///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (c) 2011 Stanislav Shwartsman // Written by Stanislav Shwartsman [sshwarts at sourceforge net] // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA // ///////////////////////////////////////////////////////////////////////// #include "bochs.h" #include "cpu.h" #include "param_names.h" #include "atom_n270.h" #define LOG_THIS cpu-> #if BX_CPU_LEVEL >= 6 atom_n270_t::atom_n270_t(BX_CPU_C *cpu): bx_cpuid_t(cpu) { if (! BX_SUPPORT_MONITOR_MWAIT) BX_INFO(("WARNING: MONITOR/MWAIT support is not compiled in !")); } void atom_n270_t::get_cpuid_leaf(Bit32u function, Bit32u subfunction, cpuid_function_t *leaf) const { static bx_bool cpuid_limit_winnt = SIM->get_param_bool(BXPN_CPUID_LIMIT_WINNT)->get(); if (cpuid_limit_winnt) if (function > 2 && function < 0x80000000) function = 2; switch(function) { case 0x80000000: get_ext_cpuid_leaf_0(leaf); return; case 0x80000001: get_ext_cpuid_leaf_1(leaf); return; case 0x80000002: case 0x80000003: case 0x80000004: get_ext_cpuid_brand_string_leaf(function, leaf); return; case 0x80000005: get_ext_cpuid_leaf_5(leaf); return; case 0x80000006: get_ext_cpuid_leaf_6(leaf); return; case 0x80000007: get_ext_cpuid_leaf_7(leaf); return; case 0x80000008: get_ext_cpuid_leaf_8(leaf); return; case 0x00000000: get_std_cpuid_leaf_0(leaf); return; case 0x00000001: get_std_cpuid_leaf_1(leaf); return; case 0x00000002: get_std_cpuid_leaf_2(leaf); return; case 0x00000003: get_reserved_leaf(leaf); return; case 0x00000004: get_std_cpuid_leaf_4(subfunction, leaf); return; case 0x00000005: get_std_cpuid_leaf_5(leaf); return; case 0x00000006: get_std_cpuid_leaf_6(leaf); return; case 0x00000007: case 0x00000008: case 0x00000009: get_reserved_leaf(leaf); return; case 0x0000000A: default: get_std_cpuid_leaf_A(leaf); return; } } Bit64u atom_n270_t::get_isa_extensions_bitmask(void) const { return BX_ISA_X87 | BX_ISA_486 | BX_ISA_PENTIUM | BX_ISA_P6 | BX_ISA_MMX | BX_ISA_SYSENTER_SYSEXIT | BX_ISA_CLFLUSH | BX_ISA_SSE | BX_ISA_SSE2 | BX_ISA_SSE3 | BX_ISA_SSSE3 | #if BX_SUPPORT_MONITOR_MWAIT BX_ISA_MONITOR_MWAIT | #endif BX_ISA_MOVBE; } Bit32u atom_n270_t::get_cpu_extensions_bitmask(void) const { return BX_CPU_DEBUG_EXTENSIONS | BX_CPU_VME | BX_CPU_PSE | #if BX_PHY_ADDRESS_LONG BX_CPU_PSE36 | #endif BX_CPU_PAE | BX_CPU_PGE | BX_CPU_MTRR | BX_CPU_PAT | BX_CPU_XAPIC; } // leaf 0x00000000 // void atom_n270_t::get_std_cpuid_leaf_0(cpuid_function_t *leaf) const { static const char* vendor_string = "GenuineIntel"; // EAX: highest std function understood by CPUID // EBX: vendor ID string // EDX: vendor ID string // ECX: vendor ID string static bx_bool cpuid_limit_winnt = SIM->get_param_bool(BXPN_CPUID_LIMIT_WINNT)->get(); if (cpuid_limit_winnt) leaf->eax = 0x2; else leaf->eax = 0xA; // CPUID vendor string (e.g. GenuineIntel, AuthenticAMD, CentaurHauls, ...) memcpy(&(leaf->ebx), vendor_string, 4); memcpy(&(leaf->edx), vendor_string + 4, 4); memcpy(&(leaf->ecx), vendor_string + 8, 