData[BX_INSTR_METADATA_MODRM]; } BX_CPP_INLINE void setNnn(unsigned nnn) { metaData[BX_INSTR_METADATA_NNN] = nnn; } BX_CPP_INLINE unsigned nnn() const { return metaData[BX_INSTR_METADATA_NNN]; } BX_CPP_INLINE void setRm(unsigned rm) { metaData[BX_INSTR_METADATA_RM] = rm; } BX_CPP_INLINE unsigned rm() const { return metaData[BX_INSTR_METADATA_RM]; } BX_CPP_INLINE void setSibScale(unsigned scale) { metaData[BX_INSTR_METADATA_SCALE] = scale; } BX_CPP_INLINE unsigned sibScale() const { return metaData[BX_INSTR_METADATA_SCALE]; } BX_CPP_INLINE void setSibIndex(unsigned index) { metaData[BX_INSTR_METADATA_INDEX] = index; } BX_CPP_INLINE unsigned sibIndex() const { return metaData[BX_INSTR_METADATA_INDEX]; } BX_CPP_INLINE void setSibBase(unsigned base) { metaData[BX_INSTR_METADATA_BASE] = base; } BX_CPP_INLINE unsigned sibBase() const { return metaData[BX_INSTR_METADATA_BASE]; } BX_CPP_INLINE Bit32s displ32s() const { return (Bit32s) modRMForm.displ32u; } BX_CPP_INLINE Bit16s displ16s() const { return (Bit16s) modRMForm.displ16u; } BX_CPP_INLINE Bit32u Id() const { return modRMForm.Id; } BX_CPP_INLINE Bit16u Iw() const { return modRMForm.Iw; } BX_CPP_INLINE Bit8u Ib() const { return modRMForm.Ib; } BX_CPP_INLINE Bit16u Iw2() const { return modRMForm.Iw2; } BX_CPP_INLINE Bit8u Ib2() const { return modRMForm.Ib2; } #if BX_SUPPORT_X86_64 BX_CPP_INLINE Bit64u Iq() const { return IqForm.Iq; } #endif // Info in the metaInfo field. // Note: the 'L' at the end of certain flags, means the value returned // is for Logical comparisons, eg if (i->os32L() && i->as32L()). If you // want a bx_bool value, use os32B() etc. This makes for smaller // code, when a strict 0 or 1 is not necessary. BX_CPP_INLINE void init(unsigned os32, unsigned as32, unsigned os64, unsigned as64) { metaInfo.metaInfo1 = (os32<<2) | (os64<<3) | (as32<<0) | (as64<<1); } BX_CPP_INLINE unsigned os32L(void) const { return metaInfo.metaInfo1 & (1<<2); } BX_CPP_INLINE void setOs32B(unsigned bit) { metaInfo.metaInfo1 = (metaInfo.metaInfo1 & ~(1<<2)) | (bit<<2); } BX_CPP_INLINE void assertOs32(void) { metaInfo.metaInfo1 |= (1<<2); } #if BX_SUPPORT_X86_64 BX_CPP_INLINE unsigned os64L(void) const { return metaInfo.metaInfo1 & (1<<3); } BX_CPP_INLINE void assertOs64(void) { metaInfo.metaInfo1 |= (1<<3); } #else BX_CPP_INLINE unsigned os64L(void) const { return 0; } #endif BX_CPP_INLINE unsigned as32L(void) const { return metaInfo.metaInfo1 & 0x1; } BX_CPP_INLINE void setAs32B(unsigned bit) { metaInfo.metaInfo1 = (metaInfo.metaInfo1 & ~0x1) | (bit); } #if BX_SUPPORT_X86_64 BX_CPP_INLINE unsigned as64L(void) const { return metaInfo.metaInfo1 & (1<<1); } BX_CPP_INLINE void clearAs64(void) { metaInfo.metaInfo1 &= ~(1<<1); } #else BX_CPP_INLINE unsigned as64L(void) const { return 0; } #endif BX_CPP_INLINE unsigned asize(void) const { return metaInfo.metaInfo1 & 0x3; } BX_CPP_INLINE bx_address asize_mask(void) const { return bx_asize_mask[asize()]; } #if BX_SUPPORT_X86_64 BX_CPP_INLINE unsigned extend8bitL(void) const { return metaInfo.metaInfo1 & (1<<5); } BX_CPP_INLINE void assertExtend8bit(void) { metaInfo.metaInfo1 |= (1<<5); } #endif BX_CPP_INLINE unsigned ilen(void) const { return metaInfo.ilen; } BX_CPP_INLINE void setILen(unsigned ilen) { metaInfo.ilen = ilen; } BX_CPP_INLINE unsigned getIaOpcode(void) const { return metaInfo.ia_opcode & 0xfff; } BX_CPP_INLINE void setIaOpcode(Bit16u op) { metaInfo.ia_opcode = (metaInfo.ia_opcode & 0xf000) | op; } BX_CPP_INLINE const char* getIaOpcodeName(void) const { return get_bx_opcode_name(getIaOpcode()); } BX_CPP_INLINE unsigned repUsedL(void) const { return metaInfo.metaInfo1 >> 6; } BX_CPP_INLINE unsigned repUsedValue(void) const { return metaInfo.metaInfo1 >> 6; } BX_CPP_INLINE void setRepUsed(unsigned value) { metaInfo.metaInfo1 = (metaInfo.metaInfo1 & 0x3f) | (value << 6); } BX_CPP_INLINE unsigned getVL(void) const { #if BX_SUPPORT_AVX return metaInfo.ia_opcode >> 12; #else return 0; #endif } BX_CPP_INLINE void setVL(unsigned value) { metaInfo.ia_opcode = (metaInfo.ia_opcode & 0xfff) | (value << 12); } BX_CPP_INLINE void setVvv(unsigned vvv) { metaData[BX_INSTR_METADATA_VVV] = vvv; } BX_CPP_INLINE unsigned vvv() const { return metaData[BX_INSTR_METADATA_VVV]; } BX_CPP_INLINE unsigned modC0() const { // This is a cheaper way to test for modRM instructions where // the mod field is 0xc0. FetchDecode flags this condition since // it is quite common to be tested for. return metaInfo.metaInfo1 & (1<<4); } BX_CPP_INLINE unsigned assertModC0() { return metaInfo.metaInfo1 |= (1<<4); } }; // enum { #define bx_define_opcode(a, b, c, d, e) a, #include "ia_opcodes.h" BX_IA_LAST }; #undef bx_define_opcode #endif