///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001-2017 The Bochs Project // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA // ///////////////////////////////////////////////////////////////////////// #ifndef BX_LAZY_FLAGS_DEF #define BX_LAZY_FLAGS_DEF #if BX_SUPPORT_X86_64 #define BX_LF_SIGN_BIT 63 #else #define BX_LF_SIGN_BIT 31 #endif // These are the lazy flags bits in oszapc.auxbits which hold lazy state // of zero flag, adjust flag, carry flag, and overflow flag. enum { LF_BIT_SD = 0, /* lazy Sign Flag Delta */ LF_BIT_AF = 3, /* lazy Adjust flag */ LF_BIT_PDB = 8, /* lazy Parity Delta Byte (8 bits) */ LF_BIT_CF = 31, /* lazy Carry Flag */ LF_BIT_PO = 30 /* lazy Partial Overflow = CF ^ OF */ }; const Bit32u LF_MASK_SD = (0x01 << LF_BIT_SD); const Bit32u LF_MASK_AF = (0x01 << LF_BIT_AF); const Bit32u LF_MASK_PDB = (0xFF << LF_BIT_PDB); const Bit32u LF_MASK_CF = (0x01 << LF_BIT_CF); const Bit32u LF_MASK_PO = (0x01 << LF_BIT_PO); #define ADD_COUT_VEC(op1, op2, result) \ (((op1) & (op2)) | (((op1) | (op2)) & (~(result)))) #define SUB_COUT_VEC(op1, op2, result) \ (((~(op1)) & (op2)) | (((~(op1)) ^ (op2)) & (result))) #define GET_ADD_OVERFLOW(op1, op2, result, mask) \ ((((op1) ^ (result)) & ((op2) ^ (result))) & (mask)) // ******************* // OSZAPC // ******************* /* size, carries, result */ #define SET_FLAGS_OSZAPC_SIZE(size, lf_carries, lf_result) { \ bx_address temp = ((lf_carries) & (LF_MASK_AF)) | \ (((lf_carries) >> (size - 2)) << LF_BIT_PO); \ BX_CPU_THIS_PTR oszapc.result = (bx_address)(Bit##size##s)(lf_result); \ if ((size) == 32) temp = ((lf_carries) & ~(LF_MASK_PDB | LF_MASK_SD)); \ if ((size) == 16) temp = ((lf_carries) & (LF_MASK_AF)) | ((lf_carries) << 16); \ if ((size) == 8) temp = ((lf_carries) & (LF_MASK_AF)) | ((lf_carries) << 24); \ BX_CPU_THIS_PTR oszapc.auxbits = (bx_address)(Bit32u)temp; \ } /* carries, result */ #define SET_FLAGS_OSZAPC_8(carries, result) \ SET_FLAGS_OSZAPC_SIZE(8, carries, result) #define SET_FLAGS_OSZAPC_16(carries, result) \ SET_FLAGS_OSZAPC_SIZE(16, carries, result) #define SET_FLAGS_OSZAPC_32(carries, result) \ SET_FLAGS_OSZAPC_SIZE(32, carries, result) #if BX_SUPPORT_X86_64 #define SET_FLAGS_OSZAPC_64(carries, result) \ SET_FLAGS_OSZAPC_SIZE(64, carries, result) #endif /* result */ #define SET_FLAGS_OSZAPC_LOGIC_8(result_8) \ SET_FLAGS_OSZAPC_8(0, (result_8)) #define SET_FLAGS_OSZAPC_LOGIC_16(result_16) \ SET_FLAGS_OSZAPC_16(0, (result_16)) #define SET_FLAGS_OSZAPC_LOGIC_32(result_32) \ SET_FLAGS_OSZAPC_32(0, (result_32)) #if BX_SUPPORT_X86_64 #define SET_FLAGS_OSZAPC_LOGIC_64(result_64) \ SET_FLAGS_OSZAPC_64(BX_CONST64(0), (result_64)) #endif /* op1, op2, result */ #define SET_FLAGS_OSZAPC_ADD_8(op1_8, op2_8, sum_8) \ SET_FLAGS_OSZAPC_8(ADD_COUT_VEC((op1_8), (op2_8), (sum_8)), (sum_8)) #define SET_FLAGS_OSZAPC_ADD_16(op1_16, op2_16, sum_16) \ SET_FLAGS_OSZAPC_16(ADD_COUT_VEC((op1_16), (op2_16), (sum_16)), (sum_16)) #define SET_FLAGS_OSZAPC_ADD_32(op1_32, op2_32, sum_32) \ SET_FLAGS_OSZAPC_32(ADD_COUT_VEC((op1_32), (op2_32), (sum_32)), (sum_32)) #if BX_SUPPORT_X86_64 #define SET_FLAGS_OSZAPC_ADD_64(op1_64, op2_64, sum_64) \ SET_FLAGS_OSZAPC_64(ADD_COUT_VEC((op1_64), (op2_64), (sum_64)), (sum_64)) #endif /* op1, op2, result */ #define SET_FLAGS_OSZAPC_SUB_8(op1_8, op2_8, diff_8) \ SET_FLAGS_OSZAPC_8(SUB_COUT_VEC((op1_8), (op2_8), (diff_8)), (diff_8)) #define SET_FLAGS_OSZAPC_SUB_16(op1_16, op2_16, diff_16) \ SET_FLAGS_OSZAPC_16(SUB_COUT_VEC((op1_16), (op2_16), (diff_16)), (diff_16)) #define SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32) \ SET_FLAGS_OSZAPC_32(SUB_COUT_VEC((op1_32), (op2_32), (diff_32)), (diff_32)) #if BX_SUPPORT_X86_64 #define SET_FLAGS_OSZAPC_SUB_64(op1_64, op2_64, diff_64) \ SET_FLAGS_OSZAPC_64(SUB_COUT_VEC((op1_64), (op2_64), (diff_64)), (diff_64)) #endif // ******************* // OSZAP // ******************* /* size, carries, result */ #define SET_FLAGS_OSZAP_SIZE(size, lf_carries, lf_result) { \ bx_address temp = ((lf_carries) & (LF_MASK_AF)) | \ (((lf_carries) >> (size - 2)) << LF_BIT_PO); \ if ((size) == 32) temp = ((lf_carries) & ~(LF_MASK_PDB | LF_MASK_SD)); \ if ((size) == 16) temp = ((lf_carries) & (LF_MASK_AF)) | ((lf_carries) << 16); \ if ((size) == 8) temp = ((lf_carries) & (LF_MASK_AF)) | ((lf_carries) << 24); \ BX_CPU_THIS_PTR oszapc.result = (bx_address)(Bit##size##s)(lf_result); \ bx_address delta_c = (BX_CPU_THIS_PTR oszapc.auxbits ^ temp) & LF_MASK_CF; \ delta_c ^= (delta_c >> 1); \ BX_CPU_THIS_PTR oszapc.auxbits = (bx_address)(Bit32u)(temp ^ delta_c); \ } /* carries, result */ #define SET_FLAGS_OSZAP_8(carries, result) \ SET_FLAGS_OSZAP_SIZE(8, carries, result) #define SET_FLAGS_OSZAP_16(carries, result) \ SET_FLAGS_OSZAP_SIZE(16, carries, result) #define SET_FLAGS_OSZAP_32(carries, result) \ SET_FLAGS_OSZAP_SIZE(32, carries, result) #if BX_SUPPORT_X86_64 #define SET_FLAGS_OSZAP_64(carries, result) \ SET_FLAGS_OSZAP_SIZE(64, carries, result) #endif /* op1, op2, result */ #define SET_FLAGS_OSZAP_ADD_8(op1_8, op2_8, sum_8) \ SET_FLAGS_OSZAP_8(ADD_COUT_VEC((op1_8), (op2_8), (sum_8)), (sum_8)) #define SET_FLAGS_OSZAP_ADD_16(op1_16, op2_16, sum_16) \ SET_FLAGS_OSZAP_16(ADD_COUT_VEC((op1_16), (op2_16), (sum_16)), (sum_16)) #define SET_FLAGS_OSZAP_ADD_32(op1_32, op2_32, sum_32) \ SET_FLAGS_OSZAP_32(ADD_COUT_VEC((op1_32), (op2_32), (sum_32)), (sum_32)) #if BX_SUPPORT_X86_64 #define SET_FLAGS_OSZAP_ADD_64(op1_64, op2_64, sum_64) \ SET_FLAGS_OSZAP_64(ADD_COUT_VEC((op1_64), (op2_64), (sum_64)), (sum_64)) #endif /* op1, op2, result */ #define SET_FLAGS_OSZAP_SUB_8(op1_8, op2_8, diff_8) \ SET_FLAGS_OSZAP_8(SUB_COUT_VEC((op1_8), (op2_8), (diff_8)), (diff_8)) #define SET_FLAGS_OSZAP_SUB_16(op1_16, op2_16, diff_16) \ SET_FLAGS_OSZAP_16(SUB_COUT_VEC((op1_16), (op2_16), (diff_16)), (diff_16)) #define SET_FLAGS_OSZAP_SUB_32(op1_32, op2_32, diff_32) \ SET_FLAGS_OSZAP_32(SUB_COUT_VEC((op1_32), (op2_32), (diff_32)), (diff_32)) #if BX_SUPPORT_X86_64 #define SET_FLAGS_OSZAP_SUB_64(op1_64, op2_64, diff_64) \ SET_FLAGS_OSZAP_64(SUB_COUT_VEC((op1_64), (op2_64), (diff_64)), (diff_64)) #endif // ******************* // OSZAxC // ******************* /* size, carries, result */ #define SET_FLAGS_OSZAxC_LOGIC_SIZE(size, lf_result) { \ bx_bool saved_PF = getB_PF(); \ SET_FLAGS_OSZAPC_SIZE(size, (Bit##size##u)(0), lf_result); \ set_PF(saved_PF); \ } /* result */ #define SET_FLAGS_OSZAxC_LOGIC_32(result_32) \ SET_FLAGS_OSZAxC_LOGIC_SIZE(32, (result_32)) #if BX_SUPPORT_X86_64 #define SET_FLAGS_OSZAxC_LOGIC_64(result_64) \ SET_FLAGS_OSZAxC_LOGIC_SIZE(64, (result_64)) #endif struct bx_lazyflags_entry { bx_address result; bx_address auxbits; BX_CPP_INLINE unsigned getB_OF(void) const; BX_CPP_INLINE unsigned get_OF(void) const; BX_CPP_INLINE void set_OF(bx_bool val); BX_CPP_INLINE void clear_OF(void); BX_CPP_INLINE void assert_OF(void); BX_CPP_INLINE unsigned getB_SF(void) const; BX_CPP_INLINE unsigned get_SF(void) const; BX_CPP_INLINE void set_SF(bx_bool val); BX_CPP_INLINE void clear_SF(void); BX_CPP_INLINE void assert_SF(void); BX_CPP_INLINE unsigned getB_ZF(void) const; BX_CPP_INLINE unsigned get_ZF(void) const; BX_CPP_INLINE void set_ZF(bx_bool val); BX_CPP_INLINE void clear_ZF(void); BX_CPP_INLINE void assert_ZF(void); BX_CPP_INLINE unsigned getB_AF(void) const; BX_CPP_INLINE unsigned get_AF(void) const; BX_CPP_INLINE void set_AF(bx_bool val); BX_CPP_INLINE void clear_AF(void); BX_CPP_INLINE void assert_AF(void); BX_CPP_INLINE unsigned getB_PF(void) const; BX_CPP_INLINE unsigned get_PF(void) const; BX_CPP_INLINE void set_PF(bx_bool val); BX_CPP_INLINE void clear_PF(void); BX_CPP_INLINE void assert_PF(void); BX_CPP_INLINE unsigned getB_CF(void) const; BX_CPP_INLINE unsigned get_CF(void) const; BX_CPP_INLINE void set_CF(bx_bool val); BX_CPP_INLINE void clear_CF(void); BX_CPP_INLINE void assert_CF(void); BX_CPP_INLINE void set_flags_OxxxxC(Bit32u new_of, Bit32u new_cf) { Bit32u temp_po = new_of ^ new_cf; auxbits &= ~(LF_MASK_PO | LF_MASK_CF); auxbits |= (temp_po << LF_BIT_PO) | (new_cf << LF_BIT_CF); } BX_CPP_INLINE void assert_flags_OxxxxC() { set_flags_OxxxxC(1,1); } }; /// OF //////////////////////////////////////// BX_CPP_INLINE unsigned bx_lazyflags_entry::getB_OF(void) const { return ((auxbits + (1U << LF_BIT_PO)) >> LF_BIT_CF) & 1; } BX_CPP_INLINE unsigned bx_lazyflags_entry::get_OF(void) const { return (auxbits + (1U << LF_BIT_PO)) & (1U << LF_BIT_CF); } BX_CPP_INLINE void bx_lazyflags_entry::set_OF(bx_bool val) { bx_bool temp_cf = getB_CF(); set_flags_OxxxxC(val, temp_cf); } BX_CPP_INLINE void bx_lazyflags_entry::clear_OF(void) { bx_bool temp_cf = getB_CF(); set_flags_OxxxxC(0, temp_cf); } BX_CPP_INLINE void bx_lazyflags_entry::assert_OF(void) { unsigned temp_cf = getB_CF(); set_flags_OxxxxC(1, temp_cf); } /// SF //////////////////////////////////////// BX_CPP_INLINE unsigned bx_lazyflags_entry::getB_SF(void) const { return ((result >> BX_LF_SIGN_BIT) ^ (auxbits >> LF_BIT_SD)) & 1; } BX_CPP_INLINE unsigned bx_lazyflags_entry::get_SF(void) const { return getB_SF(); } BX_CPP_INLINE void bx_lazyflags_entry::set_SF(bx_bool val) { bx_bool temp_sf = getB_SF(); auxbits ^= (temp_sf ^ val) << LF_BIT_SD; } BX_CPP_INLINE void bx_lazyflags_entry::clear_SF (void) { set_SF(0); } BX_CPP_INLINE void bx_lazyflags_entry::assert_SF (void) { set_SF(1); } /// ZF //////////////////////////////////////// BX_CPP_INLINE unsigned bx_lazyflags_entry::getB_ZF(void) const { return (0 == result); } BX_CPP_INLINE unsigned bx_lazyflags_entry::get_ZF(void) const { return getB_ZF(); } BX_CPP_INLINE void bx_lazyflags_entry::set_ZF(bx_bool val) { if (val) assert_ZF(); else clear_ZF(); } BX_CPP_INLINE void bx_lazyflags_entry::clear_ZF(void) { result |= (1 << 8); } BX_CPP_INLINE void bx_lazyflags_entry::assert_ZF(void) { // merge the sign bit into the Sign Delta auxbits ^= (((result >> BX_LF_SIGN_BIT) & 1) << LF_BIT_SD); // merge the parity bits into the Parity Delta Byte Bit32u temp_pdb = (255 & result); auxbits ^= (temp_pdb << LF_BIT_PDB); // now zero the .result value result = 0; } /// AF //////////////////////////////////////// // AF - bit 4 in EFLAGS, represented by bit LF_BIT_AF of oszapc.auxbits BX_CPP_INLINE unsigned bx_lazyflags_entry::getB_AF(void) const { return (auxbits >> LF_BIT_AF) & 1; } BX_CPP_INLINE unsigned bx_lazyflags_entry::get_AF(void) const { return (auxbits & LF_MASK_AF); } BX_CPP_INLINE void bx_lazyflags_entry::set_AF(bx_bool val) { auxbits &= ~(LF_MASK_AF); auxbits |= (val) << LF_BIT_AF; } BX_CPP_INLINE void bx_lazyflags_entry::clear_AF(void) { auxbits &= ~(LF_MASK_AF); } BX_CPP_INLINE void bx_lazyflags_entry::assert_AF(void) { auxbits |= (LF_MASK_AF); } /// PF //////////////////////////////////////// // PF - bit 2 in EFLAGS, represented by lower 8 bits of oszapc.result BX_CPP_INLINE unsigned bx_lazyflags_entry::getB_PF(void) const { Bit32u temp = (255 & result); temp = temp ^ (255 & (auxbits >> LF_BIT_PDB)); temp = (temp ^ (temp >> 4)) & 0x0F; return (0x9669U >> temp) & 1; } BX_CPP_INLINE unsigned bx_lazyflags_entry::get_PF(void) const { return getB_PF(); } BX_CPP_INLINE void bx_lazyflags_entry::set_PF(bx_bool val) { Bit32u temp_pdb = (255 & result) ^ (!val); auxbits &= ~(LF_MASK_PDB); auxbits |= (temp_pdb << LF_BIT_PDB); } BX_CPP_INLINE void bx_lazyflags_entry::clear_PF (void) { set_PF(0); } BX_CPP_INLINE void bx_lazyflags_entry::assert_PF (void) { set_PF(1); } /// CF //////////////////////////////////////// BX_CPP_INLINE unsigned bx_lazyflags_entry::getB_CF(void) const { return (auxbits >> LF_BIT_CF) & 1; } BX_CPP_INLINE unsigned bx_lazyflags_entry::get_CF(void) const { return (auxbits & LF_MASK_CF); } BX_CPP_INLINE void bx_lazyflags_entry::set_CF(bx_bool val) { bx_bool temp_of = getB_OF(); set_flags_OxxxxC(temp_of, val); } BX_CPP_INLINE void bx_lazyflags_entry::clear_CF(void) { bx_bool temp_of = getB_OF(); set_flags_OxxxxC(temp_of, 0); } BX_CPP_INLINE void bx_lazyflags_entry::assert_CF(void) { bx_bool temp_of = getB_OF(); set_flags_OxxxxC(temp_of, 1); } #endif // BX_LAZY_FLAGS_DEF