///////////////////////////////////////////////////////////////////////// // $Id: protect_ctrl.cc,v 1.22 2002-10-25 18:26:29 sshwarts Exp $ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001 MandrakeSoft S.A. // // MandrakeSoft S.A. // 43, rue d'Aboukir // 75002 Paris - France // http://www.linux-mandrake.com/ // http://www.mandrakesoft.com/ // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #define LOG_THIS BX_CPU_THIS_PTR void BX_CPU_C::ARPL_EwGw(bxInstruction_c *i) { #if BX_CPU_LEVEL < 2 BX_PANIC(("ARPL_EwRw: not supported on 8086!")); #else /* 286+ */ Bit16u op2_16, op1_16; if (protected_mode()) { /* op1_16 is a register or memory reference */ if (i->modC0()) { op1_16 = BX_READ_16BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16); } op2_16 = BX_READ_16BIT_REG(i->nnn()); if ( (op1_16 & 0x03) < (op2_16 & 0x03) ) { op1_16 = (op1_16 & 0xfffc) | (op2_16 & 0x03); /* now write back to destination */ if (i->modC0()) { if (i->os32L()) { // if 32bit opsize, then 0xff3f is or'd into // upper 16bits of register Bit32u op1_32; op1_32 = BX_READ_32BIT_REG(i->rm()); op1_32 = (op1_32 & 0xffff0000) | op1_16; op1_32 |= 0xff3f0000; BX_WRITE_32BIT_REGZ(i->rm(), op1_32); } else { BX_WRITE_16BIT_REG(i->rm(), op1_16); } } else { Write_RMW_virtual_word(op1_16); } set_ZF(1); } else { set_ZF(0); } } else { // ARPL not recognized in real or v8086 mode UndefinedOpcode(i); return; } #endif } void BX_CPU_C::LAR_GvEw(bxInstruction_c *i) { /* for 16 bit operand size mode */ Bit16u raw_selector; bx_descriptor_t descriptor; bx_selector_t selector; Bit32u dword1, dword2; if (v8086_mode()) BX_PANIC(("protect_ctrl: v8086 mode unsupported")); if (real_mode()) { BX_PANIC(("LAR_GvEw: not recognized in real mode")); UndefinedOpcode(i); return; } if (i->modC0()) { raw_selector = BX_READ_16BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_virtual_word(i->seg(), RMAddr(i), &raw_selector); } /* if selector null, clear ZF and done */ if ( (raw_selector & 0xfffc) == 0 ) { set_ZF(0); return; } parse_selector(raw_selector, &selector); if ( !fetch_raw_descriptor2(&selector, &dword1, &dword2) ) { /* not within descriptor table */ set_ZF(0); return; } parse_descriptor(dword1, dword2, &descriptor); if (descriptor.valid==0) { set_ZF(0); //BX_DEBUG(("lar(): descriptor valid bit cleared")); return; } /* if source selector is visible at CPL & RPL, * within the descriptor table, and of type accepted by LAR instruction, * then load register with segment limit and set ZF */ if ( descriptor.segment ) { /* normal segment */ if ( descriptor.u.segment.executable && descriptor.u.segment.c_ed ) { /* ignore DPL for conforming segments */ } else { if ( (descriptor.dplos32L()) { /* masked by 00FxFF00, where x is undefined */ BX_WRITE_32BIT_REGZ(i->nnn(), dword2 & 0x00ffff00); } else { BX_WRITE_16BIT_REG(i->nnn(), dword2 & 0xff00); } return; } else { /* system or gate segment */ switch ( descriptor.type ) { case 1: /* available TSS */ case 2: /* LDT */ case 3: /* busy TSS */ case 4: /* 286 