4); #ifdef BX_BIG_ENDIAN leaf->ebx = bx_bswap32(leaf->ebx); leaf->ecx = bx_bswap32(leaf->ecx); leaf->edx = bx_bswap32(leaf->edx); #endif } // leaf 0x00000001 // void atom_n270_t::get_std_cpuid_leaf_1(cpuid_function_t *leaf) const { // EAX: CPU Version Information // [3:0] Stepping ID // [7:4] Model: starts at 1 // [11:8] Family: 4=486, 5=Pentium, 6=PPro, ... // [13:12] Type: 0=OEM, 1=overdrive, 2=dual cpu, 3=reserved // [19:16] Extended Model // [27:20] Extended Family leaf->eax = 0x000106C2; // EBX: // [7:0] Brand ID // [15:8] CLFLUSH cache line size (value*8 = cache line size in bytes) // [23:16] Number of logical processors in one physical processor // [31:24] Local Apic ID unsigned n_logical_processors = ncores*nthreads; leaf->ebx = ((CACHE_LINE_SIZE / 8) << 8) | (n_logical_processors << 16); #if BX_SUPPORT_APIC leaf->ebx |= ((cpu->get_apic_id() & 0xff) << 24); #endif // ECX: Extended Feature Flags // * [0:0] SSE3: SSE3 Instructions // [1:1] PCLMULQDQ Instruction support // * [2:2] DTES64: 64-bit DS area // * [3:3] MONITOR/MWAIT support // * [4:4] DS-CPL: CPL qualified debug store // [5:5] VMX: Virtual Machine Technology // [6:6] SMX: Secure Virtual Machine Technology // * [7:7] EST: Enhanced Intel SpeedStep Technology // * [8:8] TM2: Thermal Monitor 2 // * [9:9] SSSE3: SSSE3 Instructions // [10:10] CNXT-ID: L1 context ID // [11:11] reserved // [12:12] FMA Instructions support // [13:13] CMPXCHG16B: CMPXCHG16B instruction support // * [14:14] xTPR update control // * [15:15] PDCM - Perfon and Debug Capability MSR // [16:16] reserved // [17:17] PCID: Process Context Identifiers // [18:18] DCA - Direct Cache Access // [19:19] SSE4.1 Instructions // [20:20] SSE4.2 Instructions // [21:21] X2APIC // * [22:22] MOVBE instruction // [23:23] POPCNT instruction // [24:24] TSC Deadline // [25:25] AES Instructions // [26:26] XSAVE extensions support // [27:27] OSXSAVE support // [28:28] AVX extensions support // [29:29] AVX F16C - Float16 conversion support // [30:30] RDRAND instruction // [31:31] reserved leaf->ecx = BX_CPUID_EXT_SSE3 | BX_CPUID_EXT_DTES64 | #if BX_SUPPORT_MONITOR_MWAIT BX_CPUID_EXT_MONITOR_MWAIT | #endif BX_CPUID_EXT_DS_CPL | BX_CPUID_EXT_EST | BX_CPUID_EXT_THERMAL_MONITOR2 | BX_CPUID_EXT_SSSE3 | BX_CPUID_EXT_xTPR | BX_CPUID_EXT_PDCM | BX_CPUID_EXT_MOVBE; // EDX: Standard Feature Flags // * [0:0] FPU on chip // * [1:1] VME: Virtual-8086 Mode enhancements // * [2:2] DE: Debug Extensions (I/O breakpoints) // * [3:3] PSE: Page Size Extensions // * [4:4] TSC: Time Stamp Counter // * [5:5] MSR: RDMSR and WRMSR support // * [6:6] PAE: Physical Address Extensions // * [7:7] MCE: Machine Check Exception // * [8:8] CXS: CMPXCHG8B instruction // * [9:9] APIC: APIC on Chip // [10:10] Reserved // * [11:11] SYSENTER/SYSEXIT support // * [12:12] MTRR: Memory Type Range Reg // * [13:13] PGE/PTE Global Bit // * [14:14] MCA: Machine Check Architecture // * [15:15] CMOV: Cond Mov/Cmp Instructions // * [16:16] PAT: Page Attribute Table // - [17:17] PSE-36: Physical Address Extensions // [18:18] PSN: Processor Serial Number // * [19:19] CLFLUSH: CLFLUSH Instruction support // [20:20] Reserved // * [21:21] DS: Debug Store // * [22:22] ACPI: Thermal Monitor and Software Controlled Clock Facilities // * [23:23] MMX Technology // * [24:24] FXSR: FXSAVE/FXRSTOR (also indicates CR4.OSFXSR is available) // * [25:25] SSE: SSE Extensions // * [26:26] SSE2: SSE2 Extensions // * [27:27] Self Snoop // * [28:28] Hyper Threading Technology // * [29:29] TM: Thermal Monitor // [30:30] Reserved // * [31:31] PBE: Pending Break Enable leaf->edx = BX_CPUID_STD_X87 | BX_CPUID_STD_VME | BX_CPUID_STD_DEBUG_EXTENSIONS | BX_CPUID_STD_PSE | BX_CPUID_STD_TSC | BX_CPUID_STD_MSR | BX_CPUID_STD_PAE | BX_CPUID_STD_MCE | BX_CPUID_STD_CMPXCHG8B | BX_CPUID_STD_SYSENTER_SYSEXIT | BX_CPUID_STD_MTRR | BX_CPUID_STD_GLOBAL_PAGES | BX_CPUID_STD_MCA | BX_CPUID_STD_CMOV | BX_CPUID_STD_PAT | #if BX_PHY_ADDRESS_LONG BX_CPUID_STD_PSE36 | #endif BX_CPUID_STD_CLFLUSH | BX_CPUID_STD_DEBUG_STORE | BX_CPUID_STD_ACPI | BX_CPUID_STD_MMX | BX_CPUID_STD_FXSAVE_FXRSTOR | BX_CPUID_STD_SSE | BX_CPUID_STD_SSE2 | BX_CPUID_STD_SELF_SNOOP | BX_CPUID_STD_HT | BX_CPUID_STD_THERMAL_MONITOR | BX_CPUID_STD_PBE; #if BX_SUPPORT_APIC // if MSR_APICBASE APIC Global Enable bit has been cleared, // the CPUID feature flag for the APIC is set to 0. if (cpu->msr.apicbase & 0x800) leaf->edx |= BX_CPUID_STD_APIC; // APIC on chip #endif } // leaf 0x00000002 // void atom_n270_t::get_std_cpuid_leaf_2(cpuid_function_t *leaf) const { // CPUID function 0x00000002 - Cache and TLB Descriptors leaf->eax = 0x4FBA5901; leaf->ebx = 0x0E3080C0; leaf->ecx = 0x00000000; leaf->edx = 0x00000000; } // leaf 0x00000003 - Processor Serial Number (not supported) // // leaf 0x00000004 // void atom_n270_t::get_std_cpuid_leaf_4(Bit32u subfunction, cpuid_function_t *leaf) const { // CPUID function 0x00000004 - Deterministic Cache Parameters // EAX: // [04-00] - Cache Type Field // 0 = No more caches // 1 = Data Cache // 2 = Instruction Cache // 3 = Unified Cache // [07-05] - Cache Level (starts at 1)] // [08] - Self Initializing cache level (doesn't need software initialization) // [09] - Fully Associative cache // [13-10] - Reserved // [25-14] - Maximum number of addressable IDs for logical processors sharing this cache // [31-26] - Maximum number of addressable IDs for processor cores in the physical package - 1 // EBX: // [11-00] - L = System Coherency Line Size // [21-12] - P = Physical Line partitions // [31-22] - W = Ways of associativity // ECX: Number of Sets // EDX: // [00] - Writeback invalidate // [01] - Cache Inclusiveness // [02] - Complex Cache Indexing // [31-03] - Reserved switch(subfunction) { case 0: leaf->eax = 0x00004121; leaf->ebx = 0x0140003F; leaf->ecx = 0x0000003F; leaf->edx = 0x00000001; break; case 1: leaf->eax = 0x00004122; leaf->ebx = 0x01C0003F; leaf->ecx = 0x0000003F; leaf->edx = 0x00000001; break; case 2: leaf->eax = 0x00004143; leaf->ebx = 0x01C0003F; leaf->ecx = 0x000003FF; leaf->edx = 0x00000001; break; default: leaf->eax = 0; leaf->ebx = 0; leaf->ecx = 0; leaf->edx = 0; return; } } // leaf 0x00000005 // void atom_n270_t::get_std_cpuid_leaf_5(cpuid_function_t *leaf) const { // CPUID function 0x00000005 - MONITOR/MWAIT Leaf #if BX_SUPPORT_MONITOR_MWAIT // EAX - Smallest monitor-line size in bytes // EBX - Largest monitor-line size in bytes // ECX - // [31:2] - reserved // [1:1] - exit MWAIT even with EFLAGS.IF = 0 // [0:0] - MONITOR/MWAIT extensions are supported // EDX - // [03-00] - number of C0 sub C-states supported using MWAIT // [07-04] - number of C1 sub C-states supported using MWAIT // [11-08] - number of C2 sub C-states supported using MWAIT // [15-12] - number of C3 sub C-states supported using MWAIT // [19-16] - number of C4 sub C-states supported using MWAIT // [31-20] - reserved (MBZ) leaf->eax = CACHE_LINE_SIZE; leaf->ebx = CACHE_LINE_SIZE; leaf->ecx = 3; leaf->edx = 0x00020220; #else leaf->eax = 0; leaf->ebx = 0; leaf->ecx = 0; leaf->edx = 0; #endif } // leaf 0x00000006 // void atom_n270_t::get_std_cpuid_leaf_6(cpuid_function_t *leaf) const { // CPUID function 0x00000006 - Thermal and Power Management Leaf leaf->eax = 0x00000001; leaf->ebx = 0x00000002; leaf->ecx = 0x00000001; leaf->edx = 0x00000000; } // leaf 0x00000007 not supported // // leaf 0x00000008 reserved // // leaf 0x00000009 direct cache access not supported // // leaf 0x0000000A // void atom_n270_t::get_std_cpuid_leaf_A(cpuid_function_t *leaf) const { // CPUID function 0x0000000A - Architectural Performance Monitoring Leaf leaf->eax = 0x07280203; leaf->ebx = 0x00000000; leaf->ecx = 0x00000000; leaf->edx = 0x00002501; BX_INFO(("WARNING: Architectural Performance Monitoring is not implemented")); } // leaf 0x80000000 // void atom_n270_t::get_ext_cpuid_leaf_0(cpuid_function_t *leaf) const { // EAX: highest extended function understood by CPUID // EBX: reserved // EDX: reserved // ECX: reserved leaf->eax = 0x80000008; leaf->ebx = 0; leaf->edx = 0; // Reserved for Intel leaf->ecx = 0; } // leaf 0x80000001 // void atom_n270_t::get_ext_cpuid_leaf_1(cpuid_function_t *leaf) const { // EAX: CPU Version Information (reserved for Intel) leaf->eax = 0; // EBX: Brand ID (reserved for Intel) leaf->ebx = 0; // ECX: // ? [0:0] LAHF/SAHF instructions support in 64-bit mode // [1:1] CMP_Legacy: Core multi-processing legacy mode (AMD) // [2:2] SVM: Secure Virtual Machine (AMD) // [3:3] Extended APIC Space // [4:4] AltMovCR8: LOCK MOV CR0 means MOV CR8 // [5:5] LZCNT: LZCNT instruction support // [6:6] SSE4A: SSE4A Instructions support (deprecated?) // [7:7] Misaligned SSE support // [8:8] PREFETCHW: PREFETCHW instruction support // [9:9] OSVW: OS visible workarounds (AMD) // [11:10] reserved // [12:12] SKINIT support // [13:13] WDT: Watchdog timer support // [31:14] reserved leaf->ecx = BX_CPUID_EXT2_LAHF_SAHF; // EDX: // Many of the bits in EDX are the same as FN 0x00000001 [*] for AMD // [10:0] Reserved for Intel // [11:11] SYSCALL/SYSRET support // [19:12] Reserved for Intel // [20:20] No-Execute page protection // [25:21] Reserved // [26:26] 1G paging support // [27:27] Support RDTSCP Instruction // [28:28] Reserved // [29:29] Long Mode // [30:30] AMD 3DNow! Extensions // [31:31] AMD 3DNow! Instructions leaf->edx = 0; } // leaf 0x80000002 // // leaf 0x80000003 // // leaf 0x80000004 // void atom_n270_t::get_ext_cpuid_brand_string_leaf(Bit32u function, cpuid_function_t *leaf) const { // CPUID function 0x80000002-0x80000004 - Processor Name String Identifier static const char* brand_string = " Intel(R) Atom(TM) CPU N270 @ 1.60GHz"; switch(function) { case 0x80000002: memcpy(&(leaf->eax), brand_string , 4); memcpy(&(leaf->ebx), brand_string + 4, 4); memcpy(&(leaf->ecx), brand_string + 8, 4); memcpy(&(leaf->edx), brand_string + 12, 4); break; case 0x80000003: memcpy(&(leaf->eax), brand_string + 16, 4); memcpy(&(leaf->ebx), brand_string + 20, 4); memcpy(&(leaf->ecx), brand_string + 24, 4); memcpy(&(leaf->edx), brand_string + 28, 4); break; case 0x80000004: memcpy(&(leaf->eax), brand_string + 32, 4); memcpy(&(leaf->ebx), brand_string + 36, 4); memcpy(&(leaf->ecx), brand_string + 40, 4); memcpy(&(leaf->edx), brand_string + 44, 4); break; default: break; } #ifdef BX_BIG_ENDIAN leaf->eax = bx_bswap32(leaf->eax); leaf->ebx = bx_bswap32(leaf->ebx); leaf->ecx = bx_bswap32(leaf->ecx); leaf->edx = bx_bswap32(leaf->edx); #endif } // leaf 0x80000005 // void atom_n270_t::get_ext_cpuid_leaf_5(cpuid_function_t *leaf) const { // CPUID function 0x800000005 - L1 Cache and TLB Identifiers leaf->eax = 0; leaf->ebx = 0; leaf->ecx = 0; // reserved for Intel leaf->edx = 0; } // leaf 0x80000006 // void atom_n270_t::get_ext_cpuid_leaf_6(cpuid_function_t *leaf) const { // CPUID function 0x800000006 - L2 Cache and TLB Identifiers leaf->eax = 0x00000000; leaf->ebx = 0x00000000; leaf->ecx = 0x02008040; leaf->edx = 0x00000000; } // leaf 0x80000007 // void atom_n270_t::get_ext_cpuid_leaf_7(cpuid_function_t *leaf) const { // CPUID function 0x800000007 - Advanced Power Management leaf->eax = 0; leaf->ebx = 0; leaf->ecx = 0; leaf->edx = 0; } // leaf 0x80000008 // void atom_n270_t::get_ext_cpuid_leaf_8(cpuid_function_t *leaf) const { // virtual & phys address size in low 2 bytes. leaf->eax = BX_PHY_ADDRESS_WIDTH | (BX_LIN_ADDRESS_WIDTH << 8); // physical address should be 32-bit, no PSE-36 leaf->ebx = 0; leaf->ecx = 0; // Reserved, undefined leaf->edx = 0; } void atom_n270_t::dump_cpuid(void) const { struct cpuid_function_t leaf; unsigned n; for (n=0; n<=0xA; n++) { get_cpuid_leaf(n, 0x00000000, &leaf); BX_INFO(("CPUID[0x%08x]: %08x %08x %08x %08x", n, leaf.eax, leaf.ebx, leaf.ecx, leaf.edx)); } for (n=0x80000000; n<=0x80000008; n++) { get_cpuid_leaf(n, 0x00000000, &leaf); BX_INFO(("CPUID[0x%08x]: %08x %08x %08x %08x", n, leaf.eax, leaf.ebx, leaf.ecx, leaf.edx)); } } bx_cpuid_t *create_atom_n270_cpuid(BX_CPU_C *cpu) { return new atom_n270_t(cpu); } #endif