///////////////////////////////////////////////////////////////////////// // $Id: misc_mem.cc,v 1.46 2004-08-06 15:49:55 vruppert Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2002 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // I/O memory handlers API Copyright (C) 2003 by Frank Cornelis // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #include "iodev/iodev.h" #define LOG_THIS BX_MEM(0)-> #if BX_PROVIDE_CPU_MEMORY Bit32u BX_MEM_C::get_memory_in_k(void) { return(BX_MEM_THIS megabytes * 1024); } #endif // #if BX_PROVIDE_CPU_MEMORY #if BX_PROVIDE_CPU_MEMORY // BX_MEM_C constructor BX_MEM_C::BX_MEM_C(void) { char mem[6]; snprintf(mem, 6, "MEM%d", BX_SIM_ID); put(mem); settype(MEMLOG); vector = NULL; actual_vector = NULL; len = 0; megabytes = 0; memory_handlers = NULL; } #endif // #if BX_PROVIDE_CPU_MEMORY #if BX_PROVIDE_CPU_MEMORY void BX_CPP_AttrRegparmN(2) BX_MEM_C::alloc_vector_aligned (size_t bytes, size_t alignment) { if (actual_vector != NULL) { BX_INFO (("freeing existing memory vector")); delete [] actual_vector; actual_vector = NULL; vector = NULL; } Bit64u test_mask = alignment - 1; actual_vector = new Bit8u [bytes+test_mask]; // round address forward to nearest multiple of alignment. Alignment // MUST BE a power of two for this to work. Bit64u masked = ((Bit64u)(actual_vector + test_mask)) & ~test_mask; vector = (Bit8u *)masked; // sanity check: no lost bits during pointer conversion BX_ASSERT (sizeof(masked) >= sizeof(vector)); // sanity check: after realignment, everything fits in allocated space BX_ASSERT (vector+bytes <= actual_vector+bytes+test_mask); BX_INFO (("allocated memory at %p. after alignment, vector=%p", actual_vector, vector)); } #endif // We can't use this because alloc_vector_aligned uses BX_INFO, but the object does not yet exists /* #if BX_PROVIDE_CPU_MEMORY // BX_MEM_C constructor BX_MEM_C::BX_MEM_C(size_t memsize) { char mem[6]; snprintf(mem, 6, "MEM%d", BX_SIM_ID); put(mem); settype(MEMLOG); vector = NULL; actual_vector = NULL; alloc_vector_aligned (memsize, BX_MEM_VECTOR_ALIGN); len = memsize; megabytes = len / (1024*1024); } #endif // #if BX_PROVIDE_CPU_MEMORY */ #if BX_PROVIDE_CPU_MEMORY // BX_MEM_C destructor BX_MEM_C::~BX_MEM_C(void) { if (this-> vector != NULL) { delete [] actual_vector; actual_vector = NULL; vector = NULL; delete [] memory_handlers; memory_handlers = NULL; } else { BX_DEBUG(("(%u) memory not freed as it wasn't allocated!", BX_SIM_ID)); } } #endif // #if BX_PROVIDE_CPU_MEMORY #if BX_PROVIDE_CPU_MEMORY void BX_MEM_C::init_memory(int memsize) { BX_DEBUG(("Init $Id: misc_mem.cc,v 1.46 2004-08-06 15:49:55 vruppert Exp $")); // you can pass 0 if memory has been allocated already through // the constructor, or the desired size of memory if it hasn't // BX_INFO(("%.2fMB", (float)(BX_MEM_THIS megabytes) )); if (BX_MEM_THIS vector == NULL) { // memory not already allocated, do now... alloc_vector_aligned (memsize, BX_MEM_VECTOR_ALIGN); BX_MEM_THIS len = memsize; BX_MEM_THIS megabytes = memsize / (1024*1024); BX_MEM_THIS memory_handlers = new struct memory_handler_struct *[1024 * 1024]; for (int idx = 0; idx < 1024 * 1024; idx++) BX_MEM_THIS memory_handlers[idx] = NULL; BX_INFO(("%.2fMB", (float)(BX_MEM_THIS megabytes) )); } #if BX_DEBUGGER if (megabytes > BX_MAX_DIRTY_PAGE_TABLE_MEGS) { BX_INFO(("Error: memory larger than dirty page table can handle")); BX_PANIC(("Error: increase BX_MAX_DIRTY_PAGE_TABLE_MEGS")); } #endif } #endif // #if BX_PROVIDE_CPU_MEMORY #if BX_PROVIDE_CPU_MEMORY void // Values for type : // 0 : System Bios // 1 : VGA Bios // 2 : Optional ROM Bios BX_MEM_C::load_ROM(const char *path, Bit32u romaddress, Bit8u type) { struct stat stat_buf; int fd, ret; unsigned long size, offset; if (*path == '\0') { if (type == 2) { BX_PANIC(( "ROM: Optional BIOS image undefined.")); } else if (type == 1) { BX_PANIC(( "ROM: VGA BIOS image undefined.")); } else { BX_PANIC(( "ROM: System BIOS image undefined.")); } return; } // read in ROM BIOS image file fd = open(path, O_RDONLY #ifdef O_BINARY | O_BINARY #endif ); if (fd < 0) { if (type < 2) { BX_PANIC(( "ROM: couldn't open ROM image file '%s'.", path)); } else { BX_ERROR(( "ROM: couldn't open ROM image file '%s'.", path)); } return; } ret = fstat(fd, &stat_buf); if (ret) { if (type < 2) { BX_PANIC(( "ROM: couldn't stat ROM image file '%s'.", path)); } else { BX_ERROR(( "ROM: couldn't stat ROM image file '%s'.", path)); } return; } size = stat_buf.st_size; if ( (romaddress + size) > BX_MEM_THIS len ) { BX_PANIC(( "ROM: ROM address range > physical memsize!")); return; } offset = 0; while (size > 0) { ret = read(fd, (bx_ptr_t) &BX_MEM_THIS vector[romaddress + offset], size); if (ret <= 0) { BX_PANIC(( "ROM: read failed on BIOS image: '%s'",path)); } size -= ret; offset += ret; } close(fd); BX_INFO(("rom at 0x%05x/%u ('%s')", (unsigned) romaddress, (unsigned) stat_buf.st_size, path )); } #endif // #if BX_PROVIDE_CPU_MEMORY #if BX_SUPPORT_PCI Bit8u* BX_CPP_AttrRegparmN(1) BX_MEM_C::pci_fetch_ptr(Bit32u addr) { if (bx_options.Oi440FXSupport->get ()) { switch (DEV_pci_rd_memtype (addr)) { case 0x1: // Read from ShadowRAM return (&BX_MEM_THIS shadow[addr - 0xc0000]); case 0x0: // Read from ROM return (&BX_MEM_THIS vector[addr]); default: BX_PANIC(("pci_fetch_ptr(): default case")); return(0); } } else return (&BX_MEM_THIS vector[addr]); } #endif #if ( BX_DEBUGGER || BX_DISASM || BX_GDBSTUB) bx_bool BX_MEM_C::dbg_fetch_mem(Bit32u addr, unsigned len, Bit8u *buf) { if ( (addr + len) > this->len ) { BX_INFO(("dbg_fetch_mem out of range. 0x%x > 0x%x", addr+len, this->len)); return(0); // error, beyond limits of memory } for (; len>0; len--) { if ( (addr & 0xfffe0000) == 0x000a0000 ) { *buf = DEV_vga_mem_read(addr); } else { #if BX_SUPPORT_PCI == 0 *buf = vector[addr]; #else if ( bx_options.Oi440FXSupport->get () && ((addr >= 0x000C0000) && (addr <= 0x000FFFFF)) ) { switch (DEV_pci_rd_memtype (addr)) { case 0x1: // Fetch from ShadowRAM *buf = shadow[addr - 0xc0000]; // BX_INFO(("Fetching from ShadowRAM %06x, len %u !", (unsigned)addr, (unsigned)len)); break; case 0x0: // Fetch from ROM *buf = vector[addr]; // BX_INFO(("Fetching from ROM %06x, Data %02x ", (unsigned)addr, *buf)); break; default: BX_PANIC(("dbg_fetch_mem: default case")); } } else *buf = vector[addr]; #endif // #if BX_SUPPORT_PCI == 0 } buf++; addr++; } return(1); } #endif #if BX_DEBUGGER || BX_GDBSTUB bx_bool BX_MEM_C::dbg_set_mem(Bit32u addr, unsigned len, Bit8u *buf) { if ( (addr + len) > this->len ) { return(0); // error, beyond limits of memory } for (; len>0; len--) { if ( (addr & 0xfffe0000) == 0x000a0000 ) { DEV_vga_mem_write(addr, *buf); } else vector[addr] = *buf; buf++; addr++; } return(1); } #endif bx_bool BX_MEM_C::dbg_crc32(unsigned long (*f)(unsigned char *buf, int len), Bit32u addr1, Bit32u addr2, Bit32u *crc) { unsigned len; *crc = 0; if (addr1 > addr2) return(0); if (addr2 >= this->len) { return(0); // error, specified address past last phy mem addr } len = 1 + addr2 - addr1; *crc = f(vector + addr1, len); return(1); } Bit8u * BX_CPP_AttrRegparmN(3) BX_MEM_C::getHostMemAddr(BX_CPU_C *cpu, Bit32u a20Addr, unsigned op) // Return a host address corresponding to the guest physical memory // address (with A20 already applied), given that the calling // code will perform an 'op' operation. This address will be // used for direct access to guest memory as an acceleration by // a few instructions, like REP {MOV, INS, OUTS, etc}. // Values of 'op' are { BX_READ, BX_WRITE, BX_RW }. // The other assumption is that the calling code _only_ accesses memory // directly within the page that encompasses the address requested. { if ( a20Addr >= BX_MEM_THIS len ) return(NULL); // Error, requested addr is out of bounds. if (op == BX_READ) { if ( (a20Addr > 0x9ffff) && (a20Addr < 0xc0000) ) return(NULL); // Vetoed! Mem mapped IO (VGA) #if !BX_SUPPORT_PCI return( (Bit8u *) & vector[a20Addr] ); #else else if ( (a20Addr < 0xa0000) || (a20Addr > 0xfffff) || (!bx_options.Oi440FXSupport->get ()) ) return( (Bit8u *) & vector[a20Addr] ); else { switch (DEV_pci_rd_memtype (a20Addr)) { case 0x0: // Read from ROM return ( (Bit8u *) & vector[a20Addr]); case 0x1: // Read from ShadowRAM return( (Bit8u *) & shadow[a20Addr - 0xc0000]); default: BX_PANIC(("getHostMemAddr(): default case")); return(0); } } #endif } else { // op == {BX_WRITE, BX_RW} Bit8u *retAddr; if ( (a20Addr < 0xa0000) || (a20Addr > 0xfffff) ) { retAddr = (Bit8u *) & vector[a20Addr]; } #if !BX_SUPPORT_PCI else return(NULL); // Vetoed! Mem mapped IO (VGA) and ROMs #else else if ( (a20Addr < 0xc0000) || (!bx_options.Oi440FXSupport->get ()) ) return(NULL); // Vetoed! Mem mapped IO (VGA) and ROMs else if (DEV_pci_wr_memtype (a20Addr) == 1) { // Write to ShadowRAM retAddr = (Bit8u *) & shadow[a20Addr - 0xc0000]; } else return(NULL); // Vetoed! ROMs #endif #if BX_SUPPORT_ICACHE cpu->iCache.decWriteStamp(cpu, a20Addr); #endif return(retAddr); } } /* * One needs to provide both a read_handler and a write_handler. * XXX: maybe we should check for overlapping memory handlers */ bx_bool BX_MEM_C::registerMemoryHandlers(memory_handler_t read_handler, void *read_param, memory_handler_t write_handler, void *write_param, unsigned long begin_addr, unsigned long end_addr) { if (end_addr < begin_addr) return false; if (!read_handler) return false; if (!write_handler) return false; for (unsigned page_idx = begin_addr >> 20; page_idx <= end_addr >> 20; page_idx++) { struct memory_handler_struct *memory_handler = new struct memory_handler_struct; memory_handler->next = memory_handlers[page_idx]; memory_handlers[page_idx] = memory_handler; memory_handler->read_handler = read_handler; memory_handler->write_handler = write_handler; memory_handler->read_param = read_param; memory_handler->write_param = write_param; memory_handler->begin = begin_addr; memory_handler->end = end_addr; } return true; } bx_bool BX_MEM_C::unregisterMemoryHandlers(memory_handler_t read_handler, memory_handler_t write_handler, unsigned long begin_addr, unsigned long end_addr) { bx_bool ret = true; for (unsigned page_idx = begin_addr >> 20; page_idx <= end_addr >> 20; page_idx++) { struct memory_handler_struct *memory_handler = memory_handlers[page_idx]; struct memory_handler_struct *prev = NULL; while (memory_handler && memory_handler->read_handler != read_handler && memory_handler->write_handler != write_handler && memory_handler->begin != begin_addr && memory_handler->end != end_addr) { prev = memory_handler; memory_handler = memory_handler->next; } if (!memory_handler) { ret = false; // we should have found it continue; // anyway, try the other pages } if (prev) prev->next = memory_handler->next; else memory_handlers[page_idx] = memory_handler->next; delete memory_handler; } return ret; }