call gate */ case 5: /* task gate */ #if BX_CPU_LEVEL >= 3 case 9: /* available 32bit TSS */ case 11: /* busy 32bit TSS */ case 12: /* 32bit call gate */ #endif break; default: /* rest not accepted types to LAR */ set_ZF(0); BX_DEBUG(("lar(): not accepted type")); return; break; } if ( (descriptor.dplos32L()) { /* masked by 00FxFF00, where x is undefined ??? */ BX_WRITE_32BIT_REGZ(i->nnn(), dword2 & 0x00ffff00); } else { BX_WRITE_16BIT_REG(i->nnn(), dword2 & 0xff00); } return; } } void BX_CPU_C::LSL_GvEw(bxInstruction_c *i) { /* for 16 bit operand size mode */ Bit16u raw_selector; Bit32u limit32; //bx_descriptor_t descriptor; bx_selector_t selector; Bit32u dword1, dword2; Bit32u descriptor_dpl; if (v8086_mode()) BX_PANIC(("protect_ctrl: v8086 mode unsupported")); if (real_mode()) { BX_PANIC(("LSL_GvEw: not recognized in real mode")); UndefinedOpcode(i); return; } if (i->modC0()) { raw_selector = BX_READ_16BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_virtual_word(i->seg(), RMAddr(i), &raw_selector); } /* if selector null, clear ZF and done */ if ( (raw_selector & 0xfffc) == 0 ) { set_ZF(0); return; } parse_selector(raw_selector, &selector); if ( !fetch_raw_descriptor2(&selector, &dword1, &dword2) ) { /* not within descriptor table */ set_ZF(0); return; } //parse_descriptor(dword1, dword2, &descriptor); descriptor_dpl = (dword2 >> 13) & 0x03; if ( (dword2 & 0x00001000) == 0 ) { // system segment Bit32u type; type = (dword2 >> 8) & 0x0000000f; switch (type) { case 1: // 16bit TSS case 3: // 16bit TSS case 2: // LDT case 9: // 32bit TSS G00A case 11:// 32bit TSS G00A limit32 = (dword1 & 0x0000ffff) | (dword2 & 0x000f0000); if ( dword2 & 0x00800000 ) limit32 = (limit32 << 12) | 0x00000fff; if ( (descriptor_dplos32L()) BX_WRITE_32BIT_REGZ(i->nnn(), limit32) else // chop off upper 16 bits BX_WRITE_16BIT_REG(i->nnn(), (Bit16u) limit32) } void BX_CPU_C::SLDT_Ew(bxInstruction_c *i) { #if BX_CPU_LEVEL < 2 BX_PANIC(("SLDT_Ew: not supported on 8086!")); #else if (v8086_mode()) BX_PANIC(("protect_ctrl: v8086 mode unsupported")); if (real_mode()) { /* not recognized in real address mode */ BX_ERROR(("SLDT_Ew: encountered in real mode.")); UndefinedOpcode(i); } else { Bit16u val16; val16 = BX_CPU_THIS_PTR ldtr.selector.value; if (i->modC0()) { BX_WRITE_16BIT_REG(i->rm(), val16); } else { write_virtual_word(i->seg(), RMAddr(i), &val16); } } #endif } void BX_CPU_C::STR_Ew(bxInstruction_c *i) { if (v8086_mode()) BX_PANIC(("protect_ctrl: v8086 mode unsupported")); if (real_mode()) { // not recognized in real address mode BX_PANIC(("STR_Ew: encountered in real mode.")); UndefinedOpcode(i); } else { Bit16u val16; val16 = BX_CPU_THIS_PTR tr.selector.value; if (i->modC0()) { BX_WRITE_16BIT_REG(i->rm(), val16); } else { write_virtual_word(i->seg(), RMAddr(i), &val16); } } } void BX_CPU_C::LLDT_Ew(bxInstruction_c *i) { #if BX_CPU_LEVEL < 2 BX_PANIC(("LLDT_Ew: not supported on 8086!")); #else if (v8086_mode()) BX_PANIC(("protect_ctrl: v8086 mode