///////////////////////////////////////////////////////////////////////// // $Id: pc_system.cc,v 1.29 2002-10-06 17:29:22 kevinlawton Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2002 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #include "bochs.h" #define LOG_THIS bx_pc_system. #ifdef WIN32 #ifndef __MINGW32__ // #include // +++ #include #endif #endif #if BX_SHOW_IPS unsigned long ips_count=0; #endif #if defined(PROVIDE_M_IPS) double m_ips; // Millions of Instructions Per Second #endif // Option for turning off BX_TIMER_DEBUG? // Check out m_ips and ips #define SpewPeriodicTimerInfo 0 #define MinAllowableTimerPeriod 1 #if SpewPeriodicTimerInfo // If debugging, set the heartbeat to 5M cycles. Each heartbeat // spews the active timer info. const Bit64u bx_pc_system_c::NullTimerInterval = 5000000; #else // This must be the maximum 32-bit unsigned int value, NOT (Bit64u) -1. const Bit64u bx_pc_system_c::NullTimerInterval = 0xffffffff; #endif // constructor bx_pc_system_c::bx_pc_system_c(void) { this->put("SYS"); // Timer[0] is the null timer. It is initialized as a special // case here. It should never be turned off or modified, and its // duration should always remain the same. ticksTotal = 0; // Reset ticks since emulator started. timer[0].period = NullTimerInterval; timer[0].timeToFire = ticksTotal + NullTimerInterval; timer[0].active = 1; timer[0].continuous = 1; timer[0].funct = nullTimer; timer[0].this_ptr = this; currCountdown = NullTimerInterval; currCountdownPeriod = NullTimerInterval; numTimers = 1; // So far, only the nullTimer. } void bx_pc_system_c::init_ips(Bit32u ips) { HRQ = 0; enable_a20 = 1; //set_INTR (0); #if BX_CPU_LEVEL < 2 a20_mask = 0xfffff; #elif BX_CPU_LEVEL == 2 a20_mask = 0xffffff; #else /* 386+ */ a20_mask = 0xffffffff; #endif // parameter 'ips' is the processor speed in Instructions-Per-Second m_ips = double(ips) / 1000000.0L; BX_DEBUG(("ips = %u", (unsigned) ips)); } void bx_pc_system_c::set_HRQ(Boolean val) { HRQ = val; if (val) BX_CPU(0)->async_event = 1; } #if (BX_NUM_SIMULATORS < 2) void bx_pc_system_c::set_INTR(Boolean value) { if (bx_dbg.interrupts) BX_INFO(("pc_system: Setting INTR=%d on bootstrap processor %d", (int)value, BX_BOOTSTRAP_PROCESSOR)); //INTR = value; BX_CPU(BX_BOOTSTRAP_PROCESSOR)->set_INTR(value); } #endif // // Read from the IO memory address space // Bit32u bx_pc_system_c::inp(Bit16u addr, unsigned io_len) { Bit32u ret; ret = bx_devices.inp(addr, io_len); return( ret ); } // // Write to the IO memory address space. // void bx_pc_system_c::outp(Bit16u addr, Bit32u value, unsigned io_len) { bx_devices.outp(addr, value, io_len); } void bx_pc_system_c::set_enable_a20(Bit8u value) { #if BX_CPU_LEVEL < 2 BX_PANIC(("set_enable_a20() called: 8086 emulation")); #else #if BX_SUPPORT_A20 unsigned old_enable_a20 = enable_a20; if (value) { enable_a20 = 1; #if BX_CPU_LEVEL == 2 a20_mask = 0xffffff; /* 286: enable all 24 address lines */ #else /* 386+ */ a20_mask = 0xffffffff; /* 386: enable all 32 address lines */ #endif } else { enable_a20 = 0; a20_mask = 0xffefffff; /* mask off A20 address line */ } BX_DBG_A20_REPORT(value); BX_DEBUG(("A20: set() = %u", (unsigned) enable_a20)); // If there has been a transition, we need to notify the CPUs so // they can potentially invalidate certain cache info based on // A20-line-applied physical addresses. if (old_enable_a20 != enable_a20) { for (unsigned i=0; ipagingA20Changed(); } #else BX_DEBUG(("set_enable_a20: ignoring: SUPPORT_A20 = 0")); #endif // #if BX_SUPPORT_A20 #endif } Boolean bx_pc_system_c::get_enable_a20(void) { #if BX_SUPPORT_A20 if (bx_dbg.a20) BX_INFO(("A20: get() = %u", (unsigned) enable_a20)); if (enable_a20) return(1); else return(0); #else BX_INFO(("get_enable_a20: ignoring: SUPPORT_A20 = 0")); return(1); #endif // #if BX_SUPPORT_A20 } int bx_pc_system_c::ResetSignal( PCS_OP operation ) { UNUSED( operation ); // Reset the processor. BX_ERROR(( "# bx_pc_system_c::ResetSignal() called" )); for (int i=0; ireset(BX_RESET_SOFTWARE); bx_devices.reset(BX_RESET_SOFTWARE); return(0); } Bit8u bx_pc_system_c::IAC(void) { return( bx_devices.pic->IAC() ); } void bx_pc_system_c::exit(void) { if (bx_devices.hard_drive) bx_devices.hard_drive->close_harddrive(); BX_INFO(("Last time is %u", (unsigned) bx_cmos.s.timeval)); bx_gui.exit(); } // ================================================ // Bochs internal timer delivery framework features // ================================================ int bx_pc_system_c::register_timer( void *this_ptr, void (*funct)(void *), Bit32u useconds, Boolean continuous, Boolean active, const char *id) { Bit64u ticks; // Convert useconds to number of ticks. ticks = (Bit64u) (double(useconds) * m_ips); return register_timer_ticks(this_ptr, funct, ticks, continuous, active, id); } int bx_pc_system_c::register_timer_ticks(void* this_ptr, bx_timer_handler_t funct, Bit64u ticks, Boolean continuous, Boolean active, const char *id) { unsigned i; #if BX_TIMER_DEBUG if (numTimers >= BX_MAX_TIMERS) { BX_PANIC(("register_timer: too many registered timers.")); } if (this_ptr == NULL) BX_PANIC(("register_timer_ticks: this_ptr is NULL")); if (funct == NULL) BX_PANIC(("register_timer_ticks: funct is NULL")); #endif // If the timer frequency is rediculously low, make it more sane. // This happens when 'ips' is too low. if (ticks < MinAllowableTimerPeriod) { //BX_INFO(("register_timer_ticks: adjusting ticks of %llu to min of %u", // ticks, MinAllowableTimerPeriod)); ticks = MinAllowableTimerPeriod; } for (i=0; i < numTimers; i++) { if (timer[i].inUse == 0) break; } timer[i].inUse = 1; timer[i].period = ticks; timer[i].timeToFire = (ticksTotal + Bit64u(currCountdownPeriod-currCountdown)) + ticks; timer[i].active = active; timer[i].continuous = continuous; timer[i].funct = funct; timer[i].this_ptr = this_ptr; strncpy(timer[i].id, id, BxMaxTimerIDLen); timer[i].id[BxMaxTimerIDLen-1] = 0; // Null terminate if not already. if (active) { if (ticks < Bit64u(currCountdown)) { // This new timer needs to fire before the current countdown. // Skew the current countdown and countdown period to be smaller // by the delta. currCountdownPeriod -= (currCountdown - Bit32u(ticks)); currCountdown = Bit32u(ticks); } } // If we didn't find a free slot, increment the bound, numTimers. if (i==numTimers) numTimers++; // One new timer installed. // Return timer id. return(i); } void bx_pc_system_c::countdownEvent(void) { unsigned i; Bit64u minTimeToFire; Boolean triggered[BX_MAX_TIMERS]; // The countdown decremented to 0. We need to service all the active // timers, and invoke callbacks from those timers which have fired. #if BX_TIMER_DEBUG if (currCountdown != 0) BX_PANIC(("countdownEvent: ticks!=0")); #endif // Increment global ticks counter by number of ticks which have // elapsed since the last update. ticksTotal += Bit64u(currCountdownPeriod); minTimeToFire = (Bit64u) -1; for (i=0; i < numTimers; i++) { triggered[i] = 0; // Reset triggered flag. if (timer[i].active) { #if BX_TIMER_DEBUG if (ticksTotal > timer[i].timeToFire) BX_PANIC(("countdownEvent: ticksTotal > timeToFire[%u], D %llu", i, timer[i].timeToFire-ticksTotal)); #endif if (ticksTotal == timer[i].timeToFire) { // This timer is ready to fire. triggered[i] = 1; if (timer[i].continuous==0) { // If triggered timer is one-shot, deactive. timer[i].active = 0; } else { // Continuous timer, increment time-to-fire by period. timer[i].timeToFire += timer[i].period; if (timer[i].timeToFire < minTimeToFire) minTimeToFire = timer[i].timeToFire; } } else { // This timer is not ready to fire yet. if (timer[i].timeToFire < minTimeToFire) minTimeToFire = timer[i].timeToFire; } } } // Calculate next countdown period. We need to do this before calling // any of the callbacks, as they may call timer features, which need // to be advanced to the next countdown cycle. currCountdown = currCountdownPeriod = Bit32u(minTimeToFire - ticksTotal); for (i=0; i < numTimers; i++) { // Call requested timer function. It may request a different // timer period or deactivate etc. if (triggered[i]) { timer[i].funct(timer[i].this_ptr); } } } void bx_pc_system_c::nullTimer(void* this_ptr) { // This function is always inserted in timer[0]. It is sort of // a heartbeat timer. It ensures that at least one timer is // always active to make the timer logic more simple, and has // a duration of less than the maximum 32-bit integer, so that // a 32-bit size can be used for the hot countdown timer. The // rest of the timer info can be 64-bits. This is also a good // place for some logic to report actual emulated // instructions-per-second (IPS) data when measured relative to // the host computer's wall clock. UNUSED(this_ptr); #if SpewPeriodicTimerInfo BX_INFO(("===================================")); for (unsigned i=0; i < bx_pc_system.numTimers; i++) { if (bx_pc_system.timer[i].active) { BX_INFO(("BxTimer(%s): period=%llu, continuous=%u", bx_pc_system.timer[i].id, bx_pc_system.timer[i].period, bx_pc_system.timer[i].continuous)); } } #endif } #if BX_DEBUGGER void bx_pc_system_c::timebp_handler(void* this_ptr) { BX_CPU(0)->break_point = BREAK_POINT_TIME; BX_DEBUG(( "Time breakpoint triggered" )); if (timebp_queue_size > 1) { Bit64s new_diff = timebp_queue[1] - bx_pc_system.time_ticks(); bx_pc_system.activate_timer_ticks(timebp_timer, new_diff, 1); } timebp_queue_size--; for (int i = 0; i < timebp_queue_size; i++) timebp_queue[i] = timebp_queue[i+1]; } #endif // BX_DEBUGGER Bit64u bx_pc_system_c::time_usec() { return (Bit64u) (((double)(Bit64s)time_ticks()) / m_ips ); } void bx_pc_system_c::start_timers(void) { } void bx_pc_system_c::activate_timer_ticks(unsigned i, Bit64u ticks, Boolean continuous) { #if BX_TIMER_DEBUG if (i >= numTimers) BX_PANIC(("activate_timer_ticks: timer %u OOB", i)); if (timer[i].period < MinAllowableTimerPeriod) BX_PANIC(("activate_timer_ticks: timer[%u].period of %llu < min of %u", i, timer[i].period, MinAllowableTimerPeriod)); #endif // If the timer frequency is rediculously low, make it more sane. // This happens when 'ips' is too low. if (ticks < MinAllowableTimerPeriod) { //BX_INFO(("activate_timer_ticks: adjusting ticks of %llu to min of %u", // ticks, MinAllowableTimerPeriod)); ticks = MinAllowableTimerPeriod; } timer[i].period = ticks; timer[i].timeToFire = (ticksTotal + Bit64u(currCountdownPeriod-currCountdown)) + ticks; timer[i].active = 1; timer[i].continuous = continuous; if (ticks < Bit64u(currCountdown)) { // This new timer needs to fire before the current countdown. // Skew the current countdown and countdown period to be smaller // by the delta. currCountdownPeriod -= (currCountdown - Bit32u(ticks)); currCountdown = Bit32u(ticks); } } void bx_pc_system_c::activate_timer(unsigned i, Bit32u useconds, Boolean continuous) { Bit64u ticks; #if BX_TIMER_DEBUG if (i >= numTimers) BX_PANIC(("activate_timer: timer %u OOB", i)); #endif // if useconds = 0, use default stored in period field // else set new period from useconds if (useconds==0) { ticks = timer[i].period; } else { // convert useconds to number of ticks ticks = (Bit64u) (double(useconds) * m_ips); // If the timer frequency is rediculously low, make it more sane. // This happens when 'ips' is too low. if (ticks < MinAllowableTimerPeriod) { //BX_INFO(("activate_timer: adjusting ticks of %llu to min of %u", // ticks, MinAllowableTimerPeriod)); ticks = MinAllowableTimerPeriod; } timer[i].period = ticks; } activate_timer_ticks(i, ticks, continuous); } void bx_pc_system_c::deactivate_timer( unsigned i ) { #if BX_TIMER_DEBUG if (i >= numTimers) BX_PANIC(("deactivate_timer: timer %u OOB", i)); #endif timer[i].active = 0; } unsigned bx_pc_system_c::unregisterTimer(int timerIndex) { unsigned i = (unsigned) timerIndex; #if BX_TIMER_DEBUG if (i >= numTimers) BX_PANIC(("unregisterTimer: timer %u OOB", i)); if (i == 0) BX_PANIC(("unregisterTimer: timer 0 is the nullTimer!")); if (timer[i].inUse == 0) BX_PANIC(("unregisterTimer: timer %u is not in-use!", i)); #endif if (timer[i].active) { BX_PANIC(("unregisterTimer: timer '%s' is still active!", timer[i].id)); return(0); // Fail. } // Reset timer fields for good measure. timer[i].inUse = 0; // No longer registered. timer[i].period = Bit64s(-1); // Max value (invalid) timer[i].timeToFire = Bit64s(-1); // Max value (invalid) timer[i].continuous = 0; timer[i].funct = NULL; timer[i].this_ptr = NULL; memset(timer[i].id, 0, BxMaxTimerIDLen); return(1); // OK }