unsupported")); invalidate_prefetch_q(); if (real_mode()) { BX_PANIC(("lldt: not recognized in real mode")); UndefinedOpcode(i); return; } else { /* protected mode */ bx_descriptor_t descriptor; bx_selector_t selector; Bit16u raw_selector; Bit32u dword1, dword2; /* #GP(0) if the current privilege level is not 0 */ if (CPL != 0) { BX_PANIC(("LLDT: CPL != 0")); exception(BX_GP_EXCEPTION, 0, 0); return; } if (i->modC0()) { raw_selector = BX_READ_16BIT_REG(i->rm()); } else { read_virtual_word(i->seg(), RMAddr(i), &raw_selector); } /* if selector is NULL, invalidate and done */ if ((raw_selector & 0xfffc) == 0) { BX_CPU_THIS_PTR ldtr.selector.value = raw_selector; BX_CPU_THIS_PTR ldtr.cache.valid = 0; return; } /* parse fields in selector */ parse_selector(raw_selector, &selector); // #GP(selector) if the selector operand does not point into GDT if (selector.ti != 0) { BX_ERROR(("LLDT: selector.ti != 0")); exception(BX_GP_EXCEPTION, raw_selector & 0xfffc, 0); } if ((selector.index*8 + 7) > BX_CPU_THIS_PTR gdtr.limit) { BX_PANIC(("lldt: GDT: index > limit")); exception(BX_GP_EXCEPTION, raw_selector & 0xfffc, 0); return; } access_linear(BX_CPU_THIS_PTR gdtr.base + selector.index*8, 4, 0, BX_READ, &dword1); access_linear(BX_CPU_THIS_PTR gdtr.base + selector.index*8 + 4, 4, 0, BX_READ, &dword2); parse_descriptor(dword1, dword2, &descriptor); /* if selector doesn't point to an LDT descriptor #GP(selector) */ if ( (descriptor.valid==0) || descriptor.segment || (descriptor.type!=2) ) { BX_ERROR(("lldt: doesn't point to an LDT descriptor!")); exception(BX_GP_EXCEPTION, raw_selector & 0xfffc, 0); } /* #NP(selector) if LDT descriptor is not present */ if (descriptor.p==0) { BX_ERROR(("lldt: LDT descriptor not present!")); exception(BX_NP_EXCEPTION, raw_selector & 0xfffc, 0); } if (descriptor.u.ldt.limit < 7) { BX_ERROR(("lldt: ldtr.limit < 7")); } BX_CPU_THIS_PTR ldtr.selector = selector; BX_CPU_THIS_PTR ldtr.cache = descriptor; BX_CPU_THIS_PTR ldtr.cache.valid = 1; return; } #endif } void BX_CPU_C::LTR_Ew(bxInstruction_c *i) { #if BX_CPU_LEVEL < 2 BX_PANIC(("LTR_Ew: not supported on 8086!")); #else if (v8086_mode()) BX_PANIC(("protect_ctrl: v8086 mode unsupported")); invalidate_prefetch_q(); if (protected_mode()) { bx_descriptor_t descriptor; bx_selector_t selector; Bit16u raw_selector; Bit32u dword1, dword2; #if BX_SUPPORT_X86_64 Bit32u dword3; #endif /* #GP(0) if the current privilege level is not 0 */ if (CPL != 0) { BX_PANIC(("LTR: CPL != 0")); exception(BX_GP_EXCEPTION, 0, 0); return; } if (i->modC0()) { raw_selector = BX_READ_16BIT_REG(i->rm()); } else { read_virtual_word(i->seg(), RMAddr(i), &raw_selector); } /* if selector is NULL, invalidate and done */ if ((raw_selector & 0xfffc) == 0) { BX_PANIC(("ltr: loading with NULL selector!")); /* if this is OK, then invalidate and load selector & descriptor cache */ /* load here */ BX_CPU_THIS_PTR tr.selector.value = raw_selector; BX_CPU_THIS_PTR tr.cache.valid = 0; return; } /* parse fields in selector, then check for null selector */ parse_selector(raw_selector, &selector); if (selector.ti) { BX_PANIC(("ltr: selector.ti != 0")); return; } /* fetch 2 dwords of descriptor; call handles out of limits checks */ fetch_raw_descriptor(&selector, &dword1, &dword2, BX_GP_EXCEPTION); parse_descriptor(dword1, dword2, &descriptor); #if BX_SUPPORT_X86_64 if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) { // set upper 32 bits of tss base access_linear(BX_CPU_THIS_PTR gdtr.base + selector.index*8 + 8, 4, 0, BX_READ, &dword3); descriptor.u.tss386.base |= ((Bit64u)dword3 << 32); } #endif /* #GP(selector) if object is not a TSS or is already busy */ if ( (descriptor.valid==0) || descriptor.segment || (descriptor.type!=1 && descriptor.type!=9) ) { BX_PANIC(("ltr: doesn't point to an available TSS descriptor!")); exception(BX_GP_EXCEPTION, raw_selector & 0xfffc, 0); /* 0 ??? */ return; } /* #NP(selector) if TSS descriptor is not present */ if (descriptor.p==0) { BX_PANIC(("ltr: LDT descriptor not present!")); exception(BX_NP_EXCEPTION, raw_selector & 0xfffc, 0); /* 0 ??? */ return; } if (descriptor.type==1 && descriptor.u.tss286.limit<43) { BX_PANIC(("ltr:286TSS: loading tr.limit < 43")); } else if (descriptor.type==9 && descriptor.u.tss386.limit_scaled<103) { BX_PANIC(("ltr:386TSS: loading tr.limit < 103")); } BX_CPU_THIS_PTR tr.selector = selector; BX_CPU_THIS_PTR tr.cache = descriptor; BX_CPU_THIS_PTR tr.cache.valid = 1; // tr.cache.type should not have busy bit, or it would not get // through the conditions above. BX_ASSERT((BX_CPU_THIS_PTR tr.cache.type & 2) == 0); /* mark as busy */ dword2 |= 0x00000200; /* set busy bit */ access_linear(BX_CPU_THIS_PTR gdtr.base + selector.index*8 + 4, 4, 0, BX_WRITE, &dword2); return; } else { BX_PANIC(("ltr_ew: not recognized in real-mode!")); UndefinedOpcode(i); return; } #endif } void BX_CPU_C::VERR_Ew(bxInstruction_c *i) { /* for 16 bit operand size mode */ Bit16u raw_selector; bx_descriptor_t descriptor; bx_selector_t selector; Bit32u dword1, dword2; if (v8086_mode()) BX_PANIC(("protect_ctrl: v8086 mode unsupported")); if (real_mode()) { BX_PANIC(("VERR_Ew: not recognized in real mode")); UndefinedOpcode(i); return; } if (i->modC0()) { raw_selector = BX_READ_16BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_virtual_word(i->seg(), RMAddr(i), &raw_selector); } /* if selector null, clear ZF and done */ if ( (raw_selector & 0xfffc) == 0 ) { set_ZF(0); BX_ERROR(("VERR: null selector")); return; } /* if source selector is visible at CPL & RPL, * within the descriptor table, and of type accepted by VERR instruction, * then load register with segment limit and set ZF */ parse_selector(raw_selector, &selector); if ( !fetch_raw_descriptor2(&selector, &dword1, &dword2) ) { /* not within descriptor table */ set_ZF(0); BX_ERROR(("VERR: not in table")); return; } parse_descriptor(dword1, dword2, &descriptor); if ( descriptor.segment==0 ) { /* system or gate descriptor */ set_ZF(0); /* inaccessible */ BX_ERROR(("VERR: system descriptor")); return; } if ( descriptor.valid==0 ) { set_ZF(0); BX_INFO(("VERR: valid bit cleared")); return; } /* normal data/code segment */ if ( descriptor.u.segment.executable ) { /* code segment */ /* ignore DPL for readable conforming segments */ if ( descriptor.u.segment.c_ed && descriptor.u.segment.r_w) { set_ZF(1); /* accessible */ BX_INFO(("VERR: conforming code, OK")); return; } if ( descriptor.u.segment.r_w==0 ) { set_ZF(0); /* inaccessible */ BX_INFO(("VERR: code not readable")); return; } /* readable, non-conforming code segment */ if ( (descriptor.dplmodC0()) { raw_selector = BX_READ_16BIT_REG(i->rm()); } else { /* pointer, segment address pair */ read_virtual_word(i->seg(), RMAddr(i), &raw_selector); } /* if selector null, clear ZF and done */ if ( (raw_selector & 0xfffc) == 0 ) { set_ZF(0); BX_ERROR(("VERW: null selector")); return; } /* if source selector is visible at CPL & RPL, * within the descriptor table, and of type accepted by VERW instruction, * then load register with segment limit and set ZF */ parse_selector(raw_selector, &selector); if ( !fetch_raw_descriptor2(&selector, &dword1, &dword2) ) { /* not within descriptor table */ set_ZF(0); BX_ERROR(("VERW: not in table")); return; } parse_descriptor(dword1, dword2, &descriptor); /* rule out system segments & code segments */ if ( descriptor.segment==0 || descriptor.u.segment.executable ) { set_ZF(0); BX_ERROR(("VERW: system seg or code")); return; } if ( descriptor.valid==0 ) { set_ZF(0); BX_INFO(("VERW: valid bit cleared")); return; } /* data segment */ if ( descriptor.u.segment.r_w ) { /* writable */ if ( (descriptor.dplmodC0()) { /* undefined opcode exception */ BX_PANIC(("SGDT_Ms: use of register is undefined opcode.")); UndefinedOpcode(i); return; } if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) { Bit64u base_64; limit_16 = BX_CPU_THIS_PTR gdtr.limit; base_64 = BX_CPU_THIS_PTR gdtr.base; write_virtual_word(i->seg(), RMAddr(i), &limit_16); write_virtual_qword(i->seg(), RMAddr(i)+2, &base_64); } else { limit_16 = BX_CPU_THIS_PTR gdtr.limit; base_32 = BX_CPU_THIS_PTR gdtr.base; #if BX_CPU_LEVEL == 2 base_32 |= 0xff000000; /* ??? */ #else /* 386+ */ /* 32bit processors always write 32bits of base */ #endif write_virtual_word(i->seg(), RMAddr(i), &limit_16); write_virtual_dword(i->seg(), RMAddr(i)+2, &base_32); } #endif } void BX_CPU_C::SIDT_Ms(bxInstruction_c *i) { #if BX_CPU_LEVEL < 2 BX_PANIC(("SIDT_Ms: not supported on 8086!")); #else Bit16u limit_16; Bit32u base_32; if (v8086_mode()) BX_PANIC(("protect_ctrl: v8086 mode unsupported")); /* op1 is a register or memory reference */ if (i->modC0()) { /* undefined opcode exception */ BX_PANIC(("SIDT: use of register is undefined opcode.")); UndefinedOpcode(i); return; } if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) { Bit64u base_64; limit_16 = BX_CPU_THIS_PTR idtr.limit; base_64 = BX_CPU_THIS_PTR idtr.base; write_virtual_word(i->seg(), RMAddr(i), &limit_16); write_virtual_qword(i->seg(), RMAddr(i)+2, &base_64); } else { limit_16 = BX_CPU_THIS_PTR idtr.limit; base_32 = BX_CPU_THIS_PTR idtr.base; #if BX_CPU_LEVEL == 2 base_32 |= 0xff000000; #else /* 386+ */ /* ??? regardless of operand size, all 32bits of base are stored */ #endif write_virtual_word(i->seg(), RMAddr(i), &limit_16); write_virtual_dword(i->seg(), RMAddr(i)+2, &base_32); } #endif } void BX_CPU_C::LGDT_Ms(bxInstruction_c *i) { #if BX_CPU_LEVEL < 2 BX_PANIC(("LGDT_Ms: not supported on 8086!")); #else if (v8086_mode()) BX_PANIC(("protect_ctrl: v8086 mode unsupported")); invalidate_prefetch_q(); if (protected_mode() && (CPL!=0)) { BX_PANIC(("LGDT: protected mode: CPL!=0")); exception(BX_GP_EXCEPTION, 0, 0); return; } /* op1 is a register or memory reference */ if (i->modC0()) { BX_PANIC(("LGDT generating exception 6")); UndefinedOpcode(i); return; } #if BX_CPU_LEVEL >= 3 if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) { Bit16u limit_16; Bit64u base_64; read_virtual_word(i->seg(), RMAddr(i), &limit_16); read_virtual_qword(i->seg(), RMAddr(i) + 2, &base_64); BX_CPU_THIS_PTR gdtr.limit = limit_16; BX_CPU_THIS_PTR gdtr.base = base_64; } else if (i->os32L()) { Bit16u limit_16; Bit32u base0_31; read_virtual_word(i->seg(), RMAddr(i), &limit_16); read_virtual_dword(i->seg(), RMAddr(i) + 2, &base0_31); BX_CPU_THIS_PTR gdtr.limit = limit_16; BX_CPU_THIS_PTR gdtr.base = base0_31; } else #endif { Bit16u limit_16, base0_15; Bit8u base16_23; read_virtual_word(i->seg(), RMAddr(i), &limit_16); read_virtual_word(i->seg(), RMAddr(i) + 2, &base0_15); read_virtual_byte(i->seg(), RMAddr(i) + 4, &base16_23); /* ignore high 8 bits */ BX_CPU_THIS_PTR gdtr.limit = limit_16; BX_CPU_THIS_PTR gdtr.base = (base16_23 << 16) | base0_15; } #endif } void BX_CPU_C::LIDT_Ms(bxInstruction_c *i) { #if BX_CPU_LEVEL < 2 BX_PANIC(("LIDT_Ms: not supported on 8086!")); #else Bit16u limit_16; Bit32u base_32; if (v8086_mode()) BX_PANIC(("protect_ctrl: v8086 mode unsupported")); invalidate_prefetch_q(); if (protected_mode()) { if (CPL != 0) { BX_PANIC(("LIDT(): CPL(%u) != 0", (unsigned) CPL)); exception(BX_GP_EXCEPTION, 0, 0); return; } } /* op1 is a register or memory reference */ if (i->modC0()) { /* undefined opcode exception */ BX_PANIC(("LIDT generating exception 6")); UndefinedOpcode(i); return; } #if BX_CPU_LEVEL >= 3 if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) { Bit64u base_64; read_virtual_word(i->seg(), RMAddr(i), &limit_16); read_virtual_qword(i->seg(), RMAddr(i) + 2, &base_64); BX_CPU_THIS_PTR idtr.limit = limit_16; BX_CPU_THIS_PTR idtr.base = base_64; } else if (i->os32L()) { read_virtual_word(i->seg(), RMAddr(i), &limit_16); read_virtual_dword(i->seg(), RMAddr(i) + 2, &base_32); BX_CPU_THIS_PTR idtr.limit = limit_16; BX_CPU_THIS_PTR idtr.base = base_32; } else #endif { read_virtual_word(i->seg(), RMAddr(i), &limit_16); read_virtual_dword(i->seg(), RMAddr(i) + 2, &base_32); BX_CPU_THIS_PTR idtr.limit = limit_16; BX_CPU_THIS_PTR idtr.base = base_32 & 0x00ffffff; /* ignore upper 8 bits */ } #